D44H Series (NPN), D45H Series (PNP) ## **Complementary Silicon Power Transistors** These series of plastic, silicon NPN and PNP power transistors can be used as general purpose power amplification and switching such as output or driver stages in applications such as switching regulators, converters and power amplifiers. #### **Features** - Low Collector-Emitter Saturation Voltage - Fast Switching Speeds - Complementary Pairs Simplifies Designs - These Devices are Pb-Free and are RoHS Compliant* #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|-----------------------------------|-------------|------| | Collector–Emitter Voltage
D44H8, D45H8
D44H11, D45H11 | V _{CEO} | 60
80 | Vdc | | Emitter Base Voltage | V _{EB} | 5.0 | Vdc | | Collector Current – Continuous | I _C | 10 | Adc | | Collector Current – Peak (Note 1) | I _{CM} | 20 | Adc | | Total Power Dissipation @ T _C = 25°C @ T _A = 25°C | P _D | 70
2.0 | W | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -55 to +150 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------|------|------| | Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 1.8 | °C/W | | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 62.5 | °C/W | | Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds | TL | 275 | °C | ON Semiconductor® www.onsemi.com # 10 AMP COMPLEMENTARY SILICON POWER TRANSISTORS 60, 80 VOLTS MARKING DIAGRAM D4xHyy = Device Code x = 4 or 5 yy = 8 or 11 A = Assembly Location TO-220 **CASE 221A** STYLE 1 Y = Year WW = Work Week = Pb-Free Package ### ORDERING INFORMATION | Device | Package | Shipping | |---------|---------------------|---------------| | D44H8G | TO-220
(Pb-Free) | 50 Units/Rail | | D44H11G | TO-220
(Pb-Free) | 50 Units/Rail | | D45H8G | TO-220
(Pb-Free) | 50 Units/Rail | | D45H11G | TO-220
(Pb-Free) | 50 Units/Rail | ^{1.} Pulse Width \leq 6.0 ms, Duty Cycle \leq 50%. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## D44H Series (NPN), D45H Series (PNP) ### **ELECTRICAL CHARACTERISTICS** ($T_C = 25^{\circ}C$ unless otherwise noted) | Characteristic | Symbol | Min | Тур | Max | Unit | | |--|--------------------------------|---------------------------------|----------|------------|---------------|-----| | OFF CHARACTERISTICS | | | | | • | • | | Collector–Emitter Sustaining Voltage (I _C = 30 mAdc, I _B = 0 Adc) | D44H8, D45H8
D44H11, D45H11 | V _{CEO(sus)} | 60
80 | -
- | | Vdc | | Collector Cutoff Current (V_{CE} = Rated V_{CEO} , V_{BE} = 0 |) | I _{CES} | - | - | 10 | μΑ | | Emitter Cutoff Current (V _{EB} = 5.0 Vdc) | | I _{EBO} | - | - | 10 | μΑ | | ON CHARACTERISTICS | | | | • | | • | | DC Current Gain | | h _{FE} | 60
40 | -
- | -
- | - | | Collector–Emitter Saturation Voltage $(I_C = 8.0 \text{ Adc}, I_B = 0.4 \text{ Adc})$ | | V _{CE(sat)} | - | - | 1.0 | Vdc | | Base–Emitter Saturation Voltage (I _C = 8.0 Adc, I _B = 0.8 Adc) | | V _{BE(sat)} | - | - | 1.5 | Vdc | | DYNAMIC CHARACTERISTICS | | | | | | | | Collector Capacitance
(V _{CB} = 10 Vdc, f _{test} = 1.0 MHz) | D44H Series
D45H Series | C _{cb} | -
- | 90
160 | _
_ | pF | | Gain Bandwidth Product
(I _C = 0.5 Adc, V _{CE} = 10 Vdc, f = 20 MHz) | D44H Series
D45H Series | f⊤ | -
- | 50
40 | <u>-</u>
- | MHz | | SWITCHING TIMES | | | | | | | | Delay and Rise Times
(I _C = 5.0 Adc, I _{B1} = 0.5 Adc) | D44H Series
