

N-channel 600 V, 0.065 Ω typ., 31 A MDmesh™ M6 Power MOSFET in a PowerFLAT™ 8x8 HV package

Datasheet - target specification

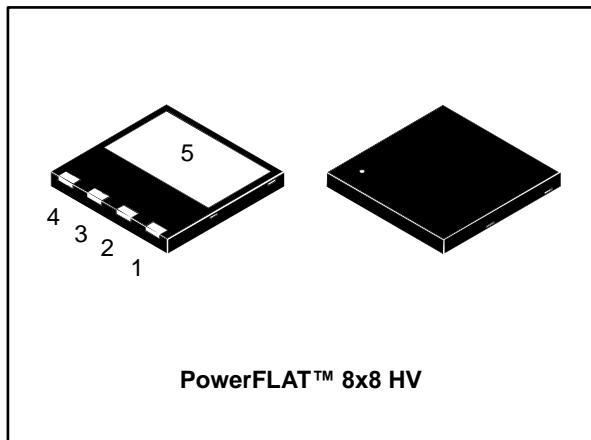
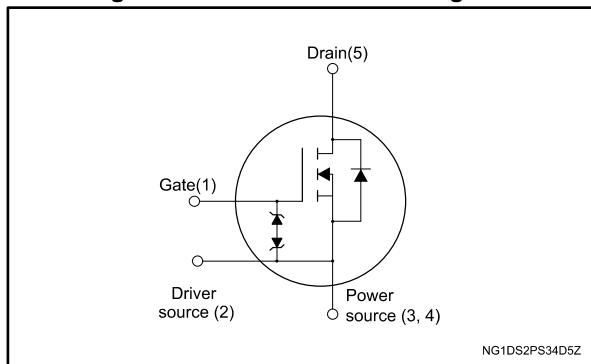



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STL47N60M6	600 V	0.080 Ω	31 A

- Reduced switching losses
- Lower R_{DS(on)} x area vs previous generation
- Low gate input resistance
- 100% avalanche tested
- Zener-protected
- Excellent switching performance thanks to the extra driving source pin

Applications

- Switching applications

Description

The new MDmesh™ M6 technology incorporates the most recent advancements to the well-known and consolidated MDmesh family of SJ MOSFETs. STMicroelectronics builds on the previous generation of MDmesh devices through its new M6 technology, which combines excellent R_{DS(on)} * area improvement with one of the most effective switching behaviors available, as well as a user-friendly experience for maximum end-application efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STL47N60M6	47N60M6	PowerFLAT™ 8x8 HV	Tape and reel

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
3	Test circuits	6
4	Package information	7
4.1	PowerFLAT™ 8x8 HV package information.....	8
4.2	PowerFLAT™ 8x8 HV packing information.....	10
5	Revision history	12

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	± 25	V
$I_D^{(1)}$	Drain current (continuous) at $T_C = 25^\circ\text{C}$	31	A
$I_D^{(1)}$	Drain current (continuous) at $T_C = 100^\circ\text{C}$	20	A
$I_{DM}^{(2)}$	Drain current (pulsed)	TBD	A
P_{TOT}	Total dissipation at $T_C = 25^\circ\text{C}$	189	W
$dv/dt^{(3)}$	Peak diode recovery voltage slope	15	V/ns
$dv/dt^{(4)}$	MOSFET dv/dt ruggedness	50	V/ns
T_{stg}	Storage temperature range	-55 to 150	$^\circ\text{C}$
T_j	Operating junction temperature range		

Notes:

(1) This value is limited by package.

(2) Pulse width is limited by safe operating area.

(3) $I_{SD} \leq 31 \text{ A}$, $di/dt \leq 400 \text{ A}/\mu\text{s}$, V_{DS} peak < $V_{(BR)DSS}$, $V_{DD} = 400 \text{ V}$ (4) $V_{DS} \leq 480 \text{ V}$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
$R_{thj-case}$	Thermal resistance junction-case	0.66	$^\circ\text{C}/\text{W}$
$R_{thj-pcb}^{(1)}$	Thermal resistance junction-pcb	45	$^\circ\text{C}/\text{W}$

Notes:(1) When mounted on 1 inch² FR-4, 2 Oz copper board

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I_{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	TBD	A
E_{AS}	Single pulse avalanche energy (starting $T_j = 25^\circ\text{C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)	TBD	mJ

