

Ultrafast Dual Diode

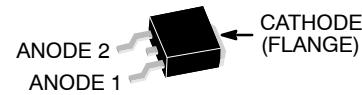
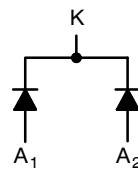
12 A, 200 V

RURD620CCS9A

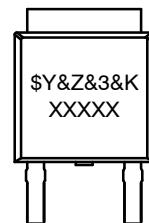
The RURD620CCS9A is an ultrafast dual diode with low forward voltage drop. This device is intended for use as freewheeling and clamping diodes in a variety of switching power supplies and other power switching applications. It is specially suited for use in switching power supplies and industrial application.

Features

- Ultrafast Recovery $t_{rr} = 30$ ns (@ $I_F = 6$ A)
- Max Forward Voltage, $V_F = 1.0$ V (@ $T_C = 25^\circ\text{C}$)
- Reverse Voltage, $V_{RRM} = 200$ V
- Avalanche Energy Rated
- RoHS Compliant



Applications

- Switching Power Supplies
- Power Switching Circuits
- General Purpose


ABSOLUTE MAXIMUM RATINGS (Per Leg) $(T_C = 25^\circ\text{C}$ unless otherwise specified)

Symbol	Rating	Value	Unit
V_{RRM}	Peak Repetitive Reverse Voltage	200	V
V_{RWM}	Working Peak Reverse Voltage	200	V
V_R	DC Blocking Voltage	200	V
$I_{F(AV)}$	Average Rectified Forward Current $T_C = 160^\circ\text{C}$	6	A
I_{FRM}	Repetitive Peak Surge Current Square Wave, 20 kHz	12	A
I_{FSM}	Nonrepetitive Peak Surge Current Halfwave, 1 Phase, 60 Hz	60	A
P_D	Maximum Power Dissipation	45	W
E_{AVL}	Avalanche Energy (See Figures 10 and 11)	10	mJ
T_{STG}, T_J	Operating and Storage Temperature	-65 to 175	$^\circ\text{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

SYMBOL

DPAK3 (TO-252 3 LD)
JEDEC
CASE 369AS

MARKING DIAGRAM

$\$Y$ = onsemi Logo
 $\&Z$ = Assembly Plant Code
 $\&3$ = 3-Digit Date Code
 $\&K$ = 2-Digits Lot Run Traceability Code
 XXXXX = Device Code (UR620C, RURD620)

ORDERING INFORMATION

Device	Package	Shipping [†]
RURD620CCS9A-F085	TO-252-3L	2500 / Tape & Reel

NOTE: When ordering, use the entire part number. Add the suffix, 9 A, to obtain the TO-252 variant in tape and reel, i.e., RURD620CCS9A.

DISCONTINUED (Note 1)

Device	Package	Shipping [†]
RURD620CCS9A	TO-252-3L	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, [BRD8011/D](#).

1. **DISCONTINUED:** These devices are not recommended for new design. Please contact your onsemi representative for information. The most current information on these devices may be available on www.onsemi.com.

ELECTRICAL CHARACTERISTICS (Per Leg) ($T_C = 25^\circ\text{C}$ unless otherwise specified)

Symbol	Test Condition	Min	Typ	Max	Unit
V_F	$I_F = 6 \text{ A}$	—	—	1.0	V
	$I_F = 6 \text{ A}, T_C = 150^\circ\text{C}$	—	—	0.83	V
I_R	$V_R = 200 \text{ V}$	—	—	100	μA
	$V_R = 200 \text{ V}, T_C = 150^\circ\text{C}$	—	—	500	μA
t_{rr}	$I_F = 1 \text{ A}, dI_F/dt = 200 \text{ A}/\mu\text{s}$	—	—	25	ns
	$I_F = 6 \text{ A}, dI_F/dt = 200 \text{ A}/\mu\text{s}$	—	—	30	ns
t_a	$I_F = 6 \text{ A}, dI_F/dt = 200 \text{ A}/\mu\text{s}$	—	13	—	ns
t_b	$I_F = 6 \text{ A}, dI_F/dt = 200 \text{ A}/\mu\text{s}$	—	6.5	—	ns
Q_{rr}	$I_F = 6 \text{ A}, dI_F/dt = 200 \text{ A}/\mu\text{s}$	—	20	—	nC
C_J	$V_R = 10 \text{ V}, I_F = 0 \text{ A}$	—	30	—	pF
$R_{\theta JC}$		—	—	3.5	$^\circ\text{C}/\text{W}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

DEFINITIONS

V_F = Instantaneous forward voltage (pw = 300 μs , D = 2%).

I_R = Instantaneous reverse current.

