Silicon Carbide (SiC) Module – EliteSiC, 20 mohm SiC M1 MOSFET, 1200 V, 2-PACK Half Bridge Topology, F1 Package

NXH020P120MNF1PTG, NXH020P120MNF1PG

The NXH020P120MNF1 is a power module containing an 20 m Ω /1200 V SiC MOSFET half bridge and a thermistor in an F1 package.

Features

- 20 mΩ/1200 V SiC MOSFET Half Bridge
- Thermistor
- Options with Pre-applied Thermal Interface Material (TIM) and without Pre-applied TIM
- Press-fit Pins

Typical Applications

- Solar Inverter
- Uninterruptible Power Supplies
- Electric Vehicle Charging Stations
- Industrial Power

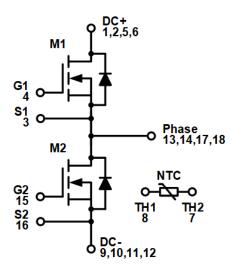
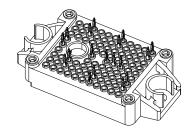
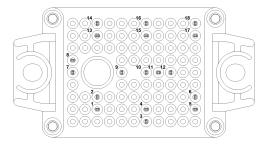



Figure 1. NXH020P120MNF1 Schematic Diagram


PIM18 33.8x42.5 (PRESS FIT) CASE 180BW

MARKING DIAGRAM

NXH020P120MNF1PTG= Specific Device Code NXH020P120MNF1PG = Specific Device Code AT = Assembly & Test Site Code YYWW = Year and Work Week Code

PIN CONNECTIONS

See Pin Function Description for pin names

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

PIN FUNCTION DESCRIPTION

Pin	Name	Description	
1	DC+	DC Positive Bus connection	
2	DC+	DC Positive Bus connection	
3	S1	Q1 Kelvin Emitter (High side switch)	
4	G1	Q1 Gate (High side switch)	
5	DC+	DC Positive Bus connection	
6	DC+	DC Positive Bus connection	
7	TH2	Thermistor Connection 2	
8	TH1	Thermistor Connection 1	
9	DC-	DC Negative Bus connection	
10	DC-	DC Negative Bus connection	
11	DC-	DC Negative Bus connection	
12	DC-	DC Negative Bus connection	
13	PHASE	Center point of half bridge	
14	PHASE	Center point of half bridge	
15	G2	Q2 Gate (Low side switch)	
16	S2	Q2 Kelvin Emitter (High side switch)	
17	PHASE	Center point of half bridge	
18	PHASE	Center point of half bridge	

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
SIC MOSFET			
Drain-Source Voltage	V _{DSS}	1200	V
Gate-Source Voltage	V _{GS}	+25/-15	V
Continuous Drain Current @ T _C = 80°C (T _J = 175°C)	I _D	51	Α
Pulsed Drain Current (T _J = 175°C)	I _{Dpulse}	102	Α
Maximum Power Dissipation @ T _C = 80°C (T _J = 175°C)	P _{tot}	211	W
Minimum Operating Junction Temperature	T_{JMIN}	-40	°C
Maximum Operating Junction Temperature	T_{JMAX}	175	°C
THERMAL PROPERTIES			
Storage Temperature Range	T _{stg}	-40 to 150	°C
INSULATION PROPERTIES			
Isolation Test Voltage, t = 1 s, 60 Hz	V _{is}	4800	V _{RMS}
Creepage Distance		12.7	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	TJ	-40	150	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

