

TinyLogic UHS Triple Inverter with Schmitt Trigger Input

NC7NZ14

Description

The NC7NZ14 is a triple inverter with Schmitt trigger input from **onsemi**'s Ultra–High Speed (UHS) series of TinyLogic. The device is fabricated with advanced CMOS technology to achieve ultra–high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65 V to 5.5 V V_{CC} range. The inputs and outputs are high–impedance when V_{CC} is 0 V. Inputs tolerate voltages up to 5.5 V independent of V_{CC} operating voltage.

Features

- Ultra High-Speed: t_{PD} = 3.7 ns (Typical) into 50 pF at 5 V V_{CC}
- High Output Drive: ±24 mA at 3 V V_{CC}
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Power Down High Impedance Inputs / Outputs
- Over-Voltage Tolerance Inputs Facilitate 5 V to 3 V Translation
- Proprietary Noise / EMI Reduction Circuitry
- Ultra-Small MicroPakTM Packages
- Space-Saving US8 Surface Mount Package
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

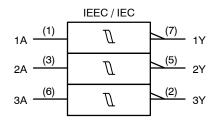


Figure 1. Logic Symbol

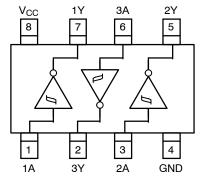


Figure 2. Connection Diagram (Top View)

MARKING DIAGRAMS

UQFN8 1.6X1.6, 0.5P CASE 523AY P6KK XYZ

US8 CASE 846AN

P6, NZ14 = Specific Device Code

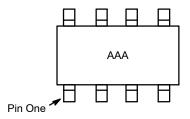
KK = 2-Digit Lot Run Traceability Code

XY = 2-Digit Date Code Format

Z = Assembly Plant Code

A = Assembly Site

L = Wafer Lot Number


YW = Assembly Start Week

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 6 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 6.

Pin Configurations

NOTES:

- AAA represents product code top mark (see ordering table).
 Orientation of top mark determines pin one location. Reading the top product code mark left to right, pin one is the lower left pin.

Figure 3. US8

1A 3Y 2A 4 GND V_{CC} 8 зА 2Y

Figure 4. MicroPak (Top Through View)

PIN DEFINITIONS

Pin # US8	Pin # MicroPak	Name	Description
1	7	1A	Input
2	6	3Y	Output
3	5	2A	Input
4	4	GND	Ground
5	3	2Y	Output
6	2	ЗА	Input
7	1	1Y	Output
8	8	V _{CC}	Supply Voltage

FUNCTION TABLE

Input	Output
Α	Y
L	Н
Н	L

H = HIGH Logic Level L = LOW Logic Level

ABSOLUTE MAXIMUM RATINGS

Symbol	Paran	Min	Max	Unit	
V _{CC}	Supply Voltage		-0.5	6.5	V
V _{IN}	DC Input Voltage		-0.5	6.5	V
V _{OUT}	DC Output Voltage		-0.5	6.5	V
I _{IK}	DC Input Diode Current	V _{IN} < 0 V	-	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < 0 V	-	-50	mA
I _{OUT}	DC Output Current	-	±50	mA	
I _{CC} / I _{GND}	DC V _{CC} or Ground Current	-	±50	mA	
T _{STG}	Storage Temperature Range	-65	+150	°C	
TJ	Junction Temperature Under Bia	s	-	+150	°C
T_L	Junction Lead Temperature (Solo	dering, 10 Seconds)	-	+260	°C
P_{D}	Power Dissipation in Still Air US8		-	500	mW
		MicroPak-8	-	539	
ESD	Human Body Model, JEDEC: JESD22-A114		-	4000	V
	Charge Device Model, JEDEC: J	ESD22-C101	-	2000	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

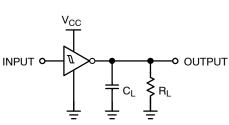
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply Voltage Operating		1.65	5.5	V
	Supply Voltage Data Retention		1.5	5.5	
V _{IN}	Input Voltage		0	5.5	V
V _{OUT}	Output Voltage		0	V _{CC}	V
T _A	Operating Temperature		-40	+85	°C
θ_{JA}	Thermal Resistance	US8	-	250	°C/W
		MicroPak-8	_	232	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

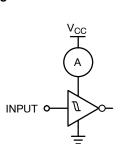
^{3.} Unused inputs must be held HIGH or LOW. They may not float.

DC ELECTICAL CHARACTERISTICS


					T _A = +25°C		T _A = -40	to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
V_P	Positive Threshold Voltage	1.65		-	1.10	1.50	_	1.50	V
		2.30		-	1.40	1.80	_	1.80	
		3.00		-	1.75	2.20	_	2.20	
		4.50		-	2.45	3.10	_	3.10	
		5.50		-	2.90	3.60	_	3.60	
V _N	Negative Threshold Voltage	1.65		0.25	0.55	-	0.25	-	V
		2.30		0.40	0.75	-	0.40	-	
		3.00		0.60	1.00	-	0.60	-	
		4.50		1.00	1.43	-	1.00	-	
		5.50		1.20	1.70	-	1.20	-	
V _H	Hysteresis Voltage	1.65		0.15	0.54	1.00	0.15	1.00	V
		2.30		0.25	0.65	1.10	0.25	1.10	
		3.00		0.40	0.77	1.20	0.40	1.20	
		4.50		0.60	1.01	1.50	0.60	1.50	1
		5.50		0.70	1.18	1.70	0.70	1.70	
V _{OH}	HIGH Level Output Voltage	1.65	$V_{IN} = V_P \text{ or } V_N$	1.55	1.65	-	1.55	-	V
		2.30	I _{OH} = -100 μA	2.20	2.30	-	2.20	-	
		3.00		2.90	3.00	-	2.90	-	
		4.50		4.40	4.50	-	4.4	-	
		1.65	I _{OH} = -4 mA	1.29	1.52	-	1.29	-	
		2.30	I _{OH} = -8 mA	1.90	2.15	-	1.90	-	
		3.00	I _{OH} = -16 mA	2.40	2.80	-	2.40	-	
		3.00	I _{OH} = -24 mA	2.30	2.68	-	2.30	-	
		4.50	I _{OH} = -32 mA	3.80	4.20	-	3.80	-	
V _{OL}	LOW Level Output Voltage	1.65	$V_{IN} = V_P \text{ or } V_N,$	-	0.00	0.10	_	0.10	V
		2.30	l _{OL} = 100 μA	-	0.00	0.10	_	0.10	
		3.00		-	0.00	0.10	-	0.10	
		4.50		-	0.00	0.10	-	0.10	
		1.65	I _{OL} = 4 mA	-	0.08	0.24	_	0.24	
		2.30	I _{OL} = 8 mA	-	0.10	0.30	_	0.30	
		3.00	I _{OL} = 16 mA	-	0.15	0.40	_	0.40	1
		3.00	I _{OL} = 24 mA	-	0.22	0.55	_	0.55	1
		4.50	I _{OL} = 32 mA	-	0.22	0.55	_	0.55	1
I _{IN}	Input Leakage Current	1.65 to 5.5	V _{IN} = 5.5 V, GND	-	-	±0.1	-	±1.0	μΑ
I _{OFF}	Power Off Leakage Current	0	V _{IN} or V _{OUT} = 5.5 V	-	-	1	_	10	μΑ
I _{CC}	Quiescent Supply Current	1.65 to 5.50	V _{IN} = 5.5 V, GND	-	_	1.0	_	10	μΑ

AC ELECTRICAL CHARACTERISTICS

				T _A = +25°C			T _A = -40	to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay	1.80 ±0.15		-	7.6	12.5	-	13.0	ns
	(Figure 5, 6)	2.50 ±0.20	$R_L = 1 M\Omega$,	-	5.0	9.0	-	9.5	
		3.30 ±0.30		=	3.7	6.3	-	6.5	
		5.00 ±0.50		=	3.1	5.2	-	5.5	
		3.30 ±0.30	$C_L = 50 \text{ pF},$ $R_L = 500 \Omega,$	_	4.4	7.2	-	7.5	
		5.00 ±0.50	nL = 500 \$2,	-	3.7	5.9	-	6.2	
C _{IN}	Input Capacitance	0.00		-	2.5	-	-	-	pF
C _{PD}	C _{PD} Power Dissipation Capacitance (Note 4) (Figure 7)	3.30		=	9	-	_	-	pF
		5.00		_	11	-	-	-	


^{4.} C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. C_{PD} is related to I_{CCD} dynamic operating current by the expression:
I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC}static).

NOTE:

 C_L includes load and stray capacitance; Input PRR = 1.0 MHz, t_W = 500 ns.

Figure 5. AC Test Circuit

NOTE:

6. Input = AC Waveform; t_r = t_f = 1.8 ns; PRR = 10 MHz; Duty Cycle = 50%.

Figure 7. I_{CCD} Test Circuit

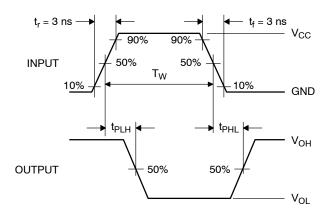


Figure 6. AC Waveforms

ORDERING INFORMATION

Part Number	Top Mark	Package	Shipping [†]
NC7NZ14K8X	NZ14	8-Lead US8, JEDEC MO-187, Variation CA 3.1 mm Wide	3000 / Tape & Reel
NC7NZ14L8X	P6	8-Lead MicroPak, 1.6 mm Wide	5000 / Tape & Reel

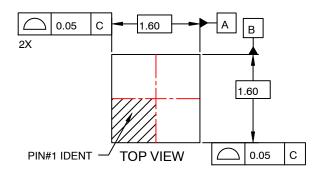
DISCONTINUED (Note 7)

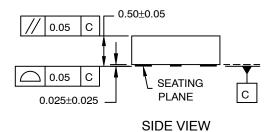
NC