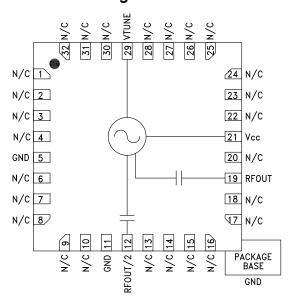


HMC511LP5/511LP5E

v06.0114


MMIC VCO WITH HALF FREQUENCY OUTPUT 9.05 - 10.15 GHz

Typical Applications

Low noise MMIC VCO w/Half Frequency, for:

- VSAT Radio
- Point to Point/Multi-Point Radio
- Test Equipment & Industrial Controls
- · Military End-Use

Functional Diagram

Features

Dual Output: Fo = 9.05 - 10.15 GHz

Fo/2 = 4.525 - 5.075 GHz

Pout: +13 dBm

Phase Noise: -115 dBc/Hz @100 kHz Typ.

No External Resonator Needed

32 Lead 5x5mm SMT Package: 25mm²

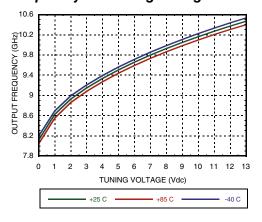
General Description

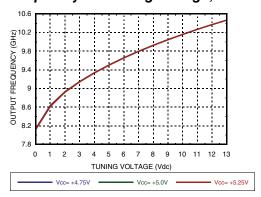
The HMC511LP5 & HMC511LP5E are GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCOs. The HMC511LP5 & HMC511LP5E integrate resonators, negative resistance devices, varactor diodes and feature a half frequency output. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +13 dBm typical from a +5V supply. The voltage controlled oscillator is packaged in a leadless QFN 5x5 mm surface mount package, and requires no external matching components.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc = +5V

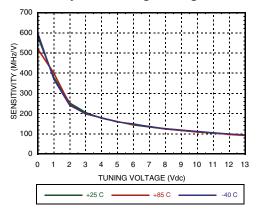
Parameter		Min.	Тур.	Max.	Units
Frequency Range	Fo Fo/2		9.05 - 10.15 4.525 - 5.075		GHz GHz
Power Output	RFOUT/2	+9 +5		+16 +11	dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RFOUT			-115		dBc/Hz
Tune Voltage	Vtune	2		13	V
Supply Current (Icc) (Vcc = +5.0V)		200	265	300	mA
Tune Port Leakage Current (Vtune= 13V)				10	μA
Output Return Loss			2		dB
Harmonics/Subharmonics	1/2 2nd 3rd		38 15 30		dBc dBc dBc
Pulling (into a 2.0:1 VSWR)			8		MHz pp
Pushing @ Vtune= 5V			15		MHz/V
Frequency Drift Rate			0.9		MHz/°C

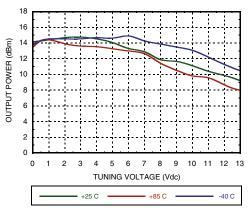
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

