PAM8006A ### 15W STEREO CLASS-D AUDIO POWER AMPLIFIER WITH POWER LIMIT ### **Description** The PAM8006A is a 15W (per channel) stereo Class-D audio amplifier which offers low THD+N (0.2%), low EMI and good PSRR thus high-quality sound reproduction. The PAM8006A runs off an 8V to 18V supply at much higher efficiency than competitors' ICs. The PAM8006A only requires very few external components, significantly saving cost and board space. The PAM8006A is available in a W-QFN5050-32 (Standard) package. ### **Pin Assignments** Top View of W-QFN5050-32 (Standard) ### **Features** - 15W x2 into an 8Ω Speaker - Low Noise: -90dB - Over 90% Efficiency - With Shutdown/Mute Function - Overcurrent, OVP, UVLO, Thermal and Short-Circuit Protection - Low THD+N - Power Limit with Non-Clip - Low Quiescent Current - Pop Noise Suppression - Small Package Outlines: W-QFN5050-32 (Standard) - Pb-Free Package (RoHS Compliant) - Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2) - Halogen and Antimony Free. "Green" Device (Note 3) - For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/ ## **Applications** - Flat monitors/LCD TVs - Multi-media speaker systems - DVD players, game machines - Boom boxes - Music instruments Notes: - 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. - 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. - 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds. # **Typical Applications Circuit** ## **Pin Descriptions** | Pin Number | Pin Name | Function | |--------------|-------------|---| | | | Function | | 1, 8, 17, 24 | NC | Not Connected | | 2 | RINN | Negative Differential Audio Input for Right Channel. | | 3 | RINP | Positive Differential Audio Input for Right Channel. | | 4 | MUTE | A logic high on this pin disables the outputs and a logic low enables the outputs. | | 5 | AVDD | 5V Analog Supply | | 6 | LINP | Positive Differential Audio Input for Left Channel. | | 7 | LINN | Negative Differential Audio Input for Left Channel. | | 9, 16 | PGNDL | Power Ground for Left Channel H-Bridge. | | 10, 15 | PVCCL | Power Supply for Left Channel H-Bridge, Not Connected to PVCCR or AVCC. | | 11 | LOUTN | Class-D 1/2-H-Bridge Negative Output for Left Channel. | | 12 | BSLN | Bootstrap I/O for Left Channel, Negative High-Side FET. | | 13 | BSLP | Bootstrap I/O for Left Channel, Positive High-Side FET. | | 14 | LOUTP | Class-D 1/2-H-Bridge Positive Output for Left Channel. | | 18 | PL | Reference Voltage for Power Limit Function. | | 19 | V2P5 | 2.5V Reference for Analog Cells. | | 20 | AGND | Analog Ground | | 21 | VCLAMP | Internally Generated Voltage Supply for Bootstrap Capacitors. | | 22 | AVCC | High-Voltage Analog Power Supply (8V to 18V) | | 23 | SD | Shutdown Signal for IC (low = shutdown, high = operational). TTL logic levels with compliance to V _{CC} . | | 25, 32 | PGNDR | Power Ground for Right Channel H-Bridge. | | 26, 31 | PVCCR | Power Supply for Right Channel H-Bridge, Not Connected to PVCCL or AVCC. | | 27 | ROUTP | Class-D 1/2-H-Bridge Positive Output for Right Channel. | | 28 | BSRP | Bootstrap I/O for Right Channel, Positive High-Side FET. | | 29 | BSRN | Bootstrap I/O for Right Channel, Negative High-Side FET. | | 30 | ROUTN | Class-D 1/2-H-Bridge Negative Output for Right Channel. | | 33 | Thermal Pad | Connect to Ground. Thermal pad should be soldered down on all applications to secure the device properly to the printed wiring board. | ### **Functional Block Diagram** Note: 4. Maximum gain: R_I = 12.5k, R_F = 100k. Power limit function: R_I and R_F are adjustable. # Absolute Maximum Ratings (@TA = +25°C, unless otherwise specified.) (Note 5) | Parameter | Rating | Unit | |--------------------------------|---------------|------| | Supply Voltage Vcc | -0.3 to +28.0 | V | | Input Voltage Range Vı | | | | MUTE, PL | 0 to 6.0 | V | | SD | -0.3 to Vcc | V | | RINN, RINP, LINN, LINP | -0.3 to +6.0 | V | | Junction Temperature Range, TJ | -40 to +125 | °C | | Storage Temperature | -65 to +150 | °C | | Lead Temperature | +260 (5 sec) | °C | Note: ^{5.