

AF Control LSI

LC898249AXH

Overview

This LSI is Closed-Auto Focus control LSI equipped with hall sensor. It consists of 1 system of feedback circuit and constant current driver. It has also a built-in EEPROM and temperature sensor.

Features

- Built-in Equalizer Circuit Using Digital Operation
 - ◆ AF Control Equalizer Circuit
 - ◆ Any Coefficient can be Specified by 2-wire Serial I/F (TWIF)
- 2-wire Serial Interface
(The Communication Protocol is Compatible with I²C)
 - ◆ 4 Selectable Slave Addresses
 - 50h(W)/51h(R), 53h(R)
 - 74h(W)/75h(R), 77h(R)
 - E8h(W)/E9h(R), EBh(R)
 - E4h(W)/E5h(R), E7h(R) factory-configured
 - Right Side Addresses are Used at the Access of Built-in EEPROM
- Built-in A/D Converter
- Built-in D/A Converter
 - ◆ Hall Offset
 - ◆ Constant Current Bias
- Built-in Hall Sensor
 - ◆ Si Hall Sensor
- Built-in EEPROM
 - ◆ 64 Byte (16 Byte / Page)
- Built-in OSC
- Built-in Constant Current Driver
 - ◆ 150 mA
- Package
 - ◆ WLCSP 6-pin (2 x 3 Pin), Thickness Max 0.29 mm, with Backside Coat
- Supply Voltage
 - ◆ VDD (2.6 V to 3.3 V)
- This Device is Pb-Free, Halogen Free/BFR Free and is RoHS Compliant


ON Semiconductor®

www.onsemi.com

WLCSP6, 0.86x1.75x0.265
CASE 567XD

MARKING DIAGRAM

249AXH = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping [†]
LC898249AXHTBG	WLCSP6	4,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PIN DESCRIPTION

Table 1. PIN DESCRIPTION

Pin Name	Description
I	Input
P	Power Supply, GND
NC	Not Connect
O	Output
B	Bidirection

- 2-wire serial interface

SCL	I	2-wire serial interface clock pin
SDA	B	2-wire serial interface data pin
- Driver interface

OUT1	O	Driver output (to Actuator)
OUT2	O	Driver output (to Actuator)
- Power supply pin

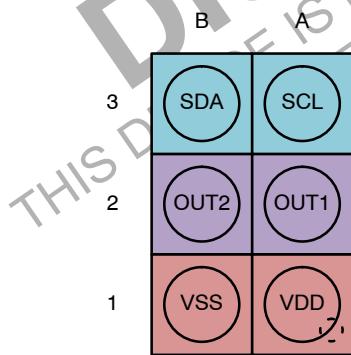
VDD	P	Power Supply
VSS	P	GND

*Process when pins are not used

PIN TYPE “O” – Ensure that it is set to OPEN.

PIN TYPE “I” – OPEN is inhibited. Ensure that it is connected to the VDD or VSS even when it is unused.

(Please contact ON Semiconductor for more information about selection of VDD or VSS.)


PIN TYPE “B” – If you are unsure about processing method on the pin description of pin layout table, please contact us.

Note that incorrect processing of unused pins may result in defects.

