

NB7L86M

2.5 V / 3.3 V 12 Gb/s Differential Clock/Data Smart Gate (2:1 Mux, AND/ NAND, OR/NOR, XOR/XNOR) w/CML Output and Internal

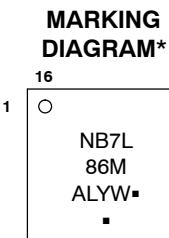
Termination

The NB7L86M is a multi-function differential Logic Gate, which can be configured as an AND/NAND, OR/NOR, XOR/XNOR, or 2:1 MUX. This device is part of the GigaComm family of high performance Silicon Germanium products. The NB7L86M is an ultra-low jitter multi-logic gate with a maximum data rate of 12 Gb/s and input clock frequency of 8 GHz suitable for Data Communication Systems, Telecom Systems, Fiber Channel, and GigE applications.

Differential inputs incorporate internal 50 Ω termination resistors and accept LVNECL (Negative ECL), LVPECL (Positive ECL), LVCMS, LVTTL, CML, or LVDS. The differential 16 mA CML output provides matching internal 50 Ω termination, and 400 mV output swing when externally terminated 50 Ω to VCC.

The device is housed in a low profile 3x3 mm 16-pin QFN package.

Application notes, models, and support documentation are available on www.onsemi.com.


Features

- Maximum Input Clock Frequency up to 8 GHz
- Maximum Input Data Rate up to 12 Gb/s Typical
- < 0.5 ps of RMS Clock Jitter
- < 10 ps of Data Dependent Jitter
- 30 ps Typical Rise and Fall Times
- 90 ps Typical Propagation Delay
- 2 ps Typical Within Device Skew
- Operating Range: V_{CC} = 2.375 V to 3.465 V with V_{EE} = 0 V
- CML Output Level (400 mV Peak-to-Peak Output) Differential Output
- 50 Ω Internal Input and Output Termination Resistors
- Functionally Compatible with Existing 2.5 V/3.3 V LVEL, LVEP, EP and SG Devices
- These are Pb-Free Devices

ON Semiconductor®

<http://onsemi.com>

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week
▪ = Pb-Free Package

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

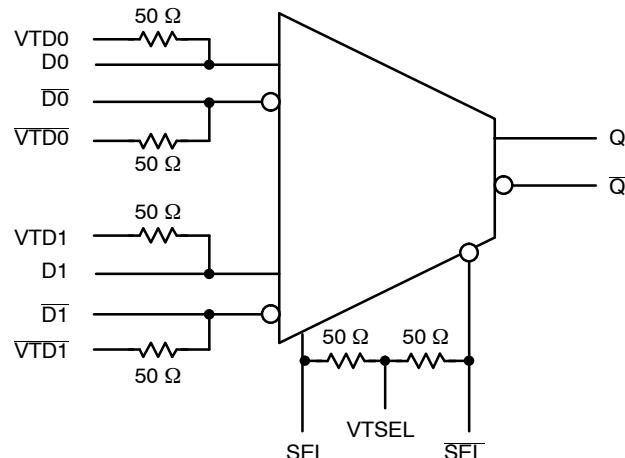
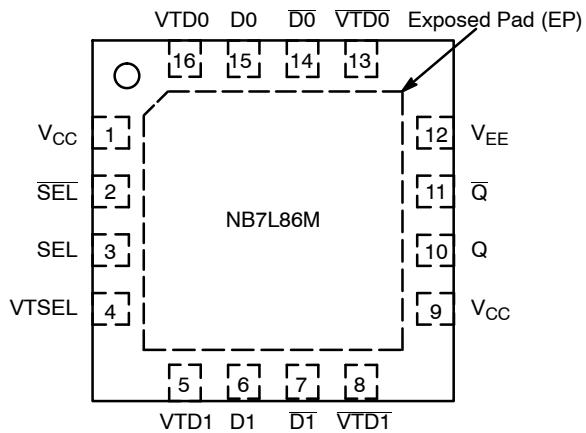



Figure 1. Simplified Logic Diagram

NB7L86M

Figure 2. Pin Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
1, 9	V _{CC}	Power Supply	Positive supply voltage. All V _{CC} pins must be externally connected to power supply to guarantee proper operation.
2	SEL	LVPECL, CML, LVCMOS, LVTTL, LVDS Input	Inverted differential select logic input.
3	SEL	LVPECL, CML, LVCMOS, LVTTL, LVDS Input	Non-inverted differential select logic Input.
4	V _{TSEL}	–	Common internal 50 Ω termination pin for SEL/SEL. See Table 6. (Note 1)
5	V _{TD1}	–	Internal 50 Ω termination pin for D1. See Table 6. (Note 1)
6	D1	LVPECL, CML, LVCMOS, LVTTL, LVDS Input	Non-inverted differential clock/data input D1. (Note 1)
7	D ₁	LVPECL, CML, LVCMOS, LVTTL, LVDS Input	Inverted differential clock/data input D ₁ . (Note 1)
8	V _{TD1}	–	Internal 50 Ω termination pin for D1. See Table 6. (Note 1)
10	Q	CML Output	Non-inverted output with internal 50 Ω source termination resistor. (Note 2)
11	Q-bar	CML Output	Inverted output with internal 50 Ω source termination resistor. (Note 2)
12	V _{EE}	Power Supply	Negative supply voltage. All V _{EE} pins must be externally connected to power supply to guarantee proper operation.
13	V _{TD0}	–	Internal 50 Ω termination pin for D0. (Note 1)
14	D ₀	LVPECL, CML, LVCMOS, LVTTL, LVDS Input	Non-inverted differential clock/data input D ₀ . (Note 1)
15	D0	LVPECL, CML, LVCMOS, LVTTL, LVDS Input	Non-inverted differential clock/data input D0. (Note 1)
16	V _{TD0}	–	Internal 50 Ω termination pin for D ₀ . (Note 1)
–	EP	–	Exposed Pad. Thermal pad on the package bottom must be attached to a heatsinking conduit to improve heat transfer. It is recommended to connect the EP to the lower potential (V _{EE}).