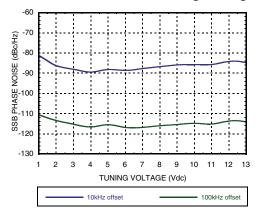

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

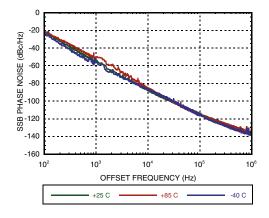


MMIC VCO WITH HALF FREQUENCY OUTPUT 9.05 - 10.15 GHz


Frequency vs. Tuning Voltage

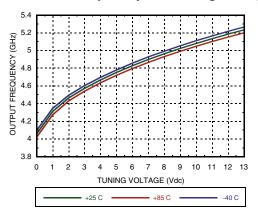

Frequency vs. Tuning Voltage, T = 25C

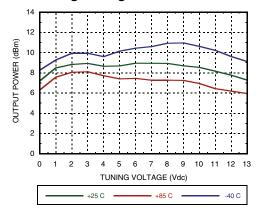

Sensitivity vs. Tuning Voltage


Output Power vs. Tuning Voltage

SSB Phase Noise vs. Tuning Voltage

SSB Phase Noise @ Vtune = +5V


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



MMIC VCO WITH HALF FREQUENCY OUTPUT 9.05 - 10.15 GHz

RFOUT/2 Frequency vs. Tuning Voltage

RFOUT/2 Output Power vs. Tuning Voltage

Absolute Maximum Ratings

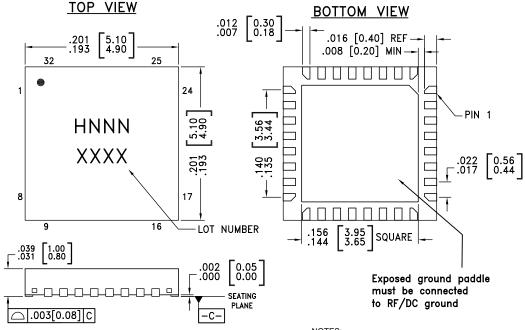
Vcc	+5.5 Vdc	
Vtune	0 to +15V	
Storage Temperature	-65 to +150 °C	
ESD Sensitivity (HBM)	Class 1A	

Reliability Information

Junction Temperature To Maintain 1 Million Hour MTTF	135 °C
Nominal Junction Temperature (T = +85 °C	126.9 °C
Thermal Resistance (junction to ground paddle)	31.6 °C/W
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
4.75	245
5.0	265
5.25	285


Note: VCO will operate over full voltage range shown above.

MMIC VCO WITH HALF FREQUENCY OUTPUT 9.05 - 10.15 GHz

Outline Drawing

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

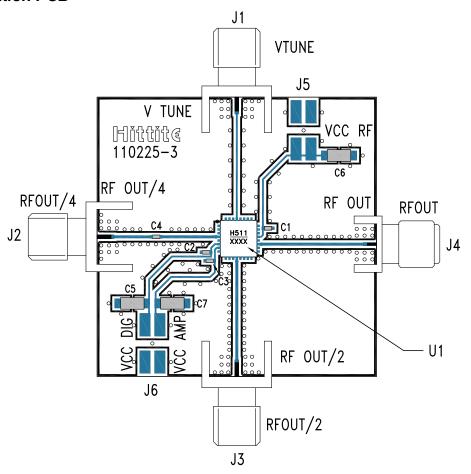
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC511LP5	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL3 [1]	H511 XXXX
HMC511LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 [2]	H511 XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

MMIC VCO WITH HALF FREQUENCY OUTPUT 9.05 - 10.15 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1 - 4, 6 - 10, 13 - 18, 20, 22 - 28, 30 - 32	N/C	No Connection. These pins may be connected to RF/ DC ground. Performance will not be affected.	
12	RFOUT/2	Half frequency output (AC coupled).	⊢ RFOUT/2
19	RFOUT	RF output (AC coupled).	RFOUT
21	Vcc	Supply Voltage, +5V	Vcco 14pF
29	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	VTUNE 0 3nH 4pF 58pF
5, 11 Paddle	GND	Package bottom has an exposed metal paddle that must be connected to RF/DC ground.	GND =

MMIC VCO WITH HALF FREQUENCY OUTPUT 9.05 - 10.15 GHz

Evaluation PCB

List of Materials for Evaluation PCB 110227 [1]

Item	Description
J1 - J4	PCB Mount SMA RF Connector
J5	2 mm DC Header
C1 - C3	100 pF Capacitor, 0402 Pkg.
C4	1,000 pF Capacitor, 0402 Pkg.
C5 - C7	2.2 µF Tantalum Capacitor
U1	HMC511LP5(E) VCO
PCB [2]	110225 Eval Board

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Arlon 25FR