

1Mb x 36 and 2Mb x 18 36Mb, PIPELINE 'NO WAIT' STATE BUS SRAM

FEBRUARY 2012

FEATURES

- 100 percent bus utilization
- · No wait cycles between Read and Write
- Internal self-timed write cycle
- Individual Byte Write Control
- Single R/W (Read/Write) control pin
- Clock controlled, registered address, data and control
- Interleaved or linear burst sequence control using MODE input
- Three chip enables for simple depth expansion and address pipelining
- · Power Down mode
- Common data inputs and data outputs
- CKE pin to enable clock and suspend operation
- JEDEC 100-pin TQFP package
- · Power supply:

NVP: VDD $2.5V (\pm 5\%)$, VDDQ $2.5V (\pm 5\%)$ NLP: VDD $3.3V (\pm 5\%)$, VDDQ $3.3V/2.5V (\pm 5\%)$

- Industrial temperature available
- · Lead-free available

DESCRIPTION

The 36 Meg 'NLP/NVP' product family feature high-speed, low-power synchronous static RAMs designed to provide a burstable, high-performance, 'no wait' state, device for networking and communications applications. They are organized as 1M words by 36 bits and 2M words by 18 bits, fabricated with *ISSI*'s advanced CMOS technology.

Incorporating a 'no wait' state feature, wait cycles are eliminated when the bus switches from read to write, or write to read. This device integrates a 2-bit burst counter, high-speed SRAM core, and high-drive capability outputs into a single monolithic circuit.

All synchronous inputs pass through registers are controlled by a positive-edge-triggered single clock input. Operations may be suspended and all synchronous inputs ignored when Clock Enable, $\overline{\text{CKE}}$ is HIGH. In this state the internal device will hold their previous values.

All Read, Write and Deselect cycles are initiated by the ADV input. When the ADV is HIGH the internal burst counter is incremented. New external addresses can be loaded when ADV is LOW.

Write cycles are internally self-timed and are initiated by the rising edge of the clock inputs and when \overline{WE} is LOW. Separate byte enables allow individual bytes to be written.

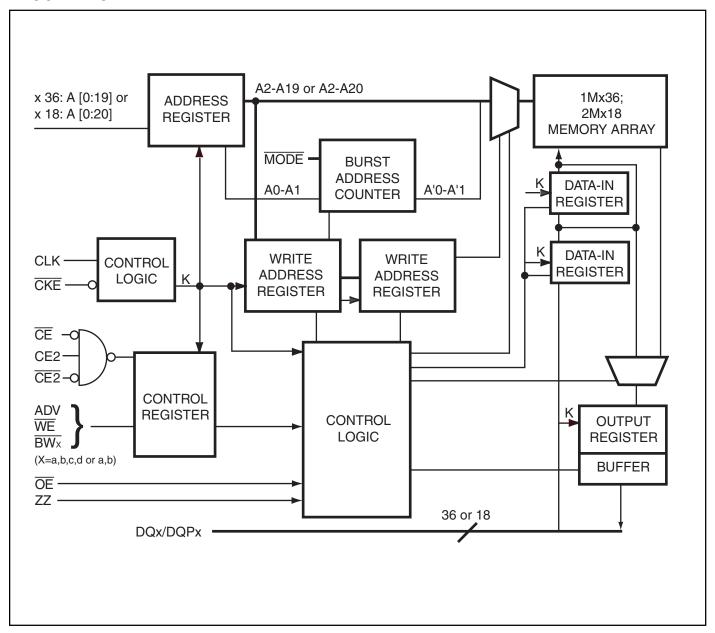
A burst mode pin (MODE) defines the order of the burst sequence. When tied HIGH, the interleaved burst sequence is selected. When tied LOW, the linear burst sequence is selected.