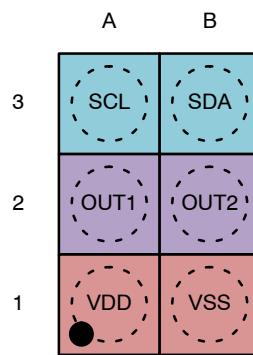
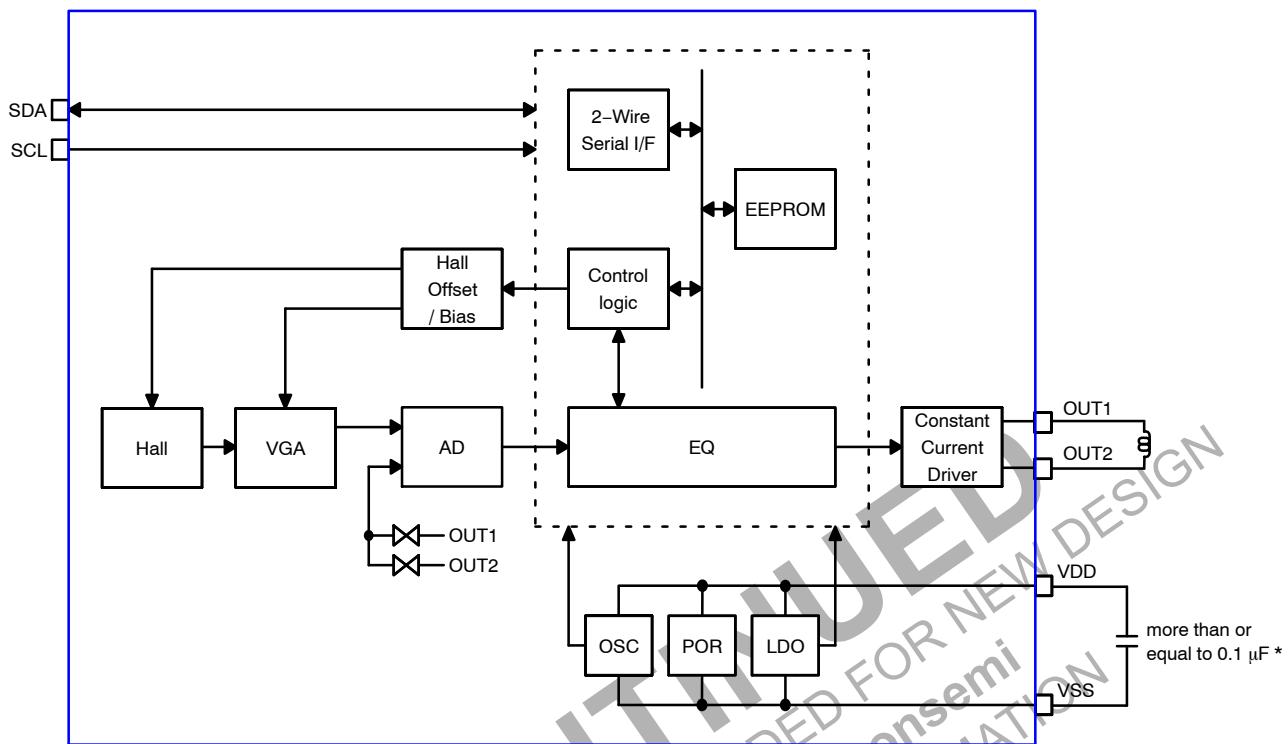

PIN LAYOUT

Table 2. PIN LAYOUT

Circuit Name	Number of PINs
Driver	2
Power	2
Logic	2


BOTTOM VIEW

TOP VIEW

Figure 1. Pin Layout

BLOCK DIAGRAM

*Consider capacitance of capacitor between VDD and VSS. According to power source environment, attach an additional capacitor in camera module.