} Stresses greater than those listed under *Absolute Maximum Ratings* can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to *Absolute Maximum Ratings* for extended periods can affect device reliability. All voltages are with respect to ground. ## Recommended Operating Conditions (@TA = +25°C, unless otherwise specified.) | | Parameter | Rating | Unit | |--------------------------------|-----------|------------|------| | Supply Voltage V _{CC} | | 8 to 18 | V | | Input Pin Voltage | | 0 to 5.5 | V | | High Lavel Innet Valtage | SD | 2.0 to Vcc | V | | High-Level Input Voltage | MUTE | 2.0 to 5.5 | V | | Lauriana laurik Valkana | SD | 0 to 0.3 | V | | Low-Level Input Voltage MUTE | | 0 to 0.3 | V | | Ambient Operating Temperature | | -20 to +85 | °C | ## Thermal Information (Note 6) | Parameter | Package | Symbol | Maximum | Unit | |--|-------------------------|--------|---------|------| | Thermal Resistance (Junction to Case) | W-QFN5050-32 (Standard) | θјс | 5.0 | °C/W | | Thermal Resistance (Junction to Ambient) | W-QFN5050-32 (Standard) | θЈА | 16.1 | C/VV | Note: 6. The exposed PAD must be soldered to a thermal land on the PCB. ## **Electrical Characteristics** (@ $T_A = +25$ °C, $V_{CC} = 12$ V, $R_L = 8\Omega$, unless otherwise specified.) | Symbol | Parameter | | Conditions | Min | Тур | Max | Unit | |-----------------|---|--|----------------------------------|-----|------|-----|------| | | | THD+N = 0.12%, f = 1kHz, $R_L = 8\Omega$ | | _ | 6 | _ | | | Po | Continuous Output Power | THD+N = 1% | , f = 1kHz, R _L = 8Ω | _ | 8.5 | _ | W | | | | THD+N = 10 | %, f = 1kHz, R _L = 8Ω | _ | 10 | _ | | | I _{DD} | Quiescent Current | No Load | | _ | 16.5 | 25 | mA | | Isp | Supply Quiescent Current in Shutdown Mode | Shutdown = | 0 | _ | 4 | 10 | μΑ | | | | | High Side | _ | 210 | _ | | | RDS(ON) | Drain-Source On-State Resistance | lo = 0.5A
T _J = +25°C | Low Side | _ | 210 | _ | mΩ | | | | 13 - 123 0 | Total | _ | 420 | _ | | | PSRR | Power Supply Ripple Rejection Ratio | 1V _{PP} Ripple, f = 1kHz
Inputs AC-Coupled to Ground | | _ | -65 | _ | dB | | fosc | Oscillator Frequency | _ | | _ | 300 | _ | kHz | | Vn | Output Integrated Noise Floor | 20Hz to 22kHz, A-Weighting | | _ | -100 | _ | dB | | CS | Crosstalk | $P_O = 3W$, $R_L = 8\Omega$, $f = 1kHz$ | | _ | -95 | _ | dB | | SNR | Signal to Noise Ratio | Maximum Output at THD+N < 0.5% f = 1kHz | | _ | 90 | _ | dB | | _ | Gain | _ | | _ | 32 | _ | dB | | Vos | Output Offset Voltage (measured differentially) | INN and INP Connected Together | | _ | 30 | _ | mV | | V2P5 | 2.5V Bias Voltage | No Load | | _ | 2.5 | _ | V | | AVDD | Internal Analog Supply Voltage | V _{CC} = 8V to 18V | | _ | 5 | 5.5 | V | | OTS | Overtemperature Shutdown | _ | | _ | +160 | _ | °C | | ОТН | Thermal Hysteresis | _ | | _ | +50 | _ | °C | ## **Electrical Characteristics** (@ T_A = +25°C, V_{CC} = 18V, R_L = 8 Ω , unless otherwise specified.) | Symbol | Parameter | | Conditions | Min | Тур | Max | Units | |---------|---|--|------------------------------------|-----|------|-----|-------| | D- | D. Continue Outsit Days | THD+N = 0.12%, f = 1kHz, $R_L = 8\Omega$ | | _ | 2.2 | _ | W | | Po | Continuous Output Power | THD+N=0. | 18%, f = 1kHz, R _L = 8Ω | _ | 15 | _ | VV | | THD+N | Total Harmonic Distortion plus Noise | Po = 10W, f | = 1kHz, R _L = 8Ω | _ | 0.28 | _ | % | | IDD | Quiescent Current | No Load | | _ | 18 | 25 | mA | | Isp | Supply Quiescent Current in Shutdown Mode | Shutdown = | 0 | _ | _ | 50 | μΑ | | | | | High Side | _ | 210 | _ | | | RDS(ON) | Drain-Source On-State Resistance | Io = 0.5A
T _J = +25°C | Low Side | _ | 210 | _ | mΩ | | | | 1J = +25°C | Total | _ | 420 | _ | | | PSRR | Power Supply Ripple Rejection Ratio | 1V _{PP} Ripple, f = 1kHz
Inputs AC-Coupled to Ground | | _ | -65 | _ | dB | | fosc | Oscillator Frequency | _ | _ | | 300 | _ | kHz | | Vn | Output Integrated Noise Floor | 20Hz to 22k | 20Hz to 22kHz, A-Weighting | | -100 | _ | dB | | CS | Crosstalk | $P_O = 3W$, $R_L = 8\Omega$, $f = 1kHz$ | | _ | -95 | _ | dB | | SNR | Signal to Noise Ratio | Maximum Output at THD+N < 0.5% f = 1kHz | | _ | 90 | _ | dB | | _ | Gain | _ | | _ | 32 | _ | dB | | Vos | Output Offset Voltage (measured differentially) | INN and INP Connected Together | | _ | 30 | _ | mV | | V2P5 | 2.5V Bias Voltage | No Load | | _ | 2.5 | _ | V | | AVDD | Internal Analog Supply Voltage | Vcc = 8V to 18V | | _ | 5 | 5.5 | V | | OTS | Overtemperature Shutdown | _ | | _ | +160 | _ | °C | | ОТН | Thermal Hysteresis | _ | | _ | +50 | _ | °C | ### **Typical Performance Characteristics** $(V_{CC} = 18V, R_L = 8\Omega, G_V = 32dB, T_A = +25^{\circ}C, V_{CC} = 12V, R_L = 8\Omega, unless otherwise specified.)$ Typical Performance Characteristics (continued) (Vcc = 18V, R_L = 8Ω , G_V = 32dB, T_A = +25°C, Vcc = 12V, R_L = 8Ω , unless otherwise specified.) ### **Application Information** ### **Test Setup for Performance Testing** Notes: - 7. The AP AUX-0025 low pass filter is necessary for class-D amplifier measurement with AP analyzer. - 8. Two 22µH inductors are used in series with load resistor to emulate the small speaker for efficiency measurement. ### **MUTE Operation** The MUTE pin is an input for controlling the output state of the PAM8006A. A logic high on this pin disables the outputs and low enables the outputs. This pin may be used as a quick disable or enable of the outputs without a volume fade. ### **Shutdown Operation** The PAM8006A employs a shutdown operation mode to reduce supply current to the absolute minimum level during periods of non-use to save power. The \overline{SD} input terminal should be held high during normal operation when the amplifier is in use. Pulling \overline{SD} low causes the outputs to be muted and the amplifier to enter a low-current state. \overline{SD} should never be left unconnected to prevent the amplifier from unpredictable operation. For the best power-off pop performance, the amplifier should be set in shutdown mode prior to removing the power supply voltage. #### Internal 2.5V Bias Generator Capacitor Selection The internal 2.5V bias generator (V2P5) provides the internal bias for the preamplifier stage. The external input capacitors and this internal reference allow the inputs to be biased within the optimal common-mode range of the input preamplifiers. The selection of the capacitor value on the V2P5 terminal is critical for achieving the best device performance. During startup or recovery from shutdown state, the V2P5 capacitor determines the rate at which the amplifier starts up. When the voltage on the V2P5 capacitor equals 0.75 x V2P5, or 75% of its final value, the device turns on and the Class-D outputs start switching. The startup time is not critical for the best de-pop performance since any heard pop sound is the result of the Class-D output switching-on other than that of the startup time. However, at least a 0.47µF capacitor is recommended for the V2P5 capacitor. Another function of the V2P5 capacitor is to filter high frequency noise on the internal 2.5V bias generator. #### Power Supply Decoupling, Cs The PAM8006A is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to ensure the output total harmonic distortion (THD) as low as possible. Power supply decoupling also prevents oscillations caused by long lead between the amplifier and the speaker. The optimum decoupling is achieved by using two capacitors of different types that target different types of noise on the power supply leads. For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series resistance (ESR) ceramic capacitor, typically 1μ F, is recommended, placed as close as possible to the device's VCC lead. To filter lower frequency noises, a large aluminum electrolytic capacitor of 10μ F or greater is recommended, placed near the audio power amplifier. The 10μ F capacitor also serves as a local storage capacitor for supplying current during large signal transients on the amplifier outputs. ### **BSN and BSP Capacitors** The full H-bridge output stages use nMOS transistors only. They therefore require bootstrap capacitors for the high side of each output to turn on correctly. An at least 220nF ceramic capacitor, rated for at least 25V, must be connected from each output to its corresponding bootstrap input. Specifically, one 220nF capacitor must be connected from xOUTP to xBSP, and another 220nF capacitor from xOUTN to xBSN. It is recommended to use 1µF BST capacitor to replace 220nF or lower than 100Hz applications. ### **Application Information** (continued) #### **VCLAMP Capacitors** To ensure that the maximum gate-to-source voltage for the nMOS output transistors not exceeded, internal regulators are used to clamp the gate voltage. A 1µF capacitors must be connected from VCLAMP to ground and must be rated for at least 25V. The voltages at the VCLAMP terminals vary with Vcc and may not be used to power any other circuitry. #### Internal Regulated 5V Supply (AVDD) The AVDD terminal is the output of an internally generated 5V supply, used for the oscillator, amplifier, power limit circuitry and logic control circuitry. It requires a 0.1µF to 1µF capacitor, placed very close to the pin to ground to keep the regulator stable. The regulator may not be used to power any external circuitry. ### **Differential Input Power Limit** The differential input stage of the amplifier eliminates noises that appear on the two input lines of the channel. To use the PAM8006A with a differential source, connect the positive lead of the audio source to the INP input and the negative lead from the audio source to the INN input. To use the PAM8006A with a single-ended source, AC ground the INP input through a capacitor equal in value to the input capacitor on INN and apply the audio source to the INN input. In a single-ended input application, the INP input should be AC grounded at the audio source other than at the device input for best noise performance. #### **Using Low-ESR Capacitors** Low-ESR capacitors are recommended throughout this application section. A real (with respect to ideal) capacitor can be modeled simply as a resistor in series with an ideal capacitor. The voltage drop across this resistor minimizes the beneficial effects of the capacitor in the circuit. The lower the equivalent value of this resistance the more the real capacitor behaves as an ideal capacitor. #### **Short-Circuit Protection** The PAM8006A has short-circuit protection circuitry on the outputs to prevent damage to the device when output-to-output shorts, output-to-GND shorts, or output-to-VCC shorts occur. Once a short-circuit is detected on the outputs, the output drive is immediately disabled. This is a latched fault and must be reset by cycling the voltage on the $\overline{\text{SD}}$ pin to a logic low and back to the logic high state for normal operation. This will clear the short-circuit flag and allow for normal operation if the short was removed. If the short was not removed, the protection circuitry will again be activated. #### **Thermal Protection** Thermal protection on the PAM8006A prevents damage to the device when the internal die temperature exceeds +160°C. There is a ±15 degree tolerance on this trip point from device to device. Once the die temperature exceeds the set thermal point, the device enters the shutdown state and the outputs are disabled. This is not a latched fault. The thermal fault is cleared once the temperature of the die is reduced by 50°C. The device begins normal operation at this point without external system intervention. #### **Power Limit** The voltage at PL pin can be used to limit the power to levels below that which is possible based on the supply rail. Add a resistor from PL to ground to set the voltage at the PL pin. An external reference may also be used if tighter tolerance is required. Also add a 1µF capacitor from PL pin to ground. The PL circuit sets a limit on the output peak-to-peak voltage. The gain of Class-D amplifier will automatically be reduced if the output power is higher than setting value to make output power less than limited value and also provide good sound quality. ### Application Information (continued) ### Power Limit (continued) The output power vs. PL pin resistor value as below. $V_{CC} = 12V$, $R_{LOAD} = 8\Omega$ | R (Ω) | PL (V) | PL (W) | R (Ω) | PL (V) | PL (W) | |-------|--------|--------|-------|--------|--------| | 56K | 0.61 | 3.1 | 100K | 0.99 | 8.1 | | 62K | 0.67 | 3.7 | 110K | 1.07 | 9.0 | | 68K | 0.73 | 4.3 | 120K | 1.15 | 9.6 | | 75K | 0.79 | 5.1 | 130K | 1.22 | 10.0 | | 82K | 0.85 | 6.0 | 140K | 1.36 | 10.7 | | 91K | 0.92 | 7.0 | _ | _ | _ | ### Power-Up/Down Sequence The PAM8006A employs a shutdown operation mode to reduce supply current to the absolute minimum level during periods of non-use to save power. The \overline{SD} input terminal should be held high during normal operation when the amplifier is in use. Pulling \overline{SD} low causes the outputs to be muted and the amplifier to enter a low-current state. \overline{SD} should never be left unconnected to prevent the amplifier from unpredictable operation. Suggested PL starting voltage is greater than 5V. Startup/power-down sequencer recommended. ### Ordering Information (Note 9) | Orderable Part Number | Part Marking | Package | Packing | | | |-------------------------|----------------------|-------------------------|------------|-------------|--| | Orderable Part Nulliber | Part Warking | Package | Qty. | Carrier | | | PAM8006ATR | PAM8006A
XXXYWWLL | W-QFN5050-32 (Standard) | 3000 Units | Tape & Reel | | Note: 9. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/. ### **Marking Information** XXX: Internal Code Y: Year (ex: 5 = 2025) WW: Week: 01 to 52 52 represents week 52 and 53 LL: Internal Code ## **Package Outline Dimensions** Please see http://www.diodes.com/package-outlines.html for the latest version. ### W-QFN5050-32 (Standard) | W-QFN5050-32 | | | | | | |--------------|----------|---------|-------|--|--| | | (Sta | ndard) |) | | | | Dim | Min | Max | Тур | | | | Α | 0.55 | 0.80 | 0.75 | | | | A1 | 0.00 | 0.05 | - | | | | A3 | (|).203 F | REF | | | | b | 0.20 | 0.30 | 0.25 | | | | D | 4.95 | 5.05 | 5.00 | | | | D2 | 3.65 | 3.75 | 3.70 | | | | Е | 4.95 | 5.05 | 5.00 | | | | E2 | 3.65 | 3.75 | 3.70 | | | | е | 0.50 BSC | | | | | | e1 | 3.50 REF | | | | | | Ĺ | 0.35 | 0.45 | 0.40 | | | | All | Dimen | sions | in mm | | | ## **Suggested Pad Layout** Please see http://www.diodes.com/package-outlines.html for the latest version. ### W-QFN5050-32 (Standard) | Dimensions | Value | | | |---------------|---------|--|--| | Dilliciisions | (in mm) | | | | С | 0.500 | | | | G1 | 0.150 | | | | G2 | 0.150 | | | | Х | 0.350 | | | | X1 | 3.800 | | | | X2 | 3.850 | | | | Х3 | 5.300 | | | | Υ | 0.600 | | | | Y1 | 3.800 | | | | Y2 | 3.850 | | | | Y3 | 5.300 | | | ### **Mechanical Data** - Moisture Sensitivity: Level 3 per J-STD-020 - Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 @3 - Weight: 0.065 grams (Approximate) #### IMPORTANT NOTICE - 1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). - The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications. - 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities. - 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document. - 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. - 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application. - 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes. - 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use. - 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2025 Diodes Incorporated. All Rights Reserved. www.diodes.com PAM8006A 13 of 13 Document number: DS36382 Rev. 2 - 2 www.diodes.com