FAST ACCESS TIME

Symbol	Parameter	-200	-166	Units
tka	Clock Access Time	3.1	3.5	ns
tĸc	Cycle Time	5	6	ns
	Frequency	200	166	MHz

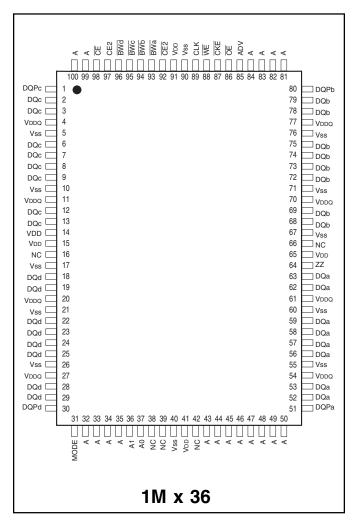
Copyright © 2012 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

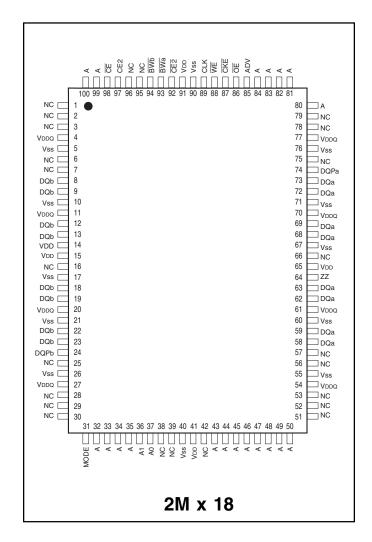
Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:


 $a.)\,the\,risk\,of\,injury\,or\,damage\,has\,been\,minimized;\\$

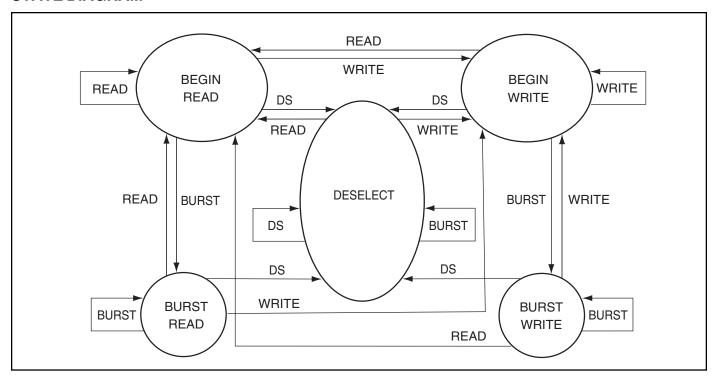
b.) the user assume all such risks; and

c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances




BLOCK DIAGRAM

PIN CONFIGURATION 100-Pin TQFP


PIN DESCRIPTIONS

A0, A1	Synchronous Address Inputs. These pins must tied to the two LSBs of the address bus.
Α	Synchronous Address Inputs
CLK	Synchronous Clock
ADV	Synchronous Burst Address Advance
BWa-BWd	Synchronous Byte Write Enable
WE	Write Enable
CKE	Clock Enable
Vss	Ground for Core
NC	Not Connected

$\overline{\text{CE}}, \text{CE2}, \overline{\text{CE2}}$	Synchronous Chip Enable
ŌĒ	Output Enable
DQa-DQd	Synchronous Data Input/Output
DQPa-DQPd	Parity Data I/O
MODE	Burst Sequence Selection
VDD	+3.3V/2.5V Power Supply
Vss	Ground for output Buffer
VDDQ	Isolated Output Buffer Supply: +3.3V/2.5V
ZZ	Snooze Enable

STATE DIAGRAM

SYNCHRONOUS TRUTH TABLE(1)

