To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
MC79L05A / LM79L05A
3-Terminal 0.1 A Negative Voltage Regulator

Features
• Output Current up to 100 mA
• No External Components
• Internal Thermal Overload Protection
• Internal Short-Circuit Current Limiting
• Output Voltage Offered in ±5% Tolerance
• Output Voltage: -5 V

Description
These regulators employ internal current limiting and thermal shutdown.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Operating Temperature Range</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC79L05ACHX</td>
<td>0 ~ +125°C</td>
<td>9A</td>
<td>SOT-89</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>MC79L05ACP</td>
<td></td>
<td>MC79L05ACP</td>
<td>TO-92</td>
<td>Bulk</td>
</tr>
<tr>
<td>LM79L05ACZ</td>
<td></td>
<td>LM79L05ACZ</td>
<td>TO-92</td>
<td>Bulk</td>
</tr>
</tbody>
</table>

Block Diagram

Figure 1. Block Diagram
Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_I</td>
<td>Input Voltage</td>
<td></td>
<td>-30</td>
<td>V</td>
</tr>
<tr>
<td>T_{OPR}</td>
<td>Operating Temperature Range</td>
<td></td>
<td>0 ~ +125</td>
<td>$^\circ C$</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature Range</td>
<td></td>
<td>-65 ~ +150</td>
<td>$^\circ C$</td>
</tr>
</tbody>
</table>

Electrical Characteristics

$V_I = -10$ V, $I_O = 40$ mA, $C_I = 0.33$ μF, $C_O = 0.1$ μF, $0^\circ C \leq T_J \leq +125^\circ C$, unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_O</td>
<td>Output Voltage</td>
<td>$T_J = +25^\circ C$</td>
<td>-4.8</td>
<td>-5.0</td>
<td>-5.2</td>
<td>V</td>
</tr>
<tr>
<td>ΔV_O</td>
<td>Line Regulation $^{(1)}$</td>
<td>$T_J = +25^\circ C$</td>
<td>-7.0 V $\geq V_I \geq -20$ V</td>
<td>15</td>
<td>150</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-8 V $\geq V_I \geq -20$ V</td>
<td>100</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>ΔV_O</td>
<td>Load Regulation $^{(1)}$</td>
<td>$T_J = +25^\circ C$</td>
<td>1.0 mA $\leq I_O \leq 100$ mA</td>
<td>20</td>
<td>60</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0 mA $\leq I_O \leq 40$ mA</td>
<td>10</td>
<td>30</td>
<td>mV</td>
</tr>
<tr>
<td>V_O</td>
<td>Output Voltage</td>
<td>-7.0 V $\geq V_I \geq -20$ V, 1.0 mA $\leq I_O \leq 40$ mA</td>
<td>-4.75</td>
<td>-5.25</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_I = -10$ V, 1.0 mA $\leq I_O \leq 70$ mA</td>
<td>-4.75</td>
<td>-5.25</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_Q</td>
<td>Quiescent Current</td>
<td>$T_J = +25^\circ C$</td>
<td>2.0</td>
<td>5.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_J = +125^\circ C$</td>
<td>6.0</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>ΔI_Q</td>
<td>Quiescent Current Change With Line</td>
<td>-8 V $\geq V_I \geq -20$ V</td>
<td>1.5</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>ΔI_Q</td>
<td>Quiescent Current Change With Load</td>
<td>1.0 mA $\leq I_O \leq 40$ mA</td>
<td>0.1</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>V_N</td>
<td>Output Noise Voltage</td>
<td>$T_A = +25^\circ C, 10$ Hz $\leq f \leq 100$ kHz</td>
<td>30</td>
<td></td>
<td></td>
<td>μV</td>
</tr>
<tr>
<td>RR</td>
<td>Ripple Rejection</td>
<td>$f = 120$ Hz, -8 V $\geq V_I \geq -18$ V, $T_J = +25^\circ C$</td>
<td>41</td>
<td>60</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>V_D</td>
<td>Dropout Voltage</td>
<td>$T_J = +25^\circ C$</td>
<td>1.7</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Note:

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
Typical Application

Design Considerations

The MC79L05A / LC79L05A fixed-voltage regulators are designed with thermal overload protection that shuts down the circuit when subjected to an excessive power overload condition. Internal short-circuit protection limits the maximum current the circuit will pass. In many low-current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to ensure stable operation under all load conditions. A 0.33 µF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator’s input terminals. Good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage, even during the low point on the input ripple voltage.

* CI is required if regulator is located an appreciable distance from power supply filter.
** CO improves stability and transient response.

Figure 2. Positive And Negative Regulator

Figure 3. Typical Application
Physical Dimensions

SOT-89

Figure 4. 3-Lead, SOT-89, JEDEC TO-243, Option AA

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

For current tape and reel specifications, visit Fairchild Semiconductor’s online packaging area:

Downloaded from Arrow.com.
Physical Dimensions (Continued)

TO-92 Bulk Type

Figure 5. 3-Lead, TO-92, Molded, Standard Straight Lead

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP™
BitSiC™ Build it Now™
CorePLUS™ CorePOWER™ CROSSVOLT™
CTL™ Current Transfer Logic™
DEUXPEED™ Dual Cool™ EcoSPARK™
EfficientMax™ ESBIC™
Fairchild® Fairchild Semiconductor®
FACT Quiet Series™ FACT™ FAST™
FastvCore™ FETBench™
FPSTM

F-PFS™ FRFET™ Global Power Resource™
GreenBridge™ Green FPS™
Green FPS™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Making Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
mWSaver™
OptiTHTM
OPTOLOGIC®
OPTOPLANAR®

PowerTrench™ PowerXS™ Programmable Active Droop™
QFET™
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/W at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM™
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET®
Sync-Lock™

System General™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in the manner for which it is intended may cause the failure of the life support device or system, or to affect its safety or effectiveness.

2. A critical component in any component of a life support device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise.

Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

© Fairchild Semiconductor Corporation www.fairchildsemi.com