2 Electrical characteristics

($T_C = 25^\circ\text{C}$ unless otherwise specified)

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{(\text{BR})\text{DSS}}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}$, $I_D = 1 \text{ mA}$	600			V
I_{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}$, $V_{DS} = 600 \text{ V}$			1	μA
		$V_{GS} = 0 \text{ V}$, $V_{DS} = 600 \text{ V}$, $T_C = 125^\circ\text{C}$ ⁽¹⁾			100	μA
I_{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}$, $V_{GS} = \pm 25 \text{ V}$			± 5	μA
$V_{GS(\text{th})}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu\text{A}$	3.25	4	4.75	V
$R_{DS(\text{on})}$	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}$, $I_D = 15.5 \text{ A}$		0.065	0.080	Ω

Notes:

⁽¹⁾Defined by design, not subject to production test.

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
C_{iss}	Input capacitance	$V_{DS} = 100 \text{ V}$, $f = 1 \text{ MHz}$, $V_{GS} = 0 \text{ V}$	-	TBD	-	pF
C_{oss}	Output capacitance		-	TBD	-	pF
C_{rss}	Reverse transfer capacitance		-	TBD	-	pF
$C_{\text{oss eq.}}$ ⁽¹⁾	Equivalent output capacitance	$V_{DS} = 0$ to 480 V , $V_{GS} = 0 \text{ V}$	-	TBD	-	pF
R_G	Intrinsic gate resistance	$f = 1 \text{ MHz}$, $I_D = 0 \text{ A}$	-	1.5	-	Ω
Q_g	Total gate charge	$V_{DD} = 480 \text{ V}$, $I_D = 40 \text{ A}$, $V_{GS} = 0$ to 10 V (see Figure 3: "Gate charge test circuit")	-	57	-	nC
Q_{gs}	Gate-source charge		-	TBD	-	nC
Q_{gd}	Gate-drain charge		-	TBD	-	nC

Notes:

⁽¹⁾ $C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$t_{d(\text{on})}$	Turn-on delay time	$V_{DD} = 300 \text{ V}$, $I_D = 20 \text{ A}$, $R_G = 4.7 \Omega$, $V_{GS} = 10 \text{ V}$ (see Figure 2: "Switching times test circuit for resistive load" and Figure 7: "Switching time waveform")	-	TBD	-	ns
t_r	Rise time		-	TBD	-	ns
$t_{d(\text{off})}$	Turn-off-delay time		-	TBD	-	ns
t_f	Fall time		-	TBD	-	ns

Table 8: Source drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
I_{SD} ⁽¹⁾	Source-drain current		-		31	A
I_{SDM} ^{(1),(2)}	Source-drain current (pulsed)		-		TBD	A
V_{SD} ⁽³⁾	Forward on voltage	$V_{GS} = 0$ V, $I_{SD} = 31$ A	-		1.6	V
t_{rr}	Reverse recovery time	$I_{SD} = 40$ A, $dI/dt = 100$ A/ μ s, $V_{DD} = 100$ V	-	TBD		ns
Q_{rr}	Reverse recovery charge	(see <i>Figure 4: "Test circuit for inductive load switching and diode recovery times"</i>)	-	TBD		μ C
I_{RRM}	Reverse recovery current	$I_{SD} = 40$ A, $dI/dt = 100$ A/ μ s, $V_{DD} = 100$ V, $T_j = 150$ °C	-	TBD		A
t_{rr}	Reverse recovery time	(see <i>Figure 4: "Test circuit for inductive load switching and diode recovery times"</i>)	-	TBD		ns
Q_{rr}	Reverse recovery charge		-	TBD		μ C
I_{RRM}	Reverse recovery current		-	TBD		A

Notes:⁽¹⁾This value is limited by package.⁽²⁾Pulse width is limited by safe operating area.⁽³⁾Pulsed: pulse duration = 300 μ s, duty cycle 1.5%.