T_{rr} = Reverse recovery time (See Figure 9), summation of $t_a + t_b$.

t_a = Time to reach peak reverse current (See Figure 9).

t_b = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 9).

Q_{rr} = Reverse recovery charge.

C_J = Junction Capacitance.

$R_{\theta JC}$ = Thermal resistance junction to case. pw = Pulse width.

D = Duty cycle.

TYPICAL PERFORMANCE CURVES

Figure 1. Forward Current vs. Forward Voltage

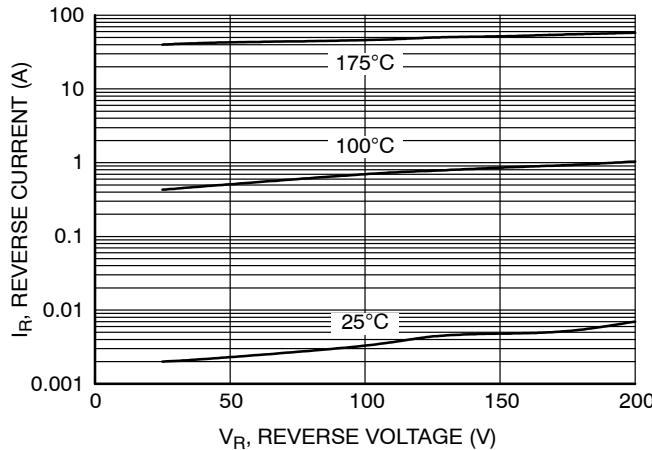


Figure 2. Reverse Current vs. Reverse Voltage

TYPICAL PERFORMANCE CURVES (Continued)