Operation	Address Used	CE	CE2	CE2	ADV	WE	B₩x	ŌĒ	CKE	CLK
Not Selected	N/A	Н	Χ	Χ	L	Х	Х	Χ	L	1
Not Selected	N/A	Χ	L	Х	L	Χ	Χ	Χ	L	1
Not Selected	N/A	Χ	Х	Н	L	Χ	Χ	Χ	L	1
Not Selected Continue	N/A	Χ	Х	Х	Н	Х	Х	Χ	L	1
Begin Burst Read	External Address	L	Н	L	L	Н	Х	L	L	1
Continue Burst Read	Next Address	Χ	Х	Х	Н	Х	Х	L	L	1
NOP/Dummy Read	External Address	L	Н	L	L	Н	Χ	Н	L	1
Dummy Read	Next Address	Χ	Х	Х	Н	Х	Х	Н	L	1
Begin Burst Write	External Address	L	Н	L	L	L	L	Χ	L	1
Continue Burst Write	Next Address	Χ	Х	Х	Н	Х	L	Χ	L	1
NOP/Write Abort	N/A	L	Н	L	L	L	Н	Х	L	1
Write Abort	Next Address	Χ	Χ	Χ	Н	Х	Н	Χ	L	1
Ignore Clock	Current Address	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Н	1

Notes:

- 1. "X" means don't care.
- 2. The rising edge of clock is symbolized by \uparrow
- 3. A continue deselect cycle can only be entered if a deselect cycle is executed first.
 4. WE = L means Write operation in Write Truth Table.
- \overline{WE} = H means Read operation in Write Truth Table.
- 5. Operation finally depends on status of asynchronous pins (ZZ and \overline{OE}).

Downloaded from **Arrow.com**.

ASYNCHRONOUS TRUTH TABLE(1)

Operation	ZZ	ŌĒ	I/O STATUS	
Sleep Mode	Н	Х	High-Z	
Read	L	L	DQ	
neau	L	Н	High-Z	
Write	L	X	Din, High-Z	
Deselected	L	X	High-Z	

Notes:

- 1. X means "Don't Care".
- 2. For write cycles following read cycles, the output buffers must be disabled with $\overline{\text{OE}}$, otherwise data bus contention will occur.
- 3. Sleep Mode means power Sleep Mode where stand-by current does not depend on cycle time.
- 4. Deselected means power Sleep Mode where stand-by current depends on cycle time.

WRITE TRUTH TABLE (x18)

Operation	WE	BW a	BWb	
READ	Н	X	Χ	
WRITE BYTE a	L	L	Н	
WRITE BYTE b	L	Н	L	
WRITE ALL BYTEs	L	L	L	
WRITE ABORT/NOP	L	Н	Н	

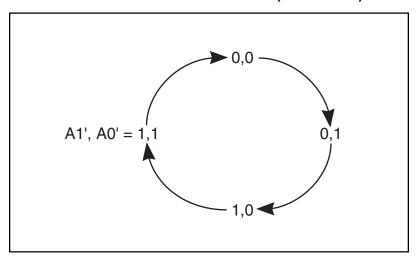
Notes:

- 1. X means "Don't Care".
- 2. All inputs in this table must beet setup and hold time around the rising edge of CLK.

WRITE TRUTH TABLE (x36)

WE	BW a	<u>BW</u> b	<u>BW</u> c	BW d	
Н	Х	Х	Х	Х	
L	L	Н	Н	Н	
L	Н	L	Н	Н	
L	Н	Н	L	Н	
L	Н	Н	Н	L	
L	L	L	L	L	
L	Н	Н	Н	Н	
		H X L L L H L H	H X X L L H L H L L H H	H X X X L L H H L H L H L H L H	H X X X X X L L H H H H L H L H

Notes:


- 1. X means "Don't Care".
- 2. All inputs in this table must beet setup and hold time around the rising edge of CLK.

INTERLEAVED BURST ADDRESS TABLE (MODE = VDD or NC)

External Address A1 A0	1st Burst Address A1 A0	2nd Burst Address A1 A0	3rd Burst Address A1 A0
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

LINEAR BURST ADDRESS TABLE (MODE = Vss)

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit	
Тѕтс	Storage Temperature	-65 to +150	°C	
PD	Power Dissipation	1.6	W	
Іоит	Output Current (per I/O)	100	mA	
Vin, Vout	Voltage Relative to Vss for I/O Pins	-0.5 to VDDQ + 0.3	V	
VIN	Voltage Relative to Vss for for Address and Control Inputs	-0.3 to 4.6	V	

Notes:

- Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is
 a stress rating only and functional operation of the device at these or any other conditions above those indicated in the
 operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods
 may affect reliability.
- 2. This device contains circuity to protect the inputs against damage due to high static voltages or electric fields; however, precautions may be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit
- 3. This device contains circuitry that will ensure the output devices are in High-Z at power up.