D45H Series | t _d + t _r | -
- | 300
135 | _
_ | ns | | Storage Time $(I_C = 5.0 \text{ Adc}, I_{B1} = I_{B2} = 0.5 \text{ Adc})$ | D44H Series
D45H Series | t _s | -
- | 500
500 | -
- | ns | | Fall Time
(I _C = 5.0 Adc, I _{B1} = 102 = 0.5 Adc) | D44H Series
D45H Series | t _f | -
- | 140
100 | -
- | ns | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. ## D44H Series (NPN), D45H Series (PNP) Figure 1. D44H11 DC Current Gain Figure 2. D45H11 DC Current Gain Figure 3. D44H11 DC Current Gain Figure 4. D45H11 DC Current Gain Figure 5. D44H11 ON-Voltage Figure 6. D45H11 ON-Voltage ## D44H Series (NPN), D45H Series (PNP) Figure 7. D44H11 ON-Voltage Figure 8. D45H11 ON-Voltage Figure 9. Maximum Rated Forward Bias Safe Operating Area Figure 10. Power Derating Figure 11. Thermal Response DATE 05 NOV 2019 #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009. - 2. CONTROLLING DIMENSION: INCHES - 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. #### 4. MAX WIDTH FOR F102 DEVICE = 1.35MM | | INCHES | | MILLIMI | ETERS | |-----|--------|-------|---------|-------| | DIM | MIN. | MAX. | MIN. | MAX. | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | В | 0.380 | 0.415 | 9.66 | 10.53 | | С | 0.160 | 0.190 | 4.07 | 4.83 | | D | 0.025 | 0.038 | 0.64 | 0.96 | | F | 0.142 | 0.161 | 3.60 | 4.09 | | G | 0.095 | 0.105 | 2.42 | 2.66 | | Н | 0.110 | 0.161 | 2.80 | 4.10 | | J | 0.014 | 0.024 | 0.36 | 0.61 | | K | 0.500 | 0.562 | 12.70 | 14.27 | | L | 0.045 | 0.060 | 1.15 | 1.52 | | N | 0.190 | 0.210 | 4.83 | 5.33 | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | R | 0.080 | 0.110 | 2.04 | 2.79 | | S | 0.045 | 0.055 | 1.15 | 1.41 | | Т | 0.235 | 0.255 | 5.97 | 6.47 | | U | 0.000 | 0.050 | 0.00 | 1.27 | | V | 0.045 | | 1.15 | | | Z | | 0.080 | | 2.04 | | STYLE 1: | | STYLE 2: | | STYLE 3: | | STYLE 4: | | |----------|-----------|-----------|-----------|-----------|---------|-----------|--------------------| | PIN 1. | BASE | PIN 1. | BASE | PIN 1. | CATHODE | PIN 1. | MAIN TERMINAL 1 | | 2. | COLLECTOR | 2. | EMITTER | 2. | ANODE | 2. | MAIN TERMINAL 2 | | 3. | EMITTER | 3. | COLLECTOR | 3. | GATE | 3. | GATE | | 4. | COLLECTOR | 4. | EMITTER | 4. | ANODE | 4. | MAIN TERMINAL 2 | | STYLE 5: | | STYLE 6: | | STYLE 7: | | STYLE 8: | | | PIN 1. | GATE | PIN 1. | ANODE | PIN 1. | CATHODE | PIN 1. | CATHODE | | 2. | DRAIN | 2. | CATHODE | 2. | ANODE | 2. | ANODE | | 3. | SOURCE | 3. | ANODE | 3. | CATHODE | 3. | EXTERNAL TRIP/DELA | | 4. | DRAIN | 4. | CATHODE | 4. | ANODE | 4. | ANODE | | STYLE 9: | | STYLE 10: | | STYLE 11: | | STYLE 12: | : | | PIN 1. | GATE | PIN 1. | GATE | PIN 1. | DRAIN | PIN 1. | MAIN TERMINAL 1 | | 2. | COLLECTOR | 2. | SOURCE | 2. | SOURCE | 2. | MAIN TERMINAL 2 | | 3. | EMITTER | 3. | DRAIN | 3. | GATE | 3. | GATE | | 4. | COLLECTOR | 4. | SOURCE | 4. | SOURCE | 4. | NOT CONNECTED | | DOCUMENT NUMBER: | 98ASB42148B | Electronic versions are uncontrolled except when accessed directly from the Document Reposi
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-------------|--|-------------|--|--| | DESCRIPTION: | TO-220 | | PAGE 1 OF 1 | | | ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and #### PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Poine: 011 421 33 790 2910 For additional information, please contact your local Sales Representative \Diamond