3 Test circuits

Figure 2: Switching times test circuit for resistive load

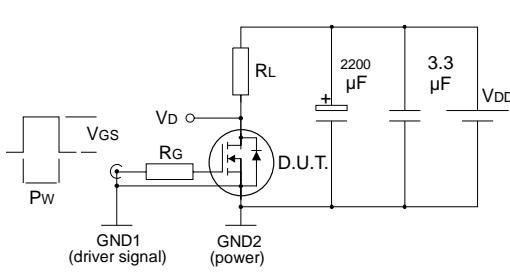


Figure 3: Gate charge test circuit

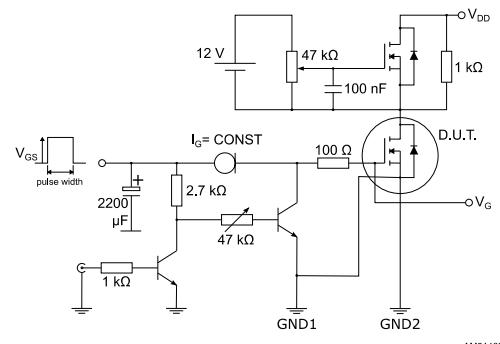


Figure 4: Test circuit for inductive load switching and diode recovery times

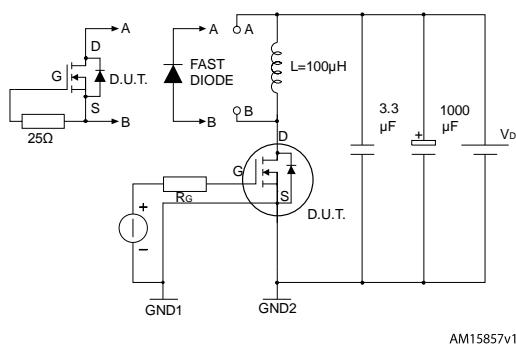


Figure 5: Unclamped inductive load test circuit

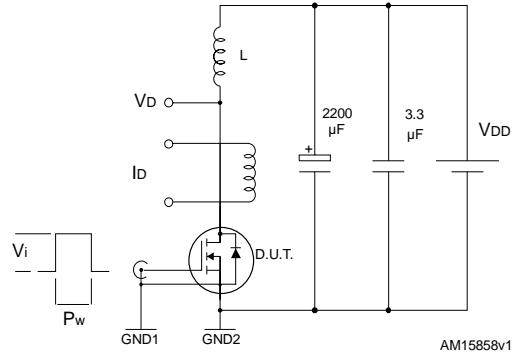


Figure 6: Unclamped inductive waveform

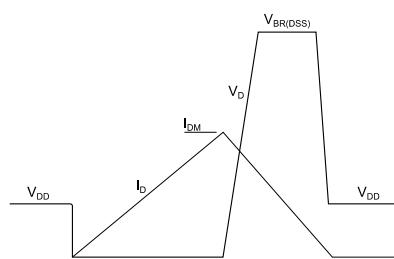
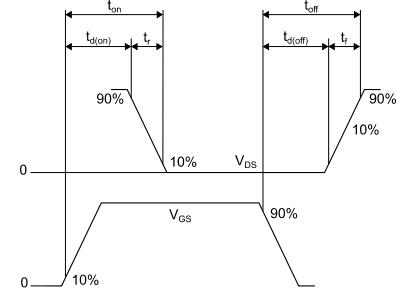



Figure 7: Switching time waveform

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 PowerFLAT™ 8x8 HV package information