1. In the differential configuration when the input termination pins (V_{TDx}, V_{TDx}, V_{TSEL}) are connected to a common termination voltage or left open, and if no signal is applied on D_x, D_x, SEL and SEL then the device will be susceptible to self-oscillation.
2. CML output require 50 Ω receiver termination resistor to VCC for proper operation.

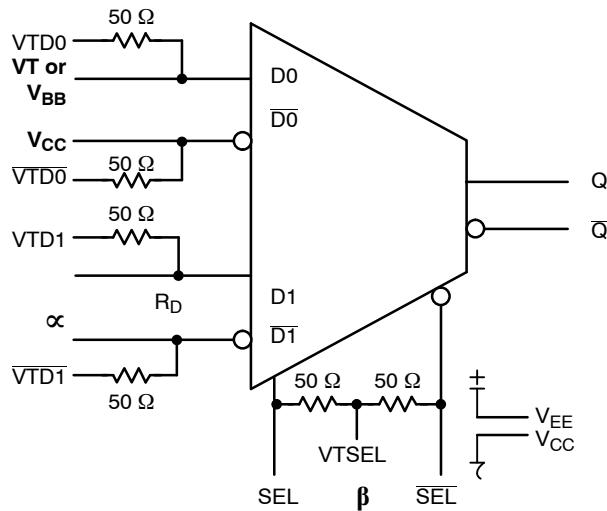


Figure 3. Configuration for AND/NAND Function

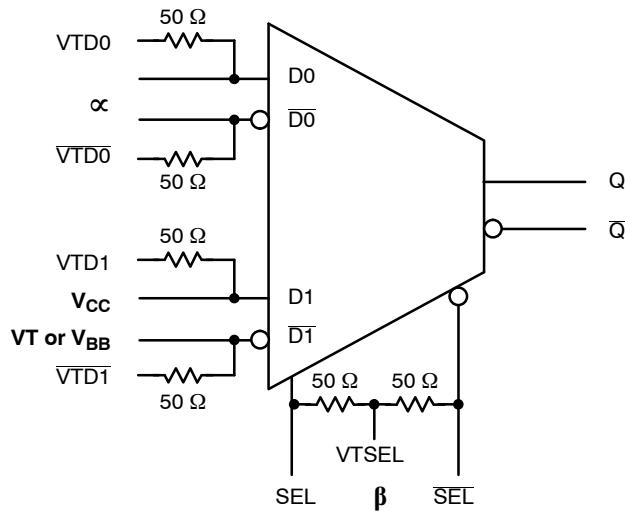


Figure 4. Configuration for OR/NOR Function

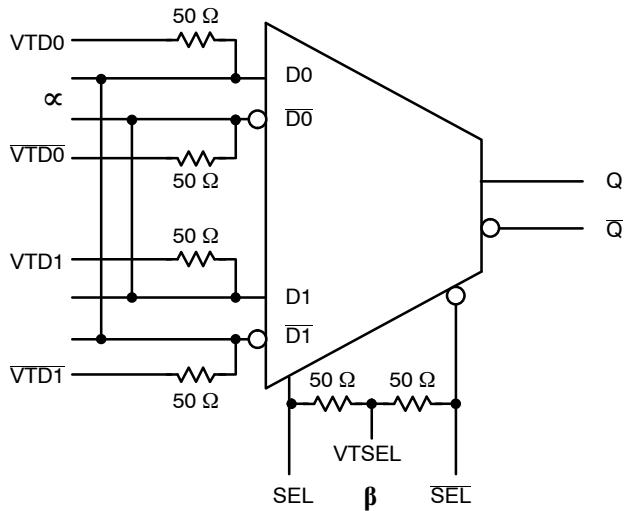


Figure 5. Configuration for XOR/XNOR Function

Table 2. AND/NAND TRUTH TABLE (Note 3)

	∞	b	$\infty \text{ AND } b$
$D0$	$D1$	SEL	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1

3. $D0$, $D1$, SEL are complementary of $D0$, $D1$, SEL unless specified otherwise.