Figure 2. Block Diagram

HALL ELEMENT POSITION

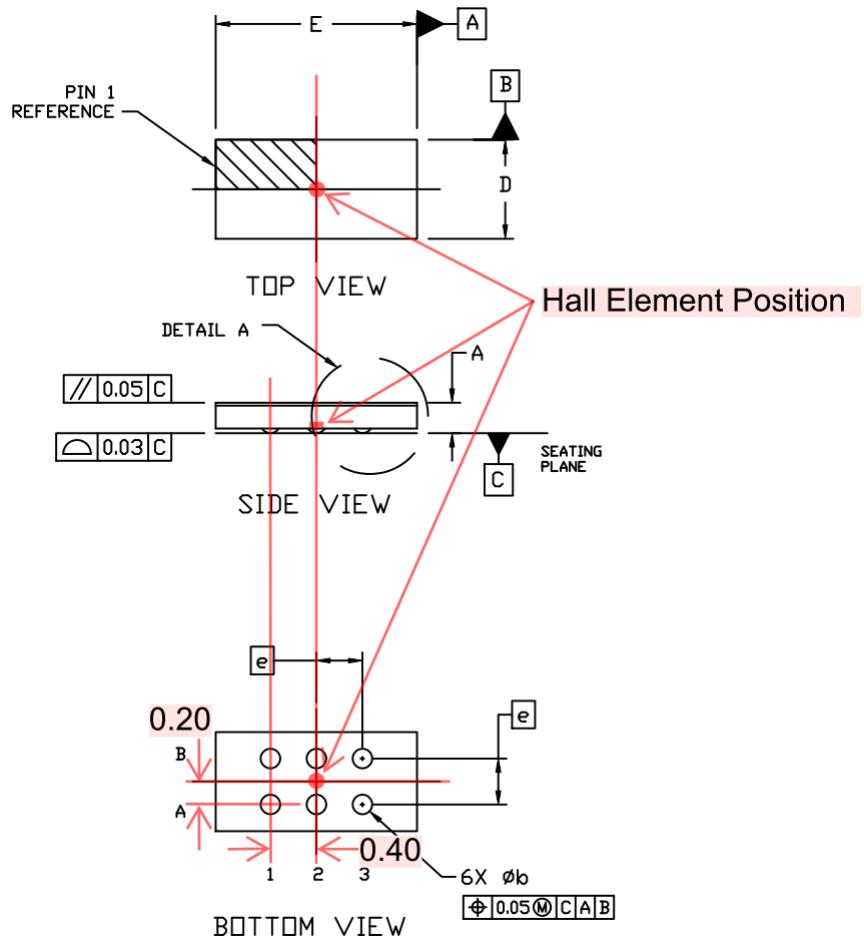


Figure 3. Hall Element Position

ELECTRICAL CHARACTERISTICS

Table 3. ABSOLUTE MAXIMUM RATINGS (VSS = 0 V)

Symbol	Item	Condition	Rating	Unit
V_{DD33} max	Supply voltage	$T_a \leq 25^\circ C$	-0.3~4.6	V
V_{I33}, V_{O33}	Input/output voltage	$T_a \leq 25^\circ C$	-0.3~ $V_{DD33} + 0.3$	V
Tstg	Storage ambient temperature		-55~125	°C
Topr	Operating ambient temperature		-30~70	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. ACCEPTABLE OPERATION RANGE (Ta = -30~70°C, VSS = 0 V, 3 V power supply (VDD))

Symbol	Item	Min	Typ	Max	Unit
V_{DD33}	Supply voltage	2.6	2.8	3.3	V
V_{IN}	Input voltage range	0	-	V_{DD33}	V

Table 5. DC CHARACTERISTICS (Input / output level at VSS = 0 V, VDD = 2.6 V~3.3V, Ta = -30~70°C)

Symbol	Item	Condition	Min	Typ	Max	Unit	Applicable Pins
VIH	High-level input voltage	CMOS compliant schmitt	1.4	-	-	V	SCL, SDA
VIL	Low-level input voltage		-	-	0.4	V	
VOL	Low-level output voltage	IOL = 2 mA	-	-	0.2	V	SDA

Table 6. DRIVER OUTPUT (OUT1, OUT2) (VSS = 0 V, VDD = 2.8 V, Ta = 25°C)

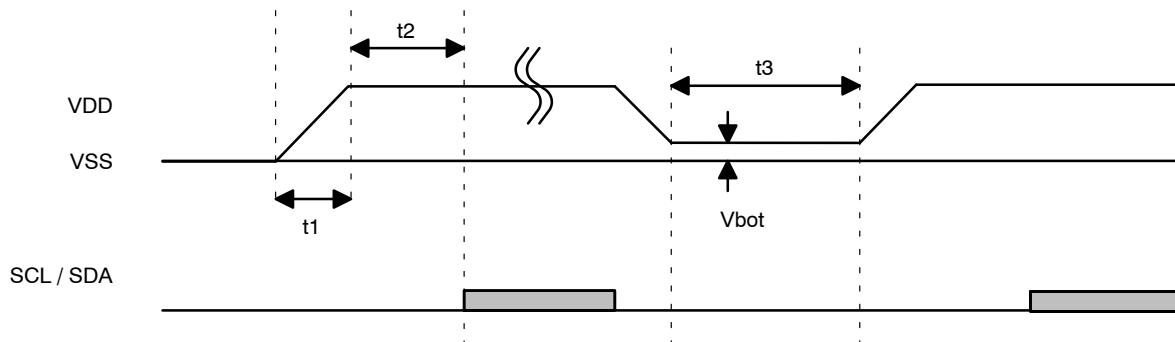

Symbol	Item	Condition	Min	Typ	Max	Unit	Applicable Pins
Ifull	Maximum current		142.5	150	157.5	mA	OUT1, OUT2

