
Surface Mount - 600V - 800V

Additional Information

Accessories

Samples

Description

PNPN devices designed for line powered consumer applications such as relay and lamp drivers, small motor controls, gate drivers for larger thyristors, and sensing and detection circuits. Supplied in surface mount package for use in automated manufacturing.

Features

- Sensitive Gate Trigger Current
- Blocking Voltage to 600 V
- Glass Passivated Surface for Reliability and Uniformity
- Surface Mount Package
- Lead-free and RoHScompliant

Functional Diagram

Pin Out 4 1 2 3

Maximum Ratings $(T_1 = 25 \text{ °C unless otherwise noted})$

Rating	Symbol	Value	Unit	
Peak Repetitive Off–State Voltage (Note 1) MCR08B (Sine Wave, $R_{GK}=1$ k Ω T $_{L}=25$ to 110°C) MCR08M		V _{DRM} , V _{RRM}	200 600	V
On-State RMS Current (All Conduction Angles; T _C = 80°C)		I _{T (RMS)}	0.8	А
Peak Non-Repetitive Surge Current (1/2 Cycle Sine Wave, 60 Hz, T _C = 25°C)	I _{TSM}	8.0	А	
Circuit Fusing Consideration (t = 8.3 ms)	l²t	0.4	A²sec	
Forward Peak Gate Power ($T_c = 80^{\circ}$ C, t = 1.0 µs)	P _{GM}	0.1	W	
Average Gate Power (t = 8.3 ms, $T_c = 80$ °C)	P _{GM (AV)}	0.01	W	
Operating Junction Temperature Range	T_{J}	-40 to +110	°C	
Storage Temperature Range	T _{stg}	-40 to +150	°C	

Thermal Characteristics

Rating	Symbol	Value	Unit
Thermal Resistance, JJunction-to-Ambient PCB Mounted per Figure 1	$R_{\theta JA}$	156	°C/W
Thermal Resistance, Junction-to-Tab Measured on Anode Tab Adjacent to Epoxy	$R_{\theta JA}$	25	°C/W
Maximum Device Temperature for Soldering Purposes (for 10 Seconds Maximum)	T _L	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Electrical Characteristics - OFF (TJ = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Forward or Reverse Blocking Current (Note 3)	$T_{_{\rm J}}=25^{\circ}{\rm C}$	I _{DRM}	-	-	10	μΑ
$(V_{AK} = Rated V_{DRM} or V_{RRM}, R_{GK} = 1 k\Omega$	T_ = 110°C	I	-	-	200	μΑ

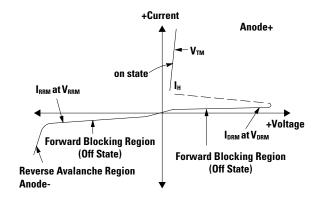
Electrical Characteristics - ON (TJ = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic	Symbol	Min	Тур	Max	Unit
Peak Forward On-State Voltage (Note 2) ($I_T = 1.0 \text{ A Peak}$)	V_{TM}	_	_	1.7	V
Gate Trigger Current (Continuous dc) (Note 4) ($V_{AK} = 12 \text{ Vdc}, R_L = 100 \Omega$)	l _{GT}	_	_	200	μΑ
Holding Current (Note 3) ($V_{AK} = 12 \text{ Vdc}$, Initiating Current = 20 mA)	I _H	_	_	5.0	mA
Gate Trigger Voltage (Continuous dc) ($V_D = 12 \text{ V}, R_L = 100 \Omega$)	$V_{\rm GT}$	_	_	0.8	V
Turn-On Time ($V_{AK} = 12 \text{ Vdc}$, $I_{TM} = 5 \text{ Adc}$, $I_{GT} = 5 \text{ mA}$)	t _{qt}	_	1.25	-	μs

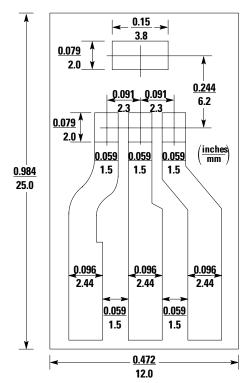
^{2.} Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%.

Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate-of-Rise of Off State Voltage (Vpk = Rated VDRM, T_c = 110°C, RGK = 1 k Ω , Exponential Method)	dv/dt	10	-	-	V/µs


^{1.} V_{DBM} and V_{BBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

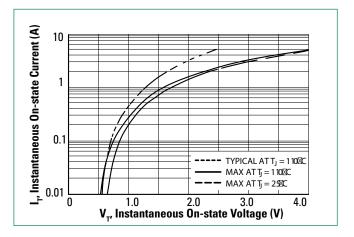
^{3.} RGK = 1000 Q is included in measurement.


^{4.} RGK is not included in measurement.

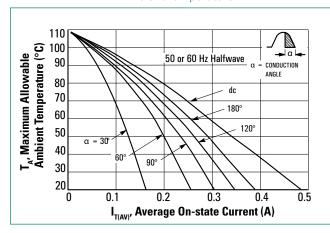
Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I _H	Holding Current

Figure 1.PCB for Thermal Impedance and Power Testing of SOT-223


Board mounted vertically cinch 8840 edge connector. Board Thickness = 65Mil. Foil Thickness = 2.5Mil.

Foil Thickness = 2.5Mil. Material: G10 Fiberglass Base Epoxy



Surface Mount - 600V - 800V

Figure 2. On-State Characteristics

Figure 4.Current Derating, Minimum Pad Size Reference:
Ambient Temperature

Figure 6.Current Derating, 2.0 cm Square Pad Reference:
Ambient Temperature

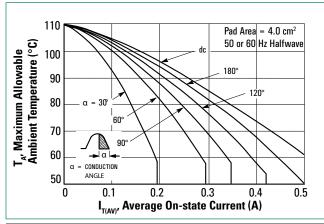
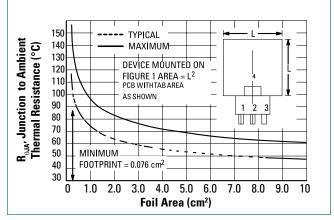
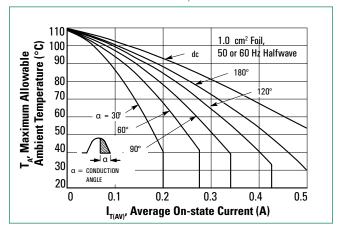
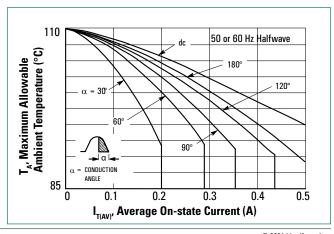


Figure 3.

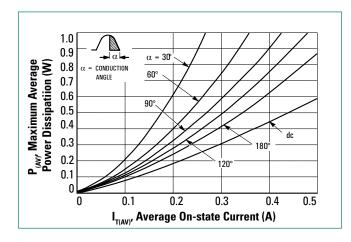
Junction to Ambient Thermal Resistance
vs Copper Tab Area


Figure 5.

Current Derating, 1.0 cm Square Pad Reference:

Ambient Temperature


Figure 7.Current Derating Reference: Anode Tab

Surface Mount - 600V - 800V

Figure 8. Power Dissipation

Figure 10.Typical Gate Trigger Voltage vs Junction Temperature

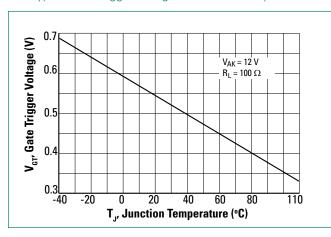


Figure 12.
Typical Range of VGT versus Measured IGT

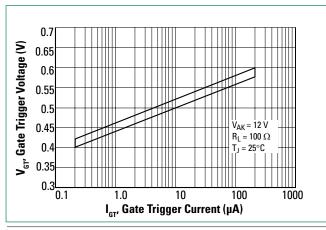
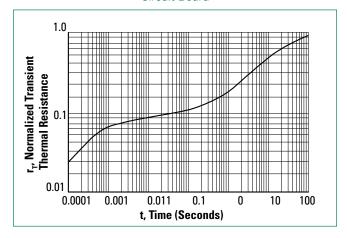
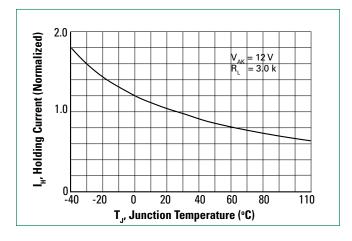




Figure 9.