Table 3. OR/NOR TRUTH TABLE (Note 4)

	∞	β	$\infty \text{ or } \beta$
$D0$	$D1$	SEL	Q
0	1	0	0
0	1	1	1
1	1	0	1
1	1	1	1

4. $D0$, $D1$, SEL are complementary of $D0$, $D1$, SEL unless specified otherwise.

Table 4. XOR/XNOR TRUTH TABLE (Note 5)

	∞	β	$\infty \text{ XOR } \beta$
$D0$	$D1$	SEL	Q
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0

5. $D0$, $D1$, SEL are complementary of $D0$, $D1$, SEL unless specified otherwise.

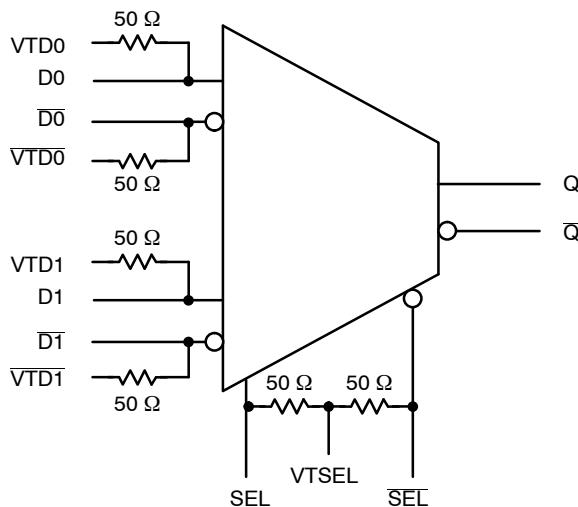


Figure 6. Configuration for 2:1 MUX Function

Table 5. 2:1 MUX TRUTH TABLE (Note 6)

SEL	Q
1	D1
0	D0

6. $\overline{D0}$, $\overline{D1}$, \overline{SEL} are complementary of $D0$, $D1$, SEL unless specified otherwise.

Table 6. ATTRIBUTES

Characteristics		Value	
ESD Protection		Human Body Model Machine Model Charged Device Model	
Moisture Sensitivity (Note 7)		Pb Pkg	Pb-Free Pkg
	QFN-16	Level 1	Level 1
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
Transistor Count		400	
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test			

7. For additional Moisture Sensitivity information, refer to Application Note AND8003/D.

Table 7. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V_{CC}	Positive Power Supply	$V_{EE} = 0$ V		3.6	V
V_I	Input Voltage	$V_{EE} = 0$ V	$V_{EE} \leq V_I \leq V_{CC}$	3.6	V
V_{INPP}	Differential Input Voltage $ D - \overline{D} $	$V_{CC} - V_{EE} \geq 2.8$ V $V_{CC} - V_{EE} < 2.8$ V		2.8 $ V_{CC} - V_{EE} $	V V
I_{IN}	Input Current Through R_T (50 Ω Resistor)	Continuous Surge		25 50	mA mA
I_{out}	Output Current	Continuous Surge		25 50	mA mA
T_A	Operating Temperature Range	QFN-16		-40 to +85	°C
T_{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 8)	0 lfpmm 500 lfpmm	QFN-16 QFN-16	42 36	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	2S2P (Note 8)	QFN-16	3 to 4	°C/W
T_{sol}	Wave Solder Pb Pb-Free			265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

8. JEDEC standard multilayer board – 2S2P (2 signal, 2 power).

NB7L86M

Table 8. DC CHARACTERISTICS ($V_{CC} = 2.375$ V to 3.465 V, $V_{EE} = 0$ V, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)

Symbol	Characteristic	Min	Typ	Max	Unit
I_{CC}	Power Supply Current (Inputs and Outputs Open)		38	50	mA
V_{OH}	Output HIGH Voltage (Notes 9 and 10)	$V_{CC} - 60$	$V_{CC} - 30$	V_{CC}	mV
V_{OL}	Output LOW Voltage (Notes 9 and 10)	$V_{CC} - 460$	$V_{CC} - 400$	$V_{CC} - 310$	mV

Differential Input Driven Single-Ended (see Figures 16 & 18)

V_{th}	Input Threshold Reference Voltage Range (Note 11)	1125		$V_{CC} - 75$	mV
V_{IH}	Single-ended Input HIGH Voltage (Note 12)	$V_{th} + 75$		V_{CC}	mV
V_{IL}	Single-ended Input LOW Voltage (Note 12)	V_{EE}		$V_{CC} - 150$	mV

Differential Inputs Driven Differentially (see Figures 17 & 19)

V_{IHD}	Differential Input HIGH Voltage	1200		V_{CC}	mV
V_{ILD}	Differential Input LOW Voltage	V_{EE}		$V_{CC} - 75$	mV
V_{CMR}	Input Common Mode Range (Differential Configuration)	1163		$V_{CC} - 38$	mV
V_{ID}	Differential Input Voltage ($V_{IHD} - V_{ILD}$)	75		2500	mV
I_{IH}	Input HIGH Current	D0/D0/D1/D1 SEL/SEL	0 0	50 20	μA
I_{IL}	Input LOW Current	D0/D0/D1/D1 SEL/SEL	-50 -50	50 20	μA
R_{TIN}	Internal Input Termination Resistor	45	50	55	Ω
R_{TOUT}	Internal Output Termination Resistor	45	50	55	Ω
$R_{Temp Coef}$	Internal I/O Termination Resistor Temperature Coefficient			6.38	$\text{m}\Omega/^\circ\text{C}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained airflow greater than 500 lfm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