^{1.} Refer to ELECTRICAL CHĂRACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SIC MOSFET CHARACTERISTICS		•		•		•
Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 400 μA	V _{(BR)DSS}	1200	_	-	V
Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 1200 V	I _{DSS}	_	-	200	μΑ
Drain-Source On Resistance	V _{GS} = 20 V, I _D = 50 A, T _J = 25°C	R _{DS(ON)}	_	20	30	mΩ
	V _{GS} = 20 V, I _D = 50 A, T _J = 125°C	1	_	28	-	
	V _{GS} = 20 V, I _D = 50 A, T _J = 150°C	1	-	31	1	
Gate-Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 20 \text{ mA}$	V _{GS(TH)}	1.8	2.81	4.3	V
Gate Leakage Current	$V_{GS} = -10/20 \text{ V}, V_{DS} = 0 \text{ V}$	I_{GSS}	-500	-	500	nA
Internal Gate Resistance		R_{G}	_	1.1	-	Ω
Input Capacitance	V _{DS} = 800 V, V _{GS} = 0 V, f = 1 MHz	C _{ISS}	=	2420	=	pF
Reverse Transfer Capacitance		C _{RSS}	-	19	_	1
Output Capacitance		C _{OSS}	-	193	_	
C _{OSS} Stored Energy	V _{DS} = 0 V to 800 V, V _{GS} = 0 V	Eoss	-	124	_	μJ
Total Gate Charge	V _{DS} = 800 V, V _{GS} = 20 V, I _D = 50 A	Q _{G(TOTAL)}	-	213.5	-	nC
Gate-Source Charge		Q _{GS}	-	50	-	nC
Gate-Drain Charge		Q_{GD}	_	61.2	_	nC
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	-	44	-	ns
Rise Time	$V_{DS} = 600 \text{ V}, I_D = 50 \text{ A}$	t _r	-	8.8	-	
Turn-off Delay Time	$V_{GS} = -5 \text{ V}/18 \text{ V}, R_{G} = 2.7 \Omega$	t _{d(off)}	_	105	-	
Fall Time		t _f	_	8.4	_	
Turn-on Switching Loss per Pulse		E _{ON}	_	0.38	_	mJ
Turn off Switching Loss per Pulse		E _{OFF}	_	0.16	_	1
Turn-on Delay Time	T _J = 150°C	t _{d(on)}	_	40.5	_	ns
Rise Time	$V_{DS} = 600 \text{ V}, I_{D} = 50 \text{ A}$	t _r	=	8.0	=	
Turn-off Delay Time	$V_{GS} = -5 \text{ V}/18 \text{ V}$, $R_G = 2.7 \Omega$	t _{d(off)}	=	113	=	
Fall Time		t _f	=	9.1	=	1
Turn-on Switching Loss per Pulse		E _{ON}	=	0.49	=	mJ
Turn off Switching Loss per Pulse		E _{OFF}	=	0.16	=	
Diode Forward Voltage	I _D = 50 A, T _J = 25°C	V_{SD}	=	3.93	6	V
	I _D = 50 A, T _J = 150°C		=	3.39	=	
Thermal Resistance - Chip-to-case	M1, M2	R _{thJC}	=	0.4495	=	°C/W
Thermal Resistance – Chip-to-heatsink	Thermal grease, Thickness = 2 Mil _2%, A = 2.8 W/mK	R _{thJH}	-	0.7971	-	°C/W
THERMISTOR CHARACTERISTICS						-
Nominal Resistance	T _{NTC} = 25°C	R ₂₅	_	5	-	kΩ
Nominal Resistance	T _{NTC} = 100°C	R ₁₀₀	_	493	-	Ω
Nominal Resistance	T _{NTC} = 150°C	R ₁₅₀	-	159.5	-	Ω
Deviation of R ₁₀₀	T _{NTC} = 100°C	ΔR/R	-5	-	5	%
Power Dissipation – Recommended Limit	0.15 mA, non-self-heating effect	P_{D}	_	0.1	-	mW
Power Dissipation – Absolute Maximum	5 mA	P_{D}	_	34.2	_	mW
Power Dissipation Constant			_	1.4	_	mW/K
B-value	B(25/50), tolerance ±2%		_	3375	_	K
B-value	B(25/100), tolerance ±2%		_	3436	-	K

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
NXH020P120MNF1PG	NXH020P120MNF1PG	F1-2PACK: Case 180BW Press-fit Pins (Pb-Free and Halide-Free)	28 Units / Blister Tray
NXH020P120MNF1PTG	NXH020P120MNF1PTG	F1-2PACK: Case 180BW Press-fit Pins with pre-applied thermal interface material (TIM) (Pb-Free and Halide-Free)	28 Units / Blister Tray

TYPICAL CHARACTERISTICS

SIC MOSFET (M1, M2)