Figure 8: PowerFLAT™ 8x8 HV package outline

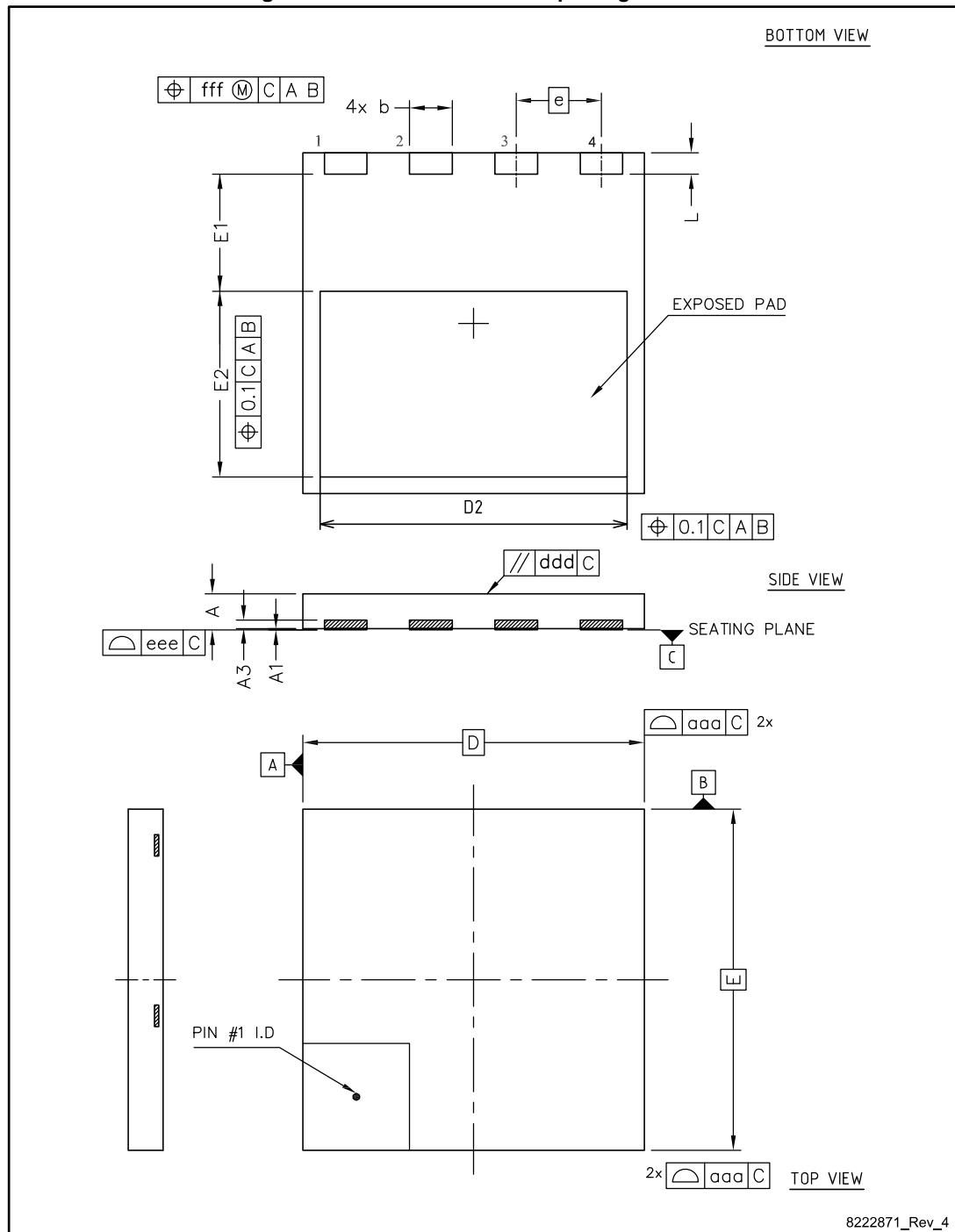