OPERATING RANGE (IS61NLPx)

Range	Ambient Temperature	V DD	VDDQ
Commercial	0°C to +70°C	$3.3V \pm 5\%$	3.3V / 2.5V ± 5%
Industrial	-40°C to +85°C	3.3V ± 5%	3.3V / 2.5V ± 5%

OPERATING RANGE (IS61NVPx)

Range	Ambient Temperature	V _{DD}	VDDQ
Commercial	0°C to +70°C	2.5V ± 5%	2.5V ± 5%
Industrial	-40°C to +85°C	2.5V ± 5%	2.5V ± 5%

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

				3.3V	2	2.5V	
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
Vон	Output HIGH Voltage	loh = -4.0 mA (3.3V) loh = -1.0 mA (2.5V)	2.4	_	2.0	_	V
Vol	Output LOW Voltage	IoL = 8.0 mA (3.3V) IoL = 1.0 mA (2.5V)	_	0.4	_	0.4	V
VIH	Input HIGH Voltage		2.0	VDD + 0.3	1.7	VDD + 0.3	V
VIL	Input LOW Voltage		-0.3	0.8	-0.3	0.7	V
Li	Input Leakage Current	$V_{SS} \leq V_{IN} \leq V_{DD}{}^{(1)}$	-5	5	- 5	5	μA
llo	Output Leakage Current	$V_{SS} \le V_{OUT} \le V_{DDQ}, \overline{OE} = V_{IH}$	- 5	5	- 5	5	μA

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

					200 AX		I66 IAX	
Symbol	Parameter	Test Conditions	Temp.range	x18	x36	x18	x36	Unit
lcc	AC Operating Supply Current	$\label{eq:decomposition} \begin{split} & \frac{\text{Device Selected,}}{\text{OE}} = \text{V}_{\text{IH}}, \text{ZZ} \leq \text{V}_{\text{IL}}, \\ & \text{All Inputs} \leq 0.2 \text{V or} \geq \text{V}_{\text{DD}} - 0.2 \text{V} \\ & \text{Cycle Time} \geq \text{tkc min.} \end{split}$	Com. Ind. typ. ⁽²⁾	450 475 39	450 475 90	400 450 34	400 450 40	mA
ISB	Standby Current TTL Input	Device Deselected, $V_{DD} = Max.$, All Inputs $\leq V_{IL}$ or $\geq V_{IH}$, $ZZ \leq V_{IL}$, $f = Max$.	Com. Ind.	260 270	260 270	250 260	250 260	mA
İsbi	Standby Current CMOS Input	Device Deselected, $V_{DD} = Max., \\ V_{IN} \leq V_{SS} + 0.2V \text{ or } \geq V_{DD} - 0.2V \\ f = 0$	Com. Ind. typ. ⁽²⁾	105 110 3	105 110 30	105 110 (105 110 30	mA

Note:

^{1.} MODE pin has an internal pullup and should be tied to V_{DD} or Vss. It exhibits ±100μA maximum leakage current when tied to ≤ Vss + 0.2V or ≥ V_{DD} − 0.2V.

^{2.} Typical values are measured at Vcc = 3.3V, T_A = 25°C and not 100% tested.

CAPACITANCE(1,2)

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	pF
Соит	Input/Output Capacitance	Vout = 0V	8	pF

Notes:

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $TA = 25^{\circ}C$, f = 1 MHz, VDD = 3.3V.

3.3V I/O AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	1.5 ns
Input and Output Timing and Reference Level	1.5V
Output Load	See Figures 1 and 2

3.3V I/O OUTPUT LOAD EQUIVALENT

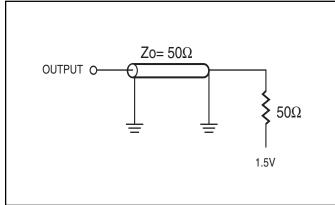


Figure 1

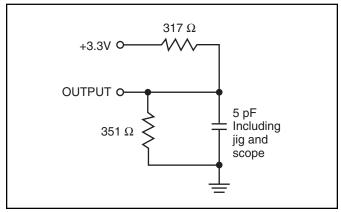


Figure 2

2.5V I/O AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 2.5V
Input Rise and Fall Times	1.5 ns
Input and Output Timing and Reference Level	1.25V
Output Load	See Figures 3 and 4

2.5V I/O OUTPUT LOAD EQUIVALENT

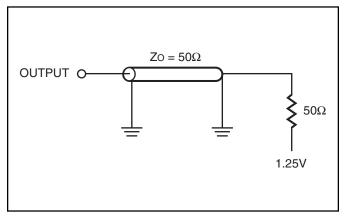


Figure 3

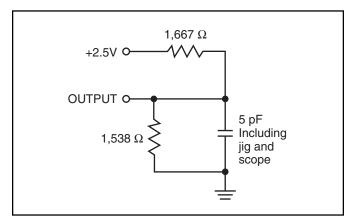


Figure 4

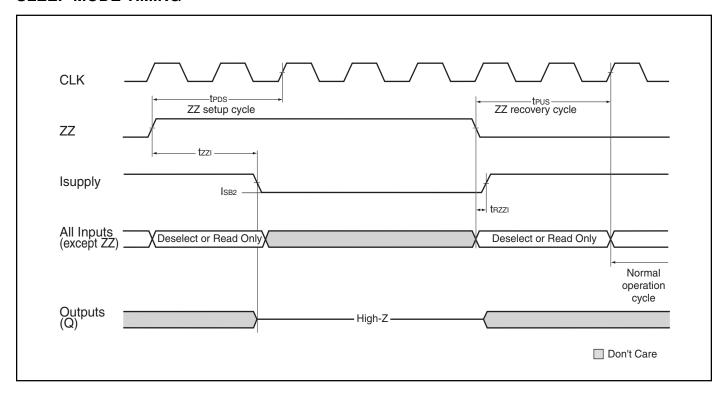
READ/WRITE CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		-20	-200 -166		;		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	
fmax	Clock Frequency	_	200	_	166	MHz	
tĸc	Cycle Time	5	_	6	_	ns	
tкн	Clock High Time	2	_	2.5	_	ns	
tĸL	Clock Low Time	2	_	2.5	_	ns	
tĸQ	Clock Access Time	_	3.1	_	3.5	ns	
tkqx ⁽²⁾	Clock High to Output Invalid	1.5	_	1.5	_	ns	
tkqlz ^(2,3)	Clock High to Output Low-Z	1	_	1	_	ns	
tkqhz ^(2,3)	Clock High to Output High-Z	_	3.0	_	3.4	ns	
toeq	Output Enable to Output Valid	_	3.1	_	3.5	ns	
toelz(2,3)	Output Enable to Output Low-Z	0	_	0	_	ns	
toehz ^(2,3)	Output Disable to Output High-Z	_	3.0	_	3.4	ns	
tas	Address Setup Time	1.4	_	1.5	_	ns	
tws	Read/Write Setup Time	1.4	_	1.5	_	ns	
tces	Chip Enable Setup Time	1.4	_	1.5	_	ns	
tse	Clock Enable Setup Time	1.4	_	1.5	_	ns	
tadvs	Address Advance Setup Time	1.4	_	1.5	_	ns	
tos	Data Setup Time	1.4	_	1.5	_	ns	
tah	Address Hold Time	0.4	_	0.5	_	ns	
the	Clock Enable Hold Time	0.4		0.5		ns	
twн	Write Hold Time	0.4	_	0.5	_	ns	
t CEH	Chip Enable Hold Time	0.4	_	0.5	_	ns	
tadvh	Address Advance Hold Time	0.4		0.5		ns	
ton	Data Hold Time	0.4	_	0.5	_	ns	
tpds	ZZ High to Power Down	_	2	_	2	сус	
tpus	ZZ Low to Power Down	_	2	_	2	сус	