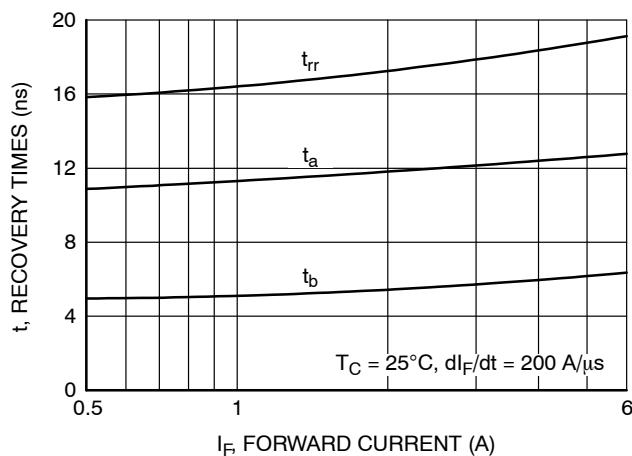


Figure 3. t_{rr} , t_a and t_b Curves vs. Forward Current

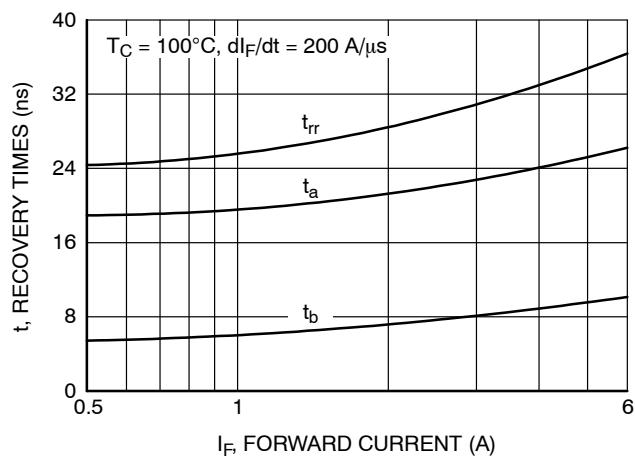


Figure 4. t_{rr} , t_a and t_b Curves vs. Forward Current

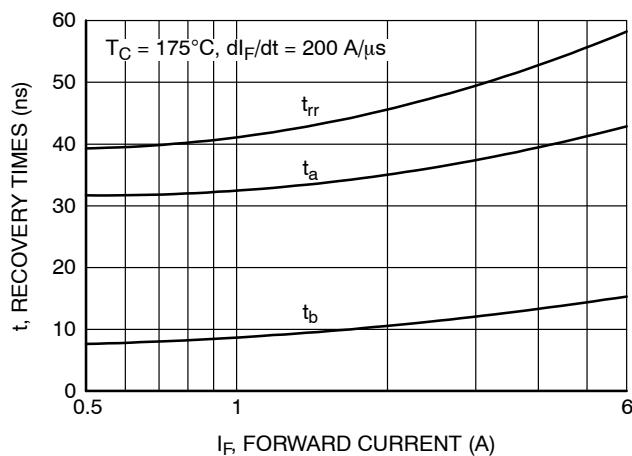


Figure 5. t_{rr} , t_a and t_b Curves vs. Forward Current

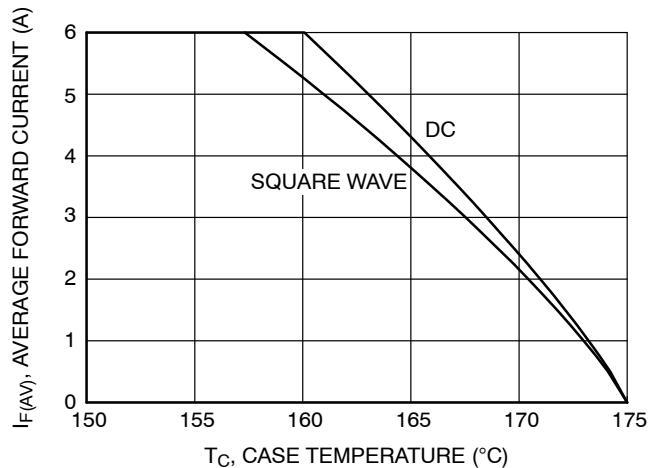


Figure 6. Current Derating Curve

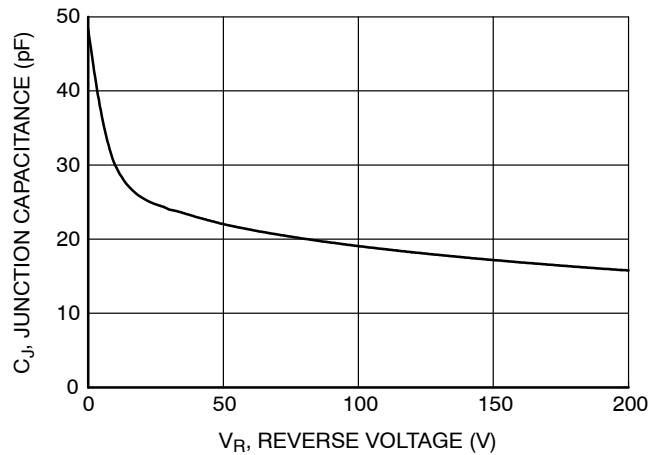


Figure 7. Junction Temperature vs. Reverse Voltage

TEST CIRCUITS AND WAVEFORMS

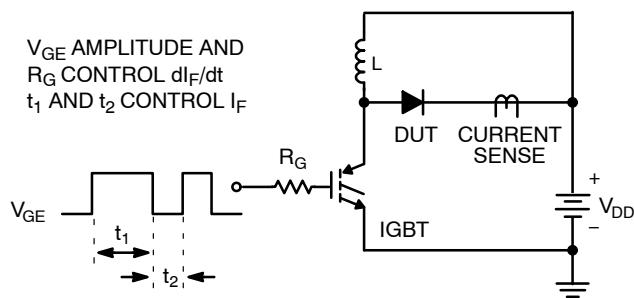


Figure 8. t_{rr} Test Circuit

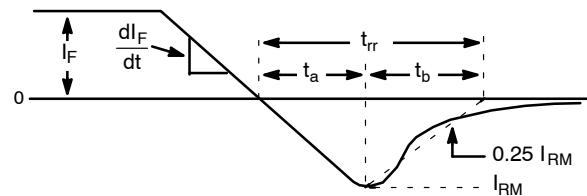


Figure 9. t_{rr} Waveforms and Definitions

I = 1 A
L = 20 mH
R < 0.1 Ω
E_{AVL} = 1/2L² [V_{R(AVL)} / (V_{R(AVL)} - V_{DD})]
Q₁ = IGBT (BV_{CES} > DUT V_{R(AVL)})