9. CML outputs require $50\ \Omega$ receiver termination resistors to V_{CC} for proper operation.

10. Input and output parameters vary 1:1 with V_{CC} .

11. V_{th} is applied to the complementary input when operating in single-ended mode.

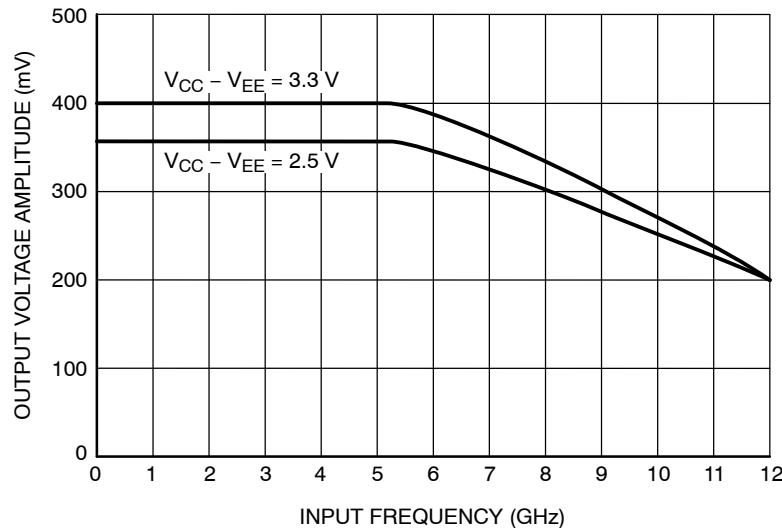
12. V_{CMR} min varies 1:1 with V_{EE} , V_{CMR} max varies 1:1 with V_{CC} .

Table 9. AC CHARACTERISTICS ($V_{CC} = 2.375$ V to 3.465 V, $V_{EE} = 0$ V; Note 13)

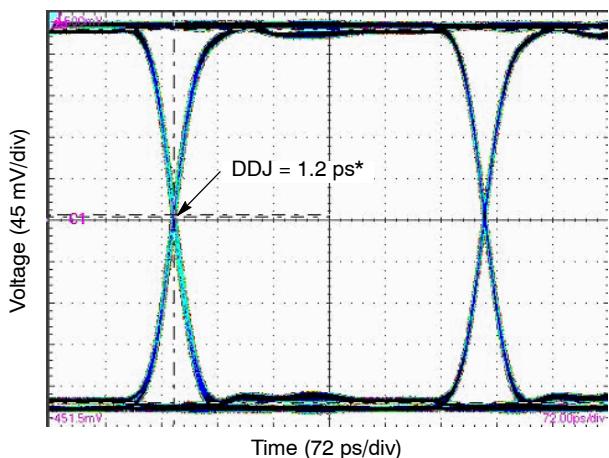
Symbol	Characteristic	-40°C			25°C			85°C			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
V_{OUTPP}	Output Voltage Amplitude (@ $V_{INPPmin}$) $f_{in} \leq 4$ GHz (See Figure 7) $f_{in} \leq 8$ GHz	240 125	350 230		240 125	350 230		240 125	350 230		mV
f_{data}	Maximum Operating Data Rate	10.7	12		10.7	12		10.7	12		Gb/s
t_{PLH} , t_{PHL}	Propagation Delay to Output Differential @ 1 GHz SEL/SEL to Q/Q (See Figure 7)	70 110	90 135	120 180	70 110	90 135	120 180	70 110	90 135	120 180	ps
t_{SKEW}	Duty Cycle Skew (Note 14) Device-to-Device Skew (Note 15)		2.0 5.0	10 20		2.0 5.0	10 20		2.0 5.0	10 20	ps
t_S	Set-Up Time (Dx to SEL)	100			100			100			ps
t_H	Hold-Up Time (Dx to SEL)	-15			-15			-15			ps
t_{JITTER}	RMS Random Clock Jitter (Note 16) $f_{in} = 4$ GHz $f_{in} = 8$ GHz Peak/Peak Data Dependent Jitter $f_{data} = 5$ Gb/s (Note 17) $f_{data} = 10$ Gb/s		0.2 0.2 2.0 4.0	0.5 0.5 8.0 10		0.2 0.2 2.0 4.0	0.5 0.5 8.0 10		0.2 0.2 2.0 4.0	0.5 0.5 8.0 10	ps
V_{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 18)	75	400	2500	75	400	2500	75	400	2500	mV
t_r t_f	Output Rise/Fall Times @ 1 GHz Q, \bar{Q} (20% – 80%)		35	60		35	60		35	60	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained airflow greater than 500 lfm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

13. Measured by forcing V_{INPP} (TYP) from a 50% duty cycle clock source. All loading with an external $R_L = 50$ Ω to V_{CC} .
Input edge rates 40 ps (20% – 80%).