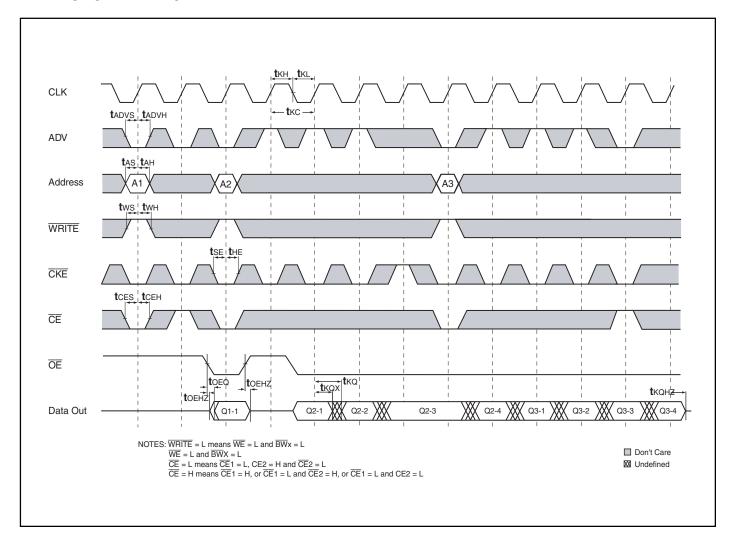
Notes

^{1.} Configuration signal MODE is static and must not change during normal operation.

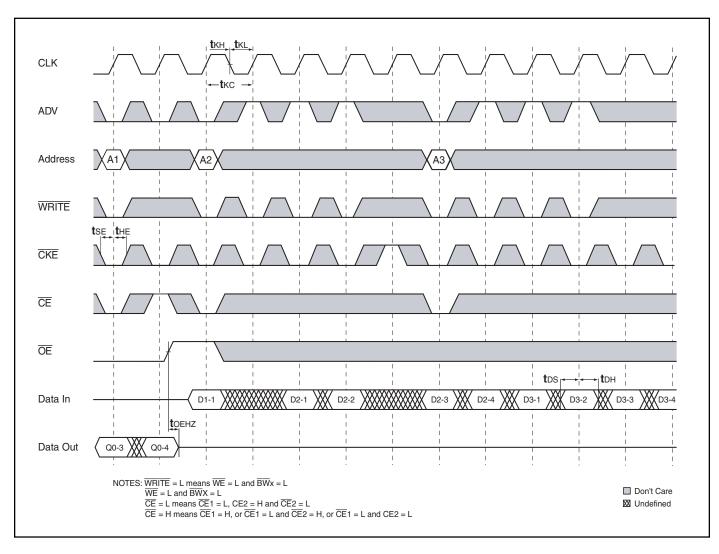
^{2.} Guaranteed but not 100% tested. This parameter is periodically sampled.


^{3.} Tested with load in Figure 2.

