

Document Number	: 0406-83
Revision	: A9
Total Pages	: 6
Prepare by	: Loki, Lo
Date	: 21 November, 2018

SENER Brand Power Product

www.jlsener.com	
Document Type	: Specification
Product Type	: Lithium/Manganese Dioxide (LiMnO ₂) Coin Cell
Ordering Code	: SCR2450
Cell Part Number	: CR2450
Cell UL Number	: MH20926

A6 - Updated section 5 by Holmes, Poon on 5 May, 2009	
A7 - Updated cover by Holmes, Poon on 30 Oct., 2009	
A8 - Updated section 4 and 6 by Holems, Poon on 28 Jun., 2011	
A9 - Updated section 3, 4 and 6 by Loki, Lo on 21 Nov., 2018	
_	 Holmes, Poon on 5 May, 2009 A7 - Updated cover by Holmes, Poon on 30 Oct., 2009 A8 - Updated section 4 and 6 by Holems, Poon on 28 Jun., 2011 A9 - Updated section 3, 4 and 6

This material is the property of BeStar Technologies Inc. Unauthorized copying or use of this material is prohibited.

1. Purpose and Scope

This document contains both general requirements, qualification requirements, and those specific electrical, mechanical requirements for this part.

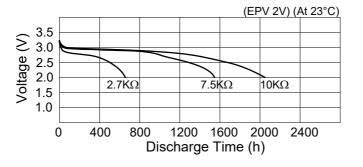
2. Description

Ø24.5mm Lithium/Manganese Dioxide (LiMnO2) coin cell, RoHS compliant.

3. Application

4.2.

Computers and Peripherals, Portable Equipment, etc.


4. Component Requirement

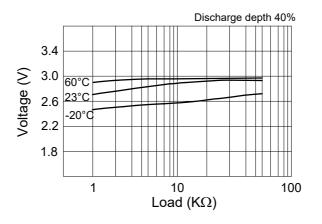
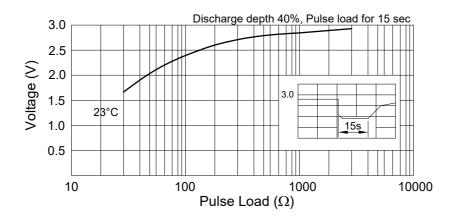
4.1. General Requirement

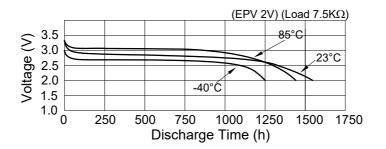
	4.1.1.	Operating Temperature Range	: -20°C to +70°C
	4.1.2.	Storage Temperature Range	: 0°C to +30°C
	4.1.3.	Storage Humidity	: 40 ~ 75%
	4.1.4.	Weight	: Approx. 6.8g
	4.1.5.	Materials of Positive Terminal	: SUS stainless
	4.1.6.	Materials of Negative Terminal	: SUS stainless
•	Electric	al Requirement	
•		al Requirement Nominal Voltage	: 3V
•			: 3V : 600mAh
•	4.2.1. 4.2.2.	Nominal Voltage Nominal Capacity	
	4.2.1. 4.2.2. 4.2.3.	Nominal Voltage Nominal Capacity (under Load 7.5k Ω Load and 2.0V End-voltage)	: 600mAh

4.3. Standard Characteristics

4.3.1. Discharge Characteristics

Figure 1. Discharge Characteristics


Figure 2. Load-Operating voltage

4.3.3. Pulse Discharge Characteristics

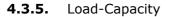


Figure 3. Pules Discharge Characteristics

4.3.4. Temperature Characteristics

Figure 4. Temperature Characteristics

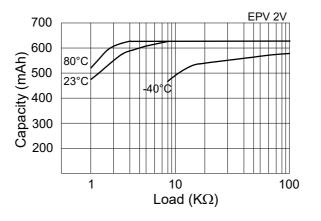
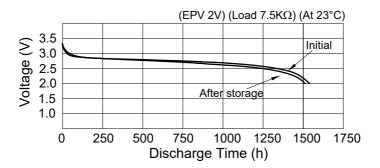



Figure 5. Load-Capacity

Figure 6. Storage Characteristics

5. Reliability Test

- **5.1. Open-circuit Voltage** : Subject samples to $+20 \pm 2$ °C and 0 ± 2 °C for 8 hours or longer. Then measure the voltage between both terminals at the same ambient temperature with voltmeter.
- **5.2. Short-circuit Voltage** : Subject samples to $+20 \pm 2 \circ C$ and $0 \pm 2 \circ C$ for 8 hours or longer. Then measure the voltage between both terminals with voltmeter while the $7.5K\Omega$ is connected between both terminals at the same ambient temperature. Measured value shall be based on meter reading taken 8 seconds after the circuit is closed.
- **5.3.** Service Life : Subject samples to $20 \pm 2 \circ C$ and $0 \pm 2 \circ C$ for 8 hours or longer. Then continuously discharge at the same ambient temperature and through $7.5k\Omega$. Discharge until terminal voltage of the test specimens falls below the discharge end-point voltage of 2.0V, and the time during which the terminal voltage is equal to and above the discharge end-point voltage shall be taken as the service life.
- **5.4.** Service Life after high temperature storage : Store samples at $+60 \pm 2$ °C for 20 days. Then subject samples to $+20 \pm 2$ °C and ordinary humidity $65\% \pm 20\%$ for 12 hours or longer and continuously discharge through $7.5K\Omega$. Discharge until the voltage falls below the dicharge end-point voltage of 2.0V, and the time during which the voltage is equal to and above the discharge end-point voltage shall be taken as the service life.
- **5.5.** Electrolyte Leakage Test : Samples shall be examined for electrolyte leakage while they are kept at $+20 \pm 2$ °C and ordinary humidity 75% \pm 5% after being stored at 45 \pm 2 °C and 75% relative humidity for 30 days.
- **5.6.** Self-discharge : Store samples for 12 months at $+20 \pm 2$ °C and $65\% \pm 5\%$ relative humidity and tested for service life in accordance with the method specified in 5.3. Self-discharge shall be determined as follows:

Self-discharge rate (%) = $(Y1-Y2)/Y1 \times 100\%$

- Y1 : Average initial discharge life of batteries of the same lot
- Y2 : Average discharge life after storage

6. Mechanical Layout

Unit : mm Tolerance : Linear XX.X = ± 0.3 XX.XX = ± 0.05 Angular = $\pm 0.25^{\circ}$ (unless otherwise specified)

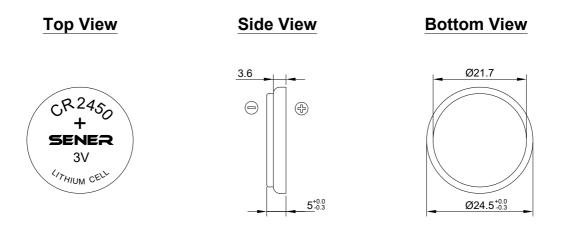


Figure 7. SCR2450 Mechanical Layout