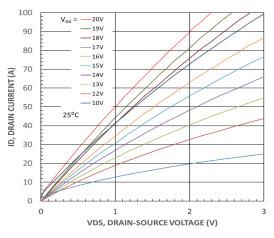


Figure 2. MOSFET Typical Output Characteristics



Figure 4. MOSFET Typical Output Characteristics

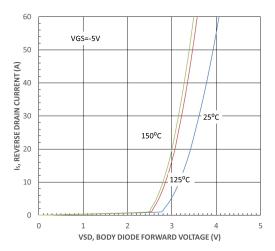


Figure 6. Body Diode Forward Characteristics

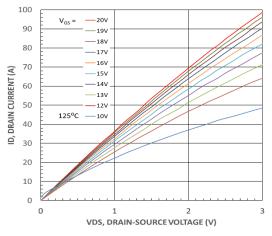


Figure 3. MOSFET Typical Output Characteristics

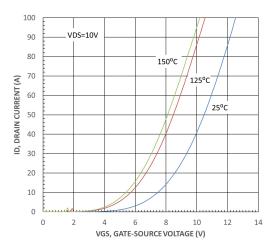


Figure 5. MOSFET Typical Transfer Characteristics

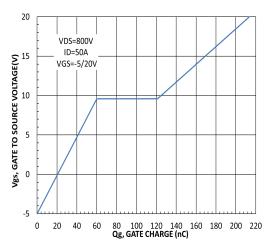


Figure 7. Gate-to-Source Voltage vs. Total Charge

TYPICAL CHARACTERISTICS

SIC MOSFET (M1, M2)