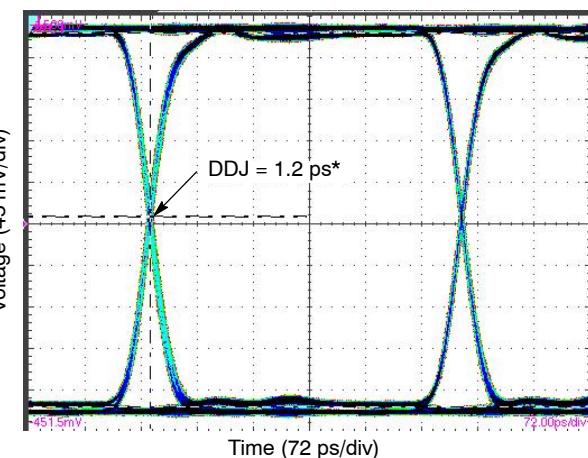

14. Duty cycle skew is measured between differential outputs using the deviations of the sum of T_{pw-} and T_{pw+} @1 GHz.

15. Device to device skew is measured between outputs under identical transition @ 1 GHz.


16. Additive RMS jitter with 50% duty cycle clock signal.

17. Additive peak-to-peak data dependent jitter with input NRZ data (PRBS $2^{23}-1$).

18. V_{INPP} (MAX) cannot exceed $V_{CC} - V_{EE}$. Input voltage swing is a single-ended measurement operating in differential mode.



**Figure 7. Output Voltage Amplitude (V_{OUTPP}) versus
Input Clock Frequency (f_{in}) at Ambient Temperature (Typical)**

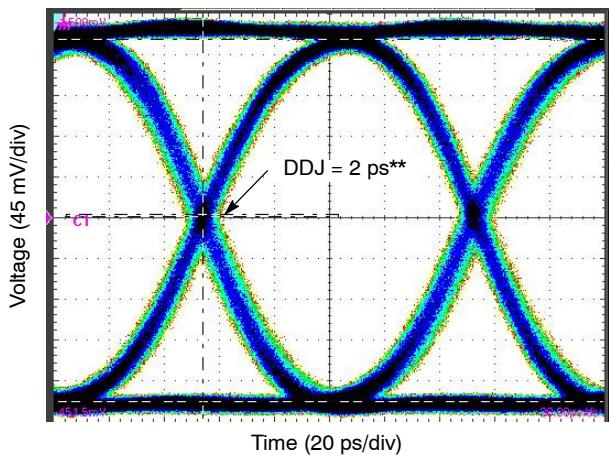


Figure 8. Typical Output Waveform at 2.488 Gb/s with PRBS $2^{23}-1$ ($V_{inpp} = 75$ mV)

*Input signal DDJ = 10 ps

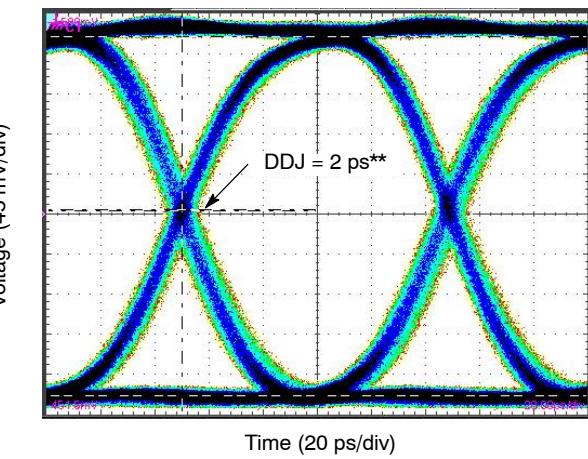


Figure 9. Typical Output Waveform at 2.488 Gb/s with PRBS $2^{23}-1$ ($V_{inpp} = 400$ mV)

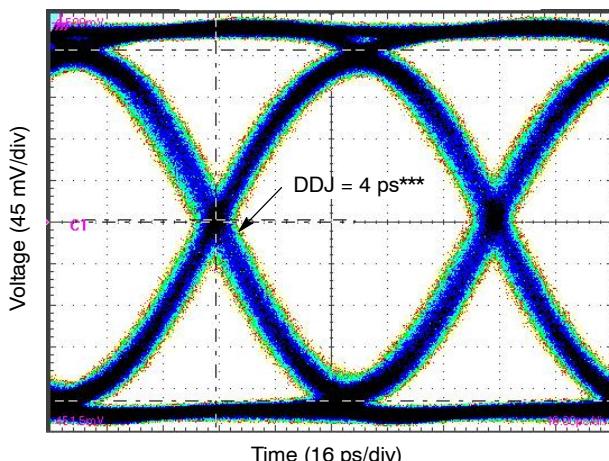


Figure 10. Typical Output Waveform at 10 Gb/s with PRBS $2^{23}-1$ ($V_{inpp} = 75$ mV)