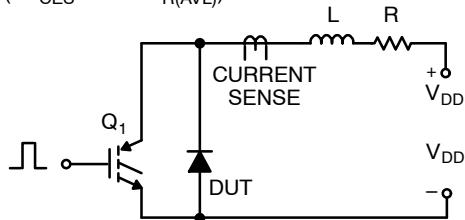
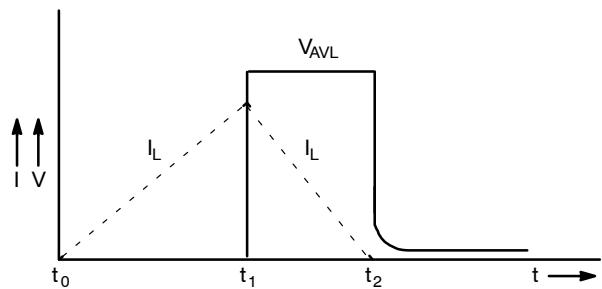
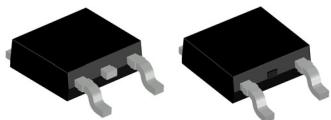
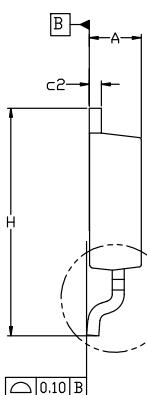
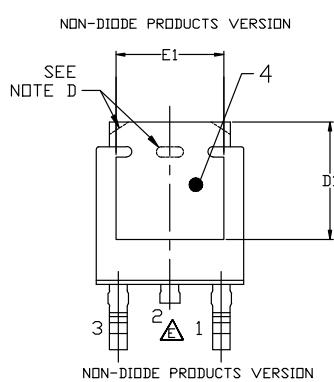
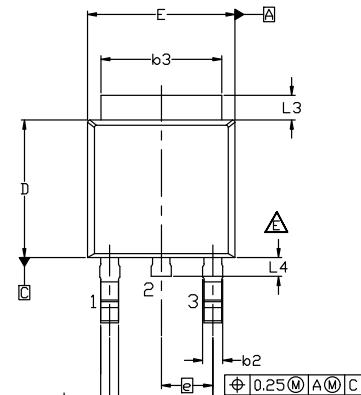
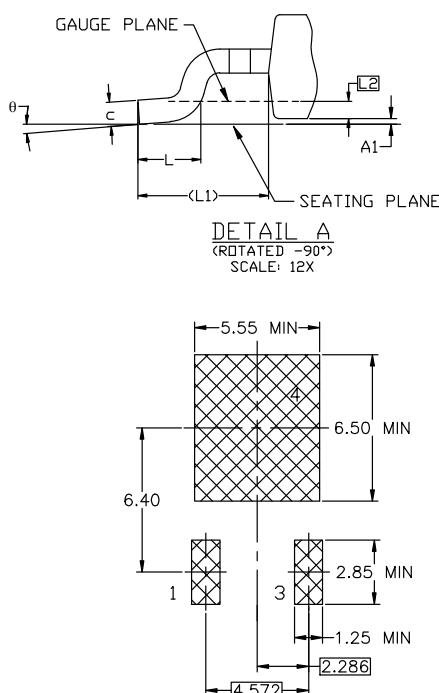


Figure 10. Avalanche Energy Test Circuit


Figure 11. Avalanche Current and Voltage Waveforms

DPAK3 6.10x6.54x2.29, 4.57P
CASE 369AS
ISSUE B

DATE 20 DEC 2023

NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE CONFORMS TO JEDEC, TD-252,
ISSUE F, VARIATION AA.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONING AND TOLERANCING PER
ASME Y14.5M-2018.
D) SUPPLIER DEPENDENT MOLD LOCKING HOLES OR CHAMFERED
CORNERS OR EDGE PROTRUSION.
E) FOR DIODE PRODUCTS, L4 IS 0.25 MM MAX PLASTIC BODY
STUB WITHOUT CENTER LEAD.
F) DIMENSIONS ARE EXCLUSIVE OF BURRS,
MOLD FLASH AND TIE BAR EXTRUSIONS.
G) LAND PATTERN RECOMMENDATION IS BASED ON IPC7351A STD
TD228P991X239-3N.

DIM	MILLIMETERS		
	MIN.	NOM.	MAX.
A	2.18	2.29	2.39
A1	0.00	—	0.127
b	0.64	0.77	0.89
b2	0.76	0.95	1.14
b3	5.21	5.34	5.46
c	0.45	0.53	0.61
c2	0.45	0.52	0.58
D	5.97	6.10	6.22
D1	5.21	—	—
E	6.35	6.54	6.73
E1	4.32	—	—
e	2.286	BSC	
e1	4.572	BSC	
H	9.40	9.91	10.41
L	1.40	1.59	1.78
L1	2.90	REF	
L2	0.51	BSC	
L3	0.89	1.08	1.27
L4	—	—	1.02
θ	0°	—	10°

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR
PB-FREE STRATEGY AND SOLDERING DETAILS,
PLEASE DOWNLOAD THE ON SEMICONDUCTOR
SOLDERING AND MOUNTING TECHNIQUES
REFERENCE MANUAL, SOLDERRM/D.

**GENERIC
MARKING DIAGRAM***

XXXX = Specific Device Code
A = Assembly Location
Y = Year
WW = Work Week
ZZ = Assembly Lot Code

DOCUMENT NUMBER:	98AON13810G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	DPAK3 6.10x6.54x2.29, 4.57P	PAGE 1 OF 1

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales