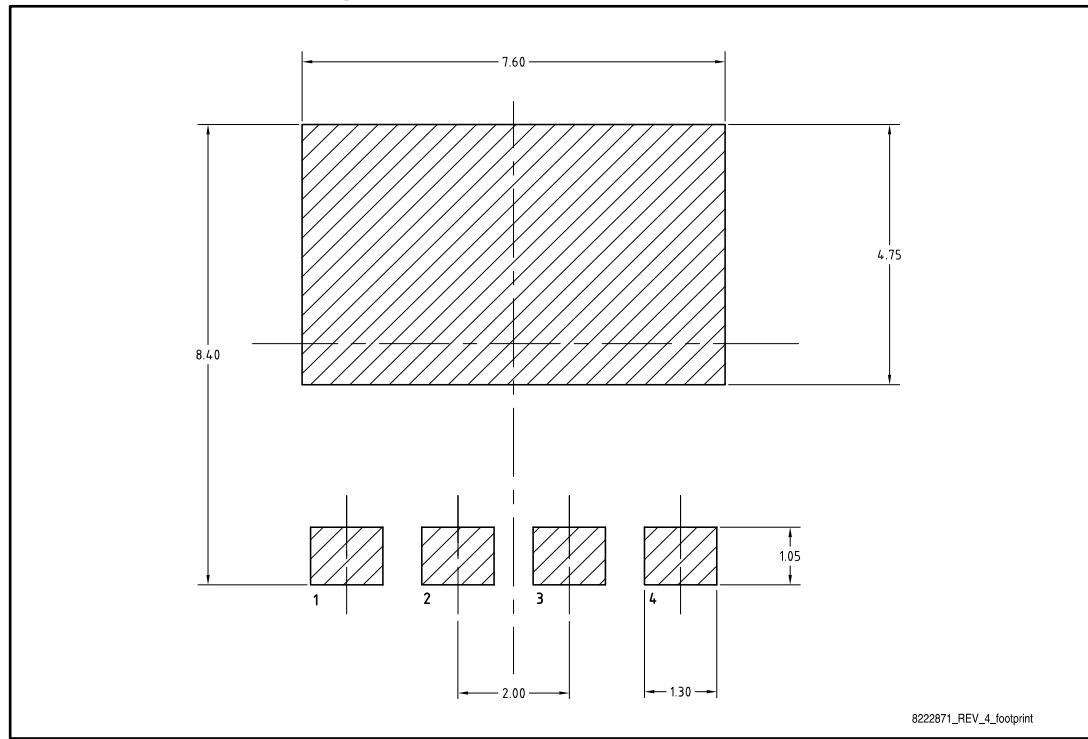
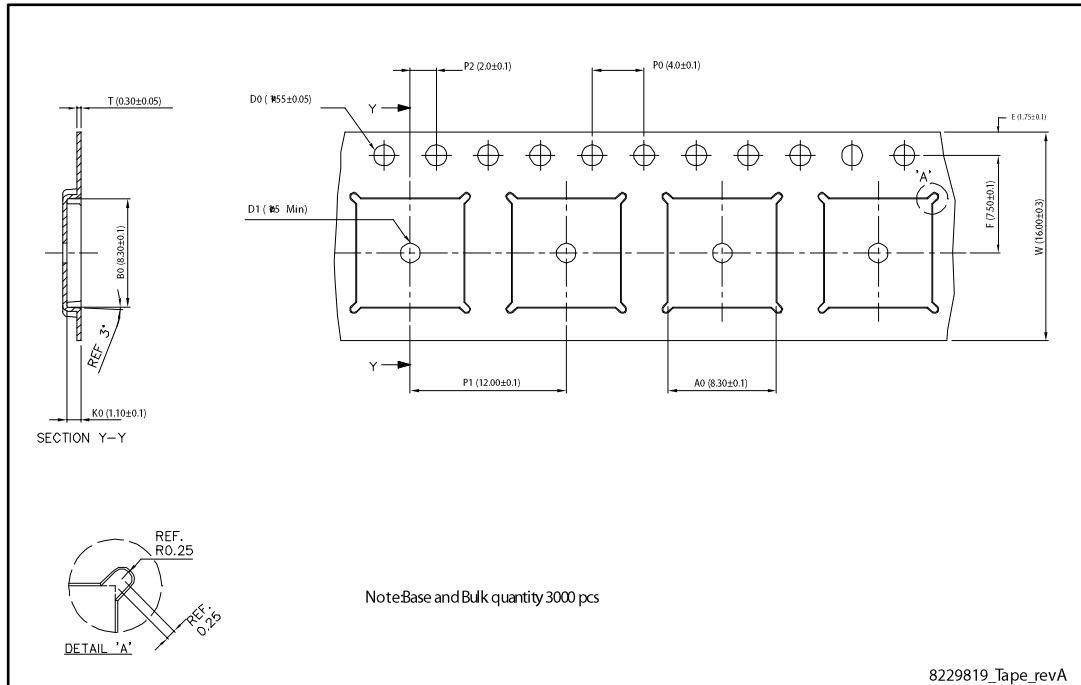



Table 9: PowerFLAT™ 8x8 HV mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	0.75	0.85	0.95
A1	0.00		0.05
A3	0.10	0.20	0.30
b	0.90	1.00	1.10
D	7.90	8.00	8.10
E	7.90	8.00	8.10
D2	7.10	7.20	7.30
E1	2.65	2.75	2.85
E2	4.25	4.35	4.45
e		2.00	
L	0.40	0.50	0.60
aaa		0.10	
ddd		0.05	
eee		0.05	
fff		0.05	


Figure 9: PowerFLAT™ 8x8 HV footprint

 All dimensions are in millimeters.

4.2 PowerFLAT™ 8x8 HV packing information

Figure 10: PowerFLAT™ 8x8 HV tape

All dimensions are in millimeters.

Figure 11: PowerFLAT™ 8x8 HV package orientation in carrier tape

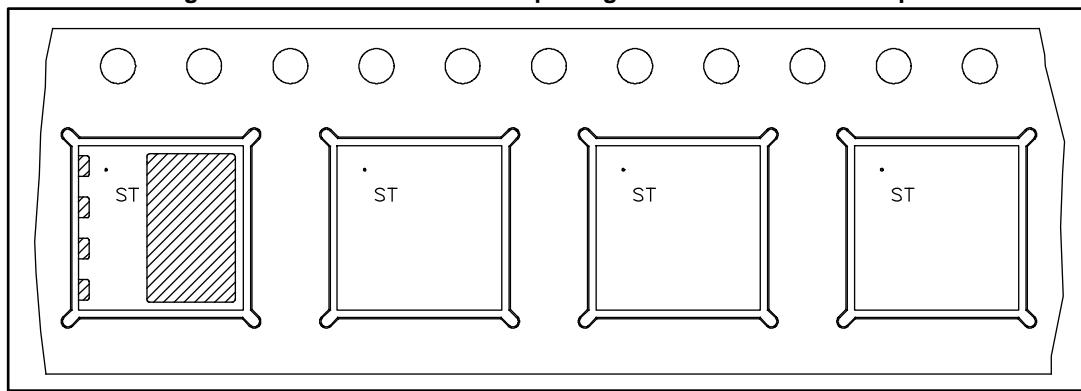
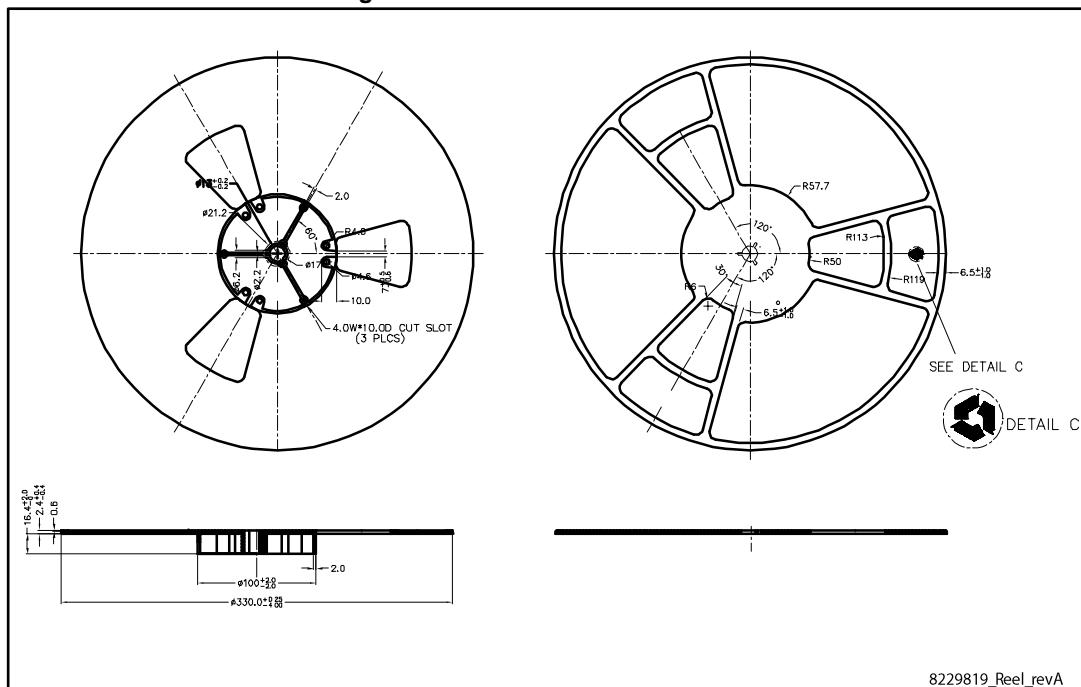



Figure 12: PowerFLAT™ 8x8 HV reel

All dimensions are in millimeters.

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
15-Nov-2017	1	First release

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