**Input signal DDJ = 12 ps

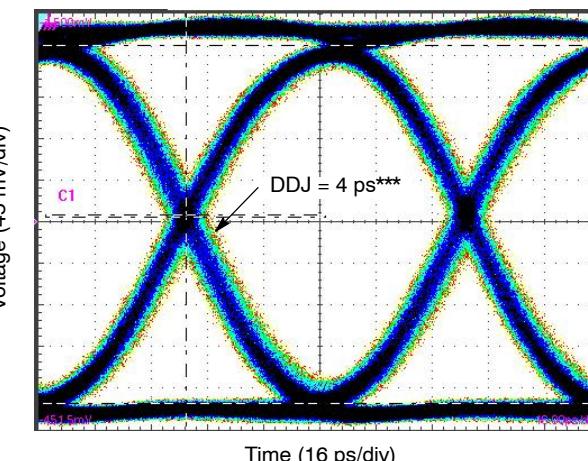


Figure 11. Typical Output Waveform at 10 Gb/s with PRBS $2^{23}-1$ ($V_{inpp} = 400$ mV)

Figure 12. Typical Output Waveform at 12 Gb/s with PRBS $2^{23}-1$ ($V_{inpp} = 75$ mV)

***Input signal DDJ = 14 ps

Figure 13. Typical Output Waveform at 12 Gb/s with PRBS $2^{23}-1$ ($V_{inpp} = 400$ mV)

NB7L86M

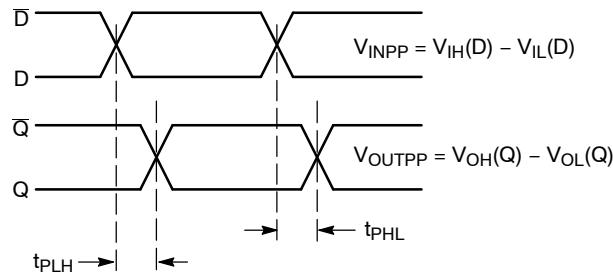


Figure 14. AC Reference Measurement

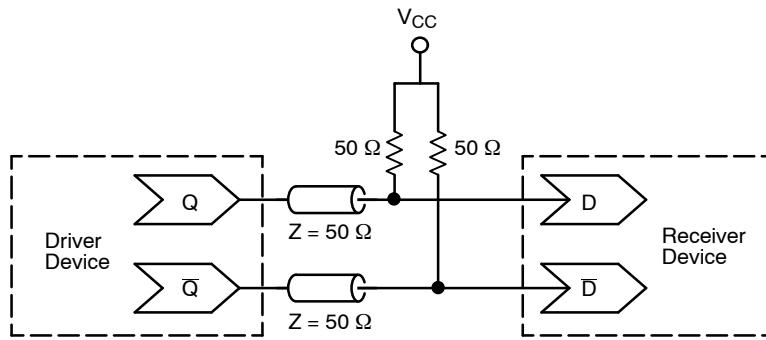


Figure 15. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8173 – Termination and Interface of ON Semiconductor of ECL Logic Devices with CML Output Structure)

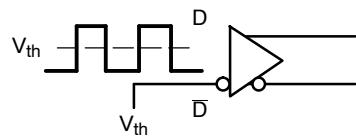


Figure 16. Differential Input Driven Single-Ended

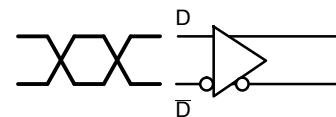


Figure 17. Differential Inputs Driven Differentially

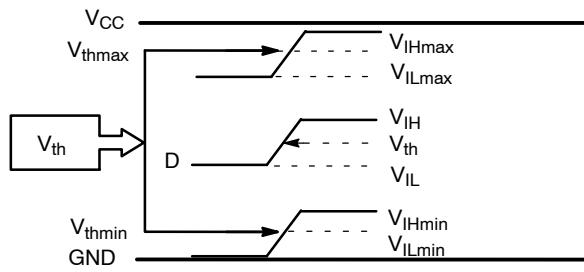


Figure 18. V_{th} Diagram

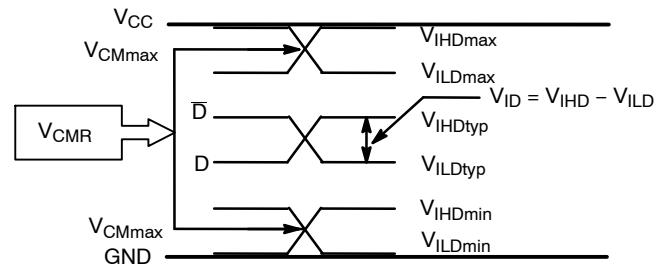
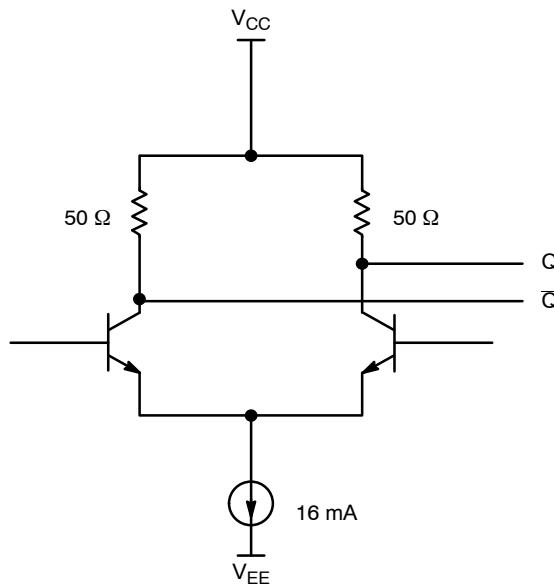