Table 7. NON-VOLATILE MEMORY CHARACTERISTICS

Symbol	Item	Condition	Min	Typ	Max	Unit	Applicable Circuit
EN	Endurance		-	-	1000	Cycles	EEPROM
RT	Data retention		10	-	-	Years	
tWT	Write time		-	-	20	ms	

AC CHARACTERISTICS

VDD Supply Timing

Figure 4. VDD Supply Timing

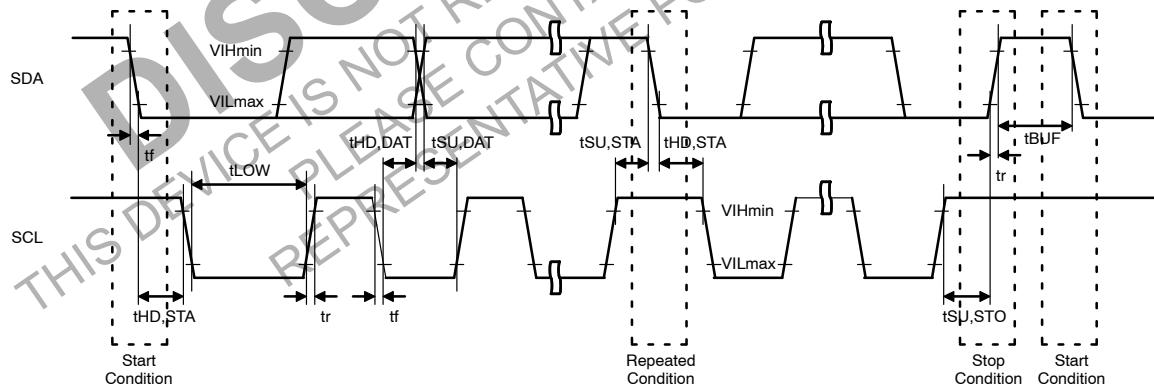

It is available to use 2-wire serial interface 5ms later for Power On Reset of VDD.

Table 8. VDD SUPPLY TIMING

Symbol	Item	Min	Typ	Max	Unit
t1	VDD turn on time	–	–	3	ms
t2	2-wire serial interface start time from VDD on	5	–	–	ms
t3	VDD off time	100	–	–	ms
Vbot	Bottom Voltage	–	–	0.1	V