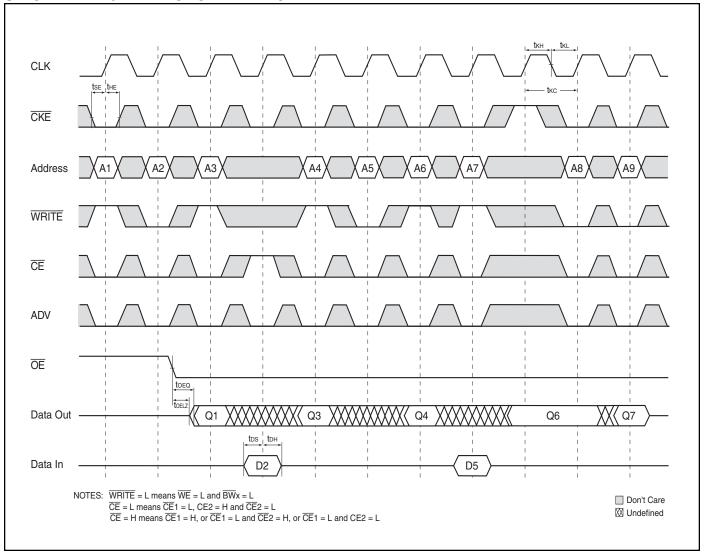
SLEEP MODE ELECTRICAL CHARACTERISTICS


Symbol	Parameter	Conditions	Min.	Max.	Unit
ISB2	Current during SLEEP MODE	$ZZ \geq V$ IH		75	mA
tpds	ZZ active to input ignored		2		cycle
tpus	ZZ inactive to input sampled		2		cycle
tzzı	ZZ active to SLEEP current		2		cycle
trzzi	ZZ inactive to exit SLEEP current		0		ns

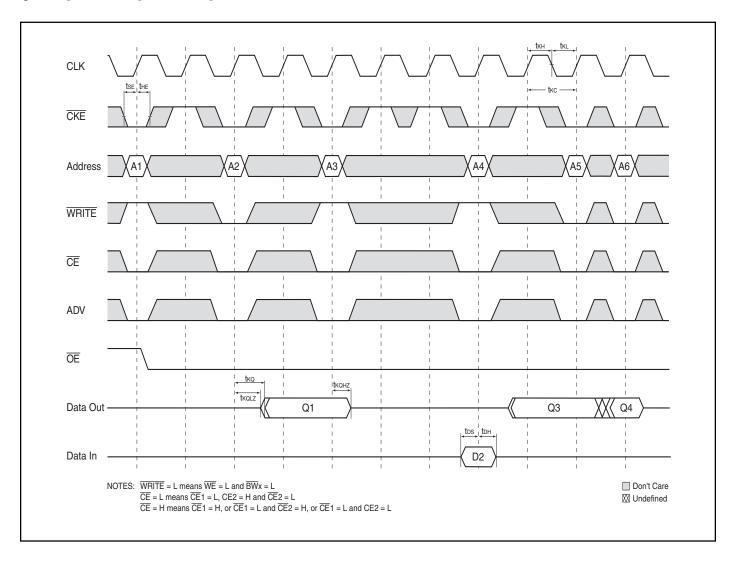
SLEEP MODE TIMING



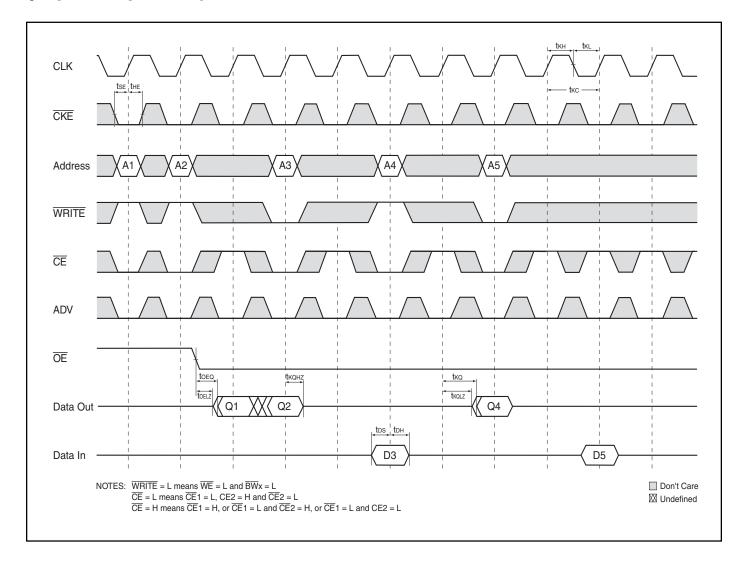
READ CYCLE TIMING



WRITE CYCLE TIMING



SINGLE READ/WRITE CYCLE TIMING



CKE OPERATION TIMING

CE OPERATION TIMING

ORDERING INFORMATION (3.3V core/2.5V-3.3V I/O)