Figure 19. V_{CMR} Diagram

NB7L86M

Figure 20. CML Output Structure

Table 10. INTERFACING OPTIONS

INTERFACING OPTIONS	CONNECTIONS
CML	Connect VTD0, VTD̄0, VTD1, VTD̄1, VTSEL to V _{CC}
LVDS	Connect VTD0, VTD̄0 together for D0 input. Connect VTD1, VTD̄1 together for D1 input. Leave VTSEL open for SEL input.
AC-COUPLED	Bias VTD0, VTD̄0, VTSEL and VTD1, VTD̄1 Inputs within (V _{CMR}) Common Mode Range
RSECL, LVPECL	Standard ECL Termination Techniques. See AND8020/D.
LVTTL, LVCMS	An external voltage should be applied to the unused complementary differential input. Nominal voltage 1.5 V for LVTTL and V _{CC} /2 for LVCMS inputs.

Application Information

All inputs can accept PECL, CML, and LVDS signal levels. The input voltage can range from V_{CC} to 1.2 V.

Examples interfaces are illustrated below in a 50Ω environment ($Z = 50 \Omega$).

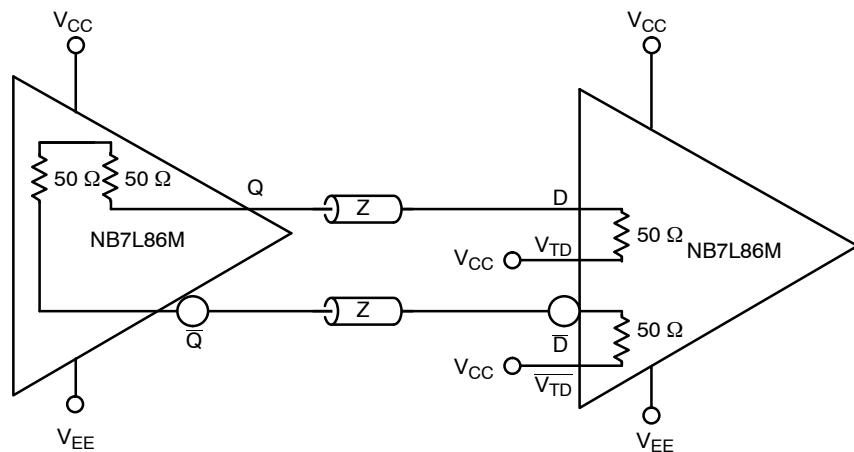


Figure 21. CML to CML Interface

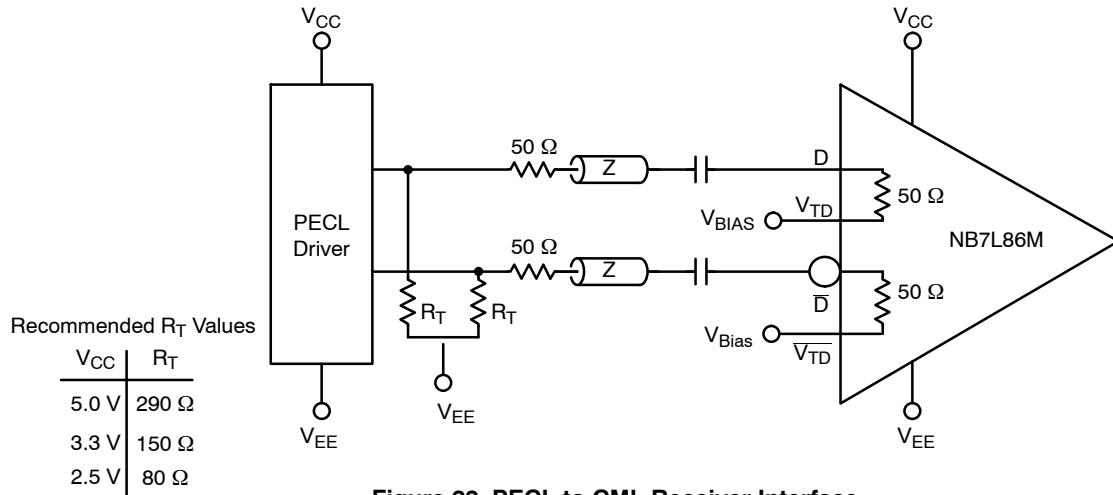


Figure 22. PECL to CML Receiver Interface

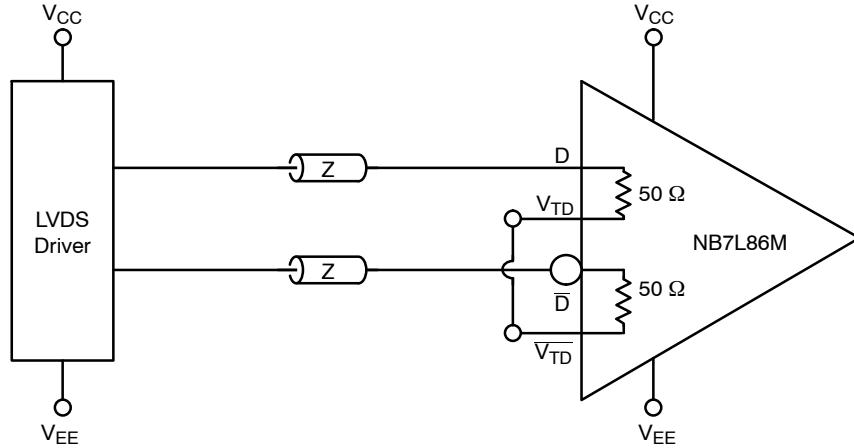
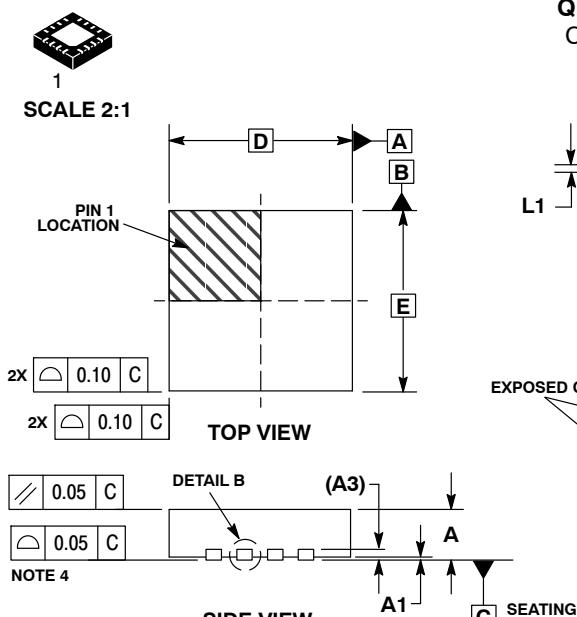


Figure 23. LVDS to CML Receiver Interface

NB7L86M

ORDERING INFORMATION

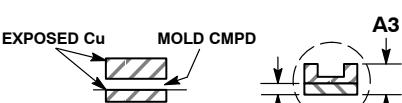

Device	Package	Shipping [†]
NB7L86MMNG	QFN-16 (Pb-Free)	123 Units/Rail
NB7L86MMNR2G	QFN-16 (Pb-Free)	3000 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

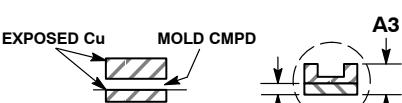
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

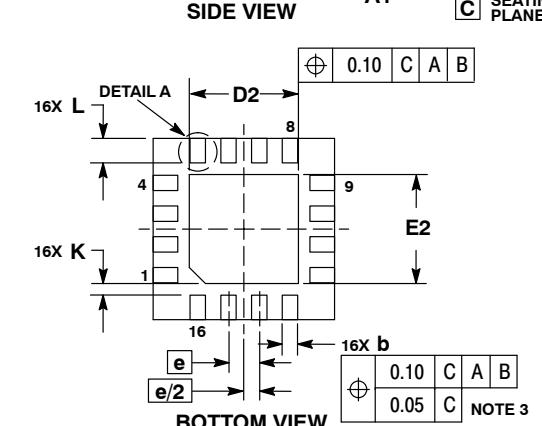
ON Semiconductor®

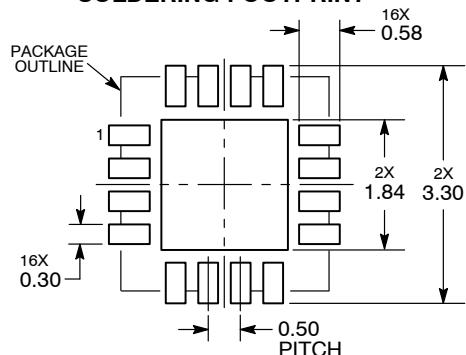

QFN16 3x3, 0.5P
CASE 485G-01
ISSUE F

DATE 22 JUN 2011


NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.


MILLIMETERS			
DIM	MIN	NOM	MAX
A	0.80	0.90	1.00
A1	0.00	0.03	0.05
A3	0.20 REF		
b	0.18	0.24	0.30
D	3.00 BSC		
D2	1.65	1.75	1.85
E	3.00 BSC		
E2	1.65	1.75	1.85
e	0.50 BSC		
K	0.18 TYP		
L	0.30	0.40	0.50
L1	0.00	0.08	0.15


DETAIL A
ALTERNATE TERMINAL CONSTRUCTIONS

DETAIL B
ALTERNATE CONSTRUCTIONS

RECOMMENDED
SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON04795D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	QFN16, 3X3 MM, 0.5 PITCH	PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent_Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support:

Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