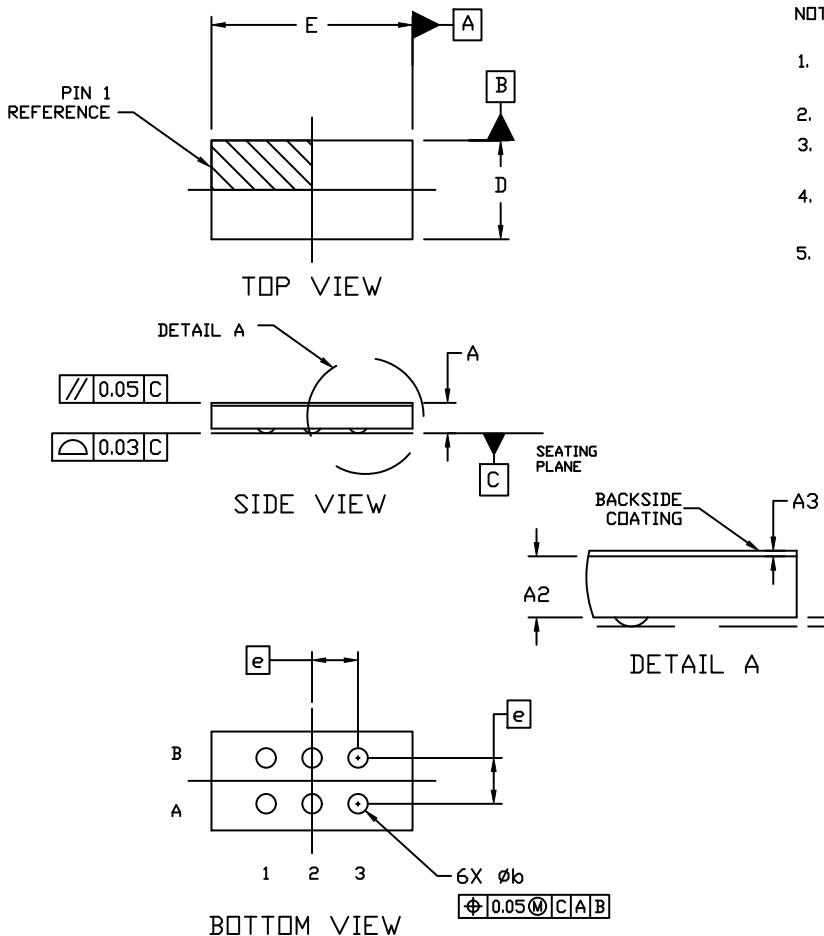
AC Specification

Figure 5 shows interface timing definition and Table 9 shows electric characteristics.

Figure 5. 2-wire Serial Interface Timing Definition

Table 9. ELECTRICAL CHARACTERISTICS FOR 2-WIRE SERIAL INTERFACE (AC CHARACTERISTICS)

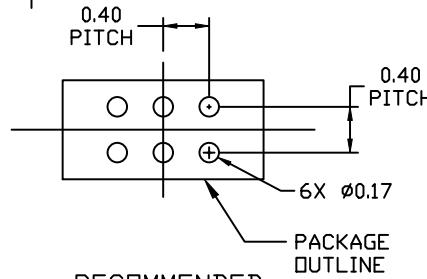
Symbol	Item	Pin Name	Fast-mode			Fast-mode Plus			Unit
			Min	Typ	Max	Min	Typ	Max	
FSCL	SCL clock frequency	SCL	–	–	400	–	–	1000	kHz
tHD,STA	START condition hold time	SCL SDA	0.6	–	–	0.26	–	–	μs
tLOW	SCL clock Low period	SCL	1.3	–	–	0.5	–	–	μs
tHIGH	SCL clock High period	SCL	0.6	–	–	0.26	–	–	μs
tSU,STA	Setup time for repetition START condition	SCL SDA	0.6	–	–	0.26	–	–	μs
tHD,DAT	Data hold time	SCL SDA	0 (Note 1)	–	0.9	0 (Note 1)	–	–	μs
tSU,DAT	Data setup time	SCL SDA	100	–	–	50	–	–	ns
tr	SDA, SCL rising time	SCL SDA	–	–	300	–	–	120	ns
tf	SDA, SCL falling time	SCL SDA	–	–	300	–	–	120	ns
tSU,STO	STOP condition setup time	SCL SDA	0.6	–	–	0.26	–	–	μs
tBUF	Bus free time between STOP and START	SCL SDA	1.3	–	–	0.5	–	–	μs

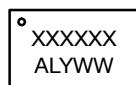

1. This LSI is designed for a condition with typ. 20 ns of hold time. If SDA signal is unstable around falling point of SCL signal, please implement an appropriate treatment on board, such as inserting a resistor.

DISCONTINUED
THIS DEVICE IS NOT RECOMMENDED FOR NEW DESIGN
PLEASE CONTACT YOUR ON Semiconductor
REPRESENTATIVE FOR INFORMATION

ON Semiconductor is licensed by the Philips Corporation to carry the I²C bus protocol.

WLCSP6, 0.86x1.75x0.265
CASE 567XD
ISSUE O


DATE 23 OCT 2018


NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DATUM C, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE CONTACT BALLS.
4. COPLANARITY APPLIES TO THE SPHERICAL CROWNS OF THE CONTACT BALLS.
5. DIMENSION b IS MEASURED AT THE MAXIMUM CONTACT BALL DIAMETER PARALLEL TO DATUM C.

DIM	MILLIMETERS		
	MIN.	NOM.	MAX.
A	0.24	0.265	0.29
A1	0.04	REF	
A2	0.20	REF	
A3	0.025	REF	
b	0.12	0.17	0.22
D	0.81	0.86	0.91
E	1.70	1.75	1.80
e	0.40	0.40	0.40

RECOMMENDED
MOUNTING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC
MARKING DIAGRAM*

XXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON99381G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	WLCSP6, 0.86x1.75x0.265	PAGE 1 OF 1

onsemi and onsemi™ are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales