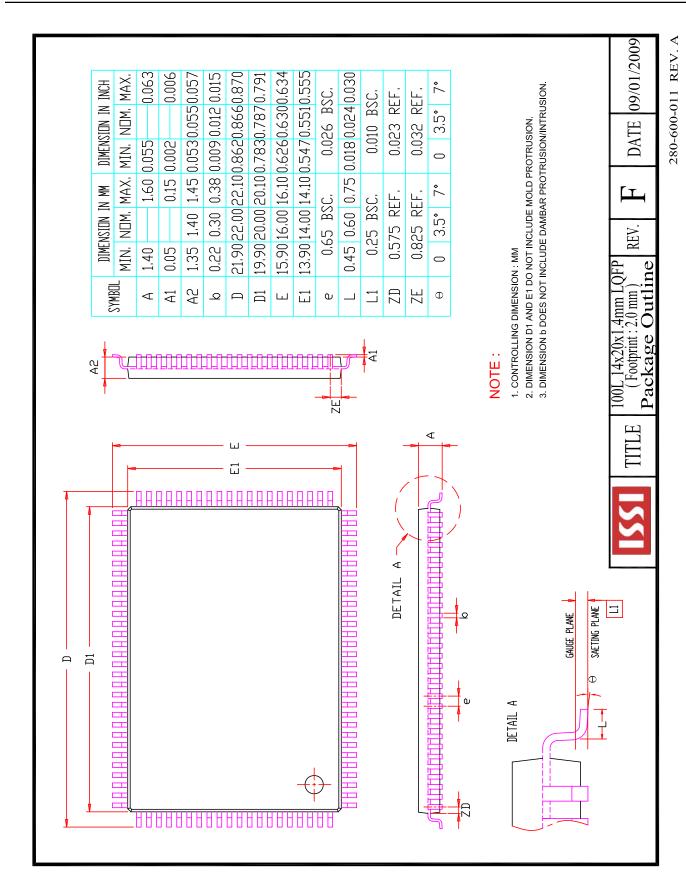
Commercial Range: 0°C to +70°C

Configuration	Access Time	Order Part Number	Package
1Mx36	166	IS61NLP102436A-166TQ IS61NLP102436A-166TQL	100 TQFP 100 TQFP, Lead-free
2Mx18	166	IS61NLP204818A-166TQ IS61NLP204818A-166TQL	100 TQFP 100 TQFP, Lead-free

Industrial Range: -40°C to +85°C

Configuration	Access Time	Order Part Number	Package
1Mx36	166	IS61NLP102436A-166TQI IS61NLP102436A-166TQLI	100 TQFP 100 TQFP, Lead-free
2Mx18	166	IS61NLP204818A-166TQI IS61NLP204818A-166TQLI	100 TQFP 100 TQFP, Lead-free

ORDERING INFORMATION (2.5V core/2.5V I/O)


Commercial Range: 0°C to +70°C

Configuration	Access Time	Order Part Number	Package
1Mx36	166	IS61NVP102436A-166TQ IS61NVP102436A-166TQL	100 TQFP 100 TQFP, Lead-free
2Mx18	166	IS61NVP204818A-166TQ IS61NVP204818A-166TQL	100 TQFP 100 TQFP, Lead-free

Industrial Range: -40°C to +85°C

Configuration	Access Time	Order Part Number	Package
1Mx36	166	IS61NVP102436A-166TQI IS61NVP102436A-166TQLI	100 TQFP 100 TQFP, Lead-free
2Mx18	166	IS61NVP204818A-166TQI	100 TQFP
		IS61NVP204818A-166TQLI	100 TQFP, Lead-free

02/02/2012