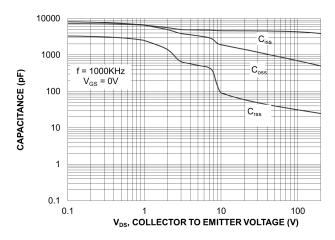


Figure 8. Capacitance vs. Drain-to-Source Voltage

TYPICAL CHARACTERISTICS

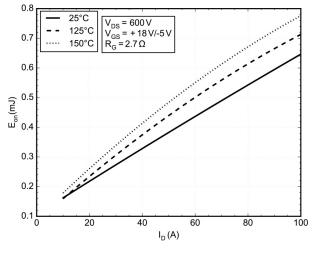


Figure 9. Typical Switching Loss Eon vs. ID

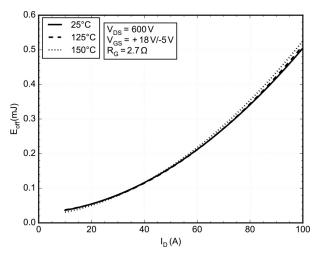


Figure 11. Typical Switching Loss Eoff vs. ID

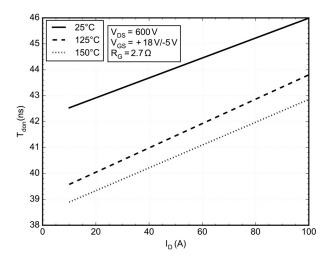


Figure 13. Typical Turn-On Switching Tdon vs. ID

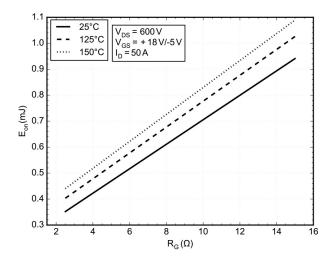


Figure 10. Typical Switching Loss Eon vs. R_{G}

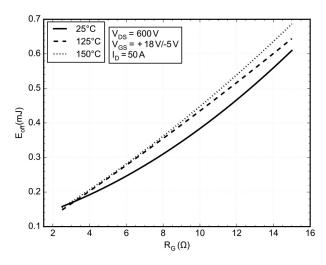


Figure 12. Typical Switching Loss Eoff vs. R_G

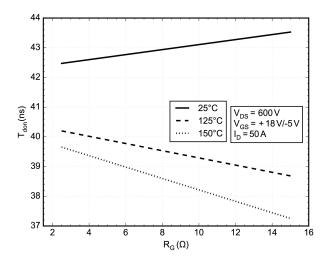


Figure 14. Typical Turn-On Switching Tdon vs. R_G

TYPICAL CHARACTERISTICS

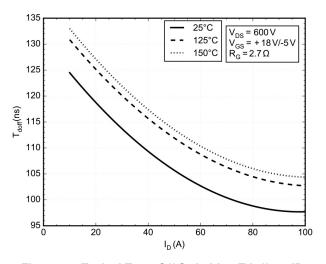


Figure 15. Typical Turn-Off Switching Tdoff vs. ID

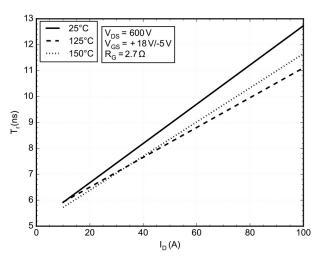


Figure 17. Typical Turn-On Switching Tr vs. ID

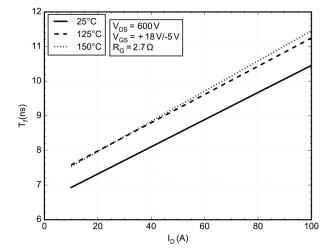


Figure 19. Typical Turn-Off Switching Tf vs. ID

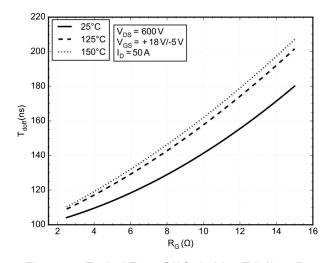


Figure 16. Typical Turn-Off Switching Tdoff vs. R_G

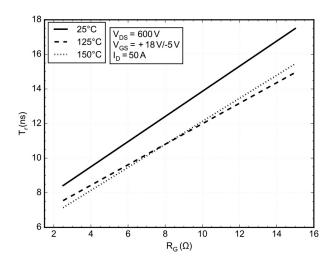


Figure 18. Typical Turn-On Switching Tr vs. $R_{\mbox{\scriptsize G}}$

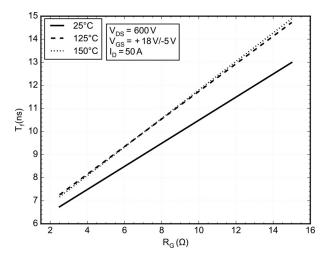
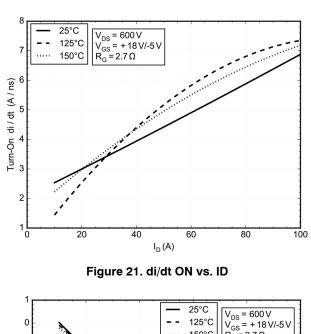
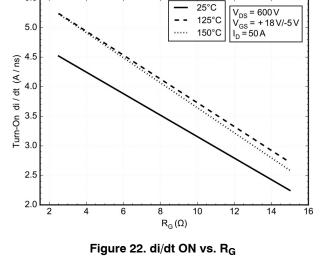




Figure 20. Typical Turn-Off Switching Tf vs. R_G

TYPICAL CHARACTERISTICS

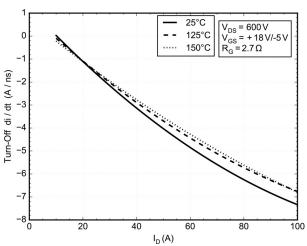


Figure 23. di/dt OFF vs. ID

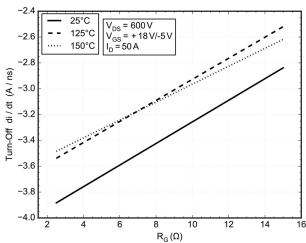


Figure 24. di/dt OFF vs. R_G

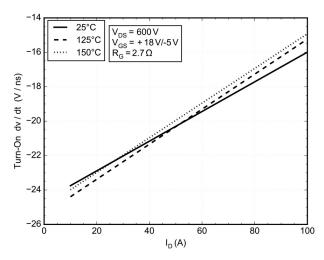


Figure 25. dv/dt ON vs. ID

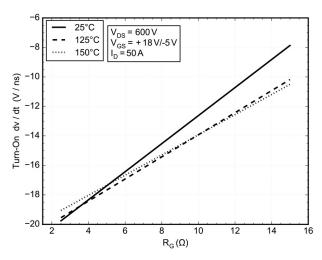


Figure 26. dv/dt ON vs. R_G

TYPICAL CHARACTERISTICS

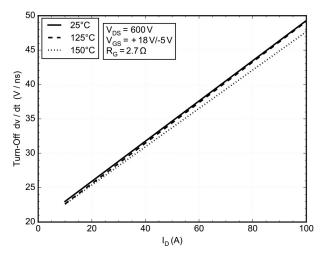


Figure 27. dv/dt OFF vs. ID

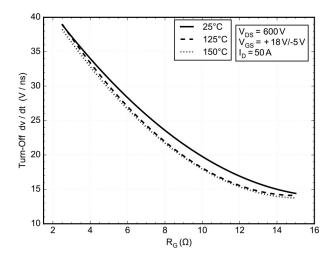


Figure 28. dv/dt OFF vs. R_G

TYPICAL CHARACTERISTICS

SIC MOSFET (M1/M2)

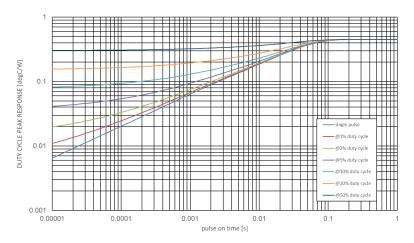
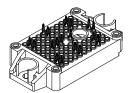
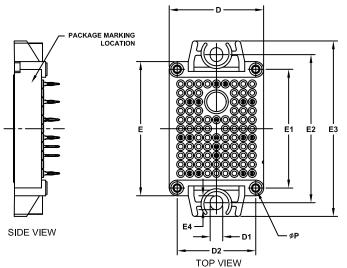


Figure 29. MOSFET Junction-to-Case Transient Thermal Impedance

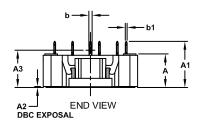

Table 1. FOSTER NETWORKS - M1, M2

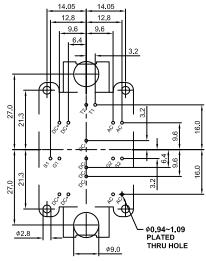
Foster		M1	M2	
Element #	Rth (K/W)	Cth (Ws/K)	Rth (K/W)	Cth (Ws/K)
1	0.017325	0.008638	0.026614	0.005297
2	0.022329	0.043836	0.014274	0.064284
3	0.016565	0.107000	0.006208	0.315671
4	0.041616	0.125888	0.075096	0.078283
5	0.338223	0.099402	0.338851	0.124492

Table 2. CAUER NETWORKS - M1, M2


Cauer Element #	M1		M2	
	Rth (K/W)	Cth (Ws/K)	Rth (K/W)	Cth (Ws/K)
1	0.034247	0.006027	0.038327	0.004380
2	0.073342	0.018048	0.072292	0.025045
3	0.106345	0.041141	0.118744	0.030910
4	0.100786	0.040901	0.069379	0.066961
5	0.121340	0.076490	0.162299	0.074739

PIM18 33.8x42.5 (PRESS FIT) CASE 180BW ISSUE B


DATE 30 APR 2021



NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETERS
- 2. PIN POSITION TOLERANCE IS ± 0.4mm

	MILLIMETERS		
DIM	MIN.	NOM.	MAX.
Α	11.65	12.00	12,35
A1	16.00	16.50	17.00
A2	0.00	0.35	0.60
A3	12.85	13.35	13.85
b	1.15	1.20	1.25
b1	0.59	0.64	0.69
D	33.50	33.80	34.10
D1	4.40	4.50	4.60
D2	27.95	28.10	28.25
E	47.70	48.00	48.30
E1	42.35	42.50	42.65
E2	52.90	53.00	53.10
E3	62.30	62.80	63.30
E4	4.90	5.00	5.10
Р	2.20	2.30	2.40

GENERIC MARKING DIAGRAM*

RECOMMENDED MOUNTING PATTERN

XXXXX = Specific Device Code AT = Assembly & Test Site Code

YYWW = Year and Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " • ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON19723H	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PIM18 33.8x42.5 (PRESS FIT)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