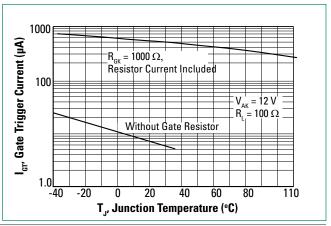
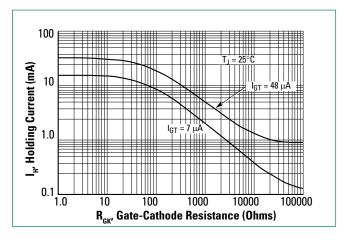

Thermal Response Device Mounted on Figure 1 Printed
Circuit Board

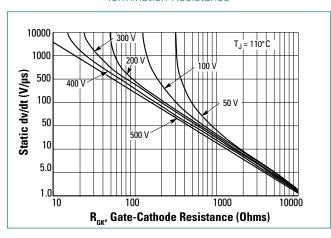
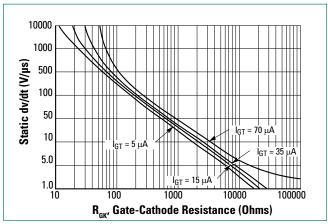
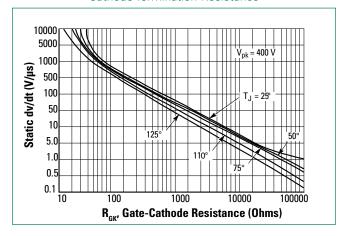
Figure 11.Typical Normalized Holding Current vs Junction Temperature


Figure 13.Typical Gate Trigger Current vs Junction Temperature

Surface Mount - 600V - 800V

Figure 14.Holding Current Range vs Gate-Cathode Resistance

Figure 16.Exponential Static dv/dt vs Peak Voltage and Gate-Cathode
Termination Resistance

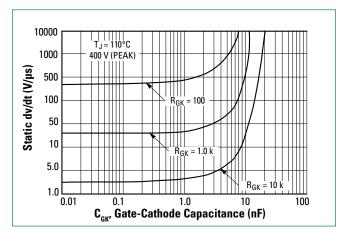

Figure 18.
Exponential Static dv/dt vs Gate-Cathode Termination
Resistance and Product Trigger Current Sensitivity

Figure 15.Exponential Static dv/dt vs. Junction Temperature and Gate-Cathode Termination Resistance

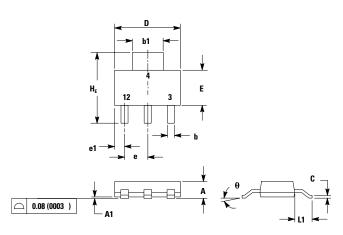
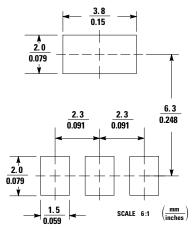
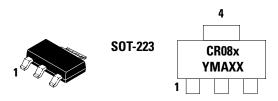


Figure 17.Exponential Static dv/dt vs Gate-Cathode Capacitance and Resistance

Surface Mount - 600V - 800V


Dimensions


Millimeters Dim			Inches			
Dilli	Min	Nom	Max	Min	Nom	Max
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
C	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
E	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L1	1.50	1.75	2.00	0.060	0.069	0.078
H _E	6.70	7.00	7.30	0.264	0.276	0.287
9	0°	_	10°	0°	_	10°

- 1. Dimensions and Tolerancing per Ansi Y14.5M. 1982.
- 2. Controlling Dimension: Inch.

Soldering Footprint

Part Marking System

CR08x = Device Code x = B or M Y = Year M = Month A = Assembly Location XX = Series Number

Ordering Information

Device	Package	Shipping
MCR08BT1G	SOT-223 (Pb-Free)	1000/Tape & Reel
MCR08MT1G	SOT-223 (Pb-Free)	1000/Tape & Reel

Pin Assignment			
1	Cathode		
2	Anode		
3	Gate		
4	Anode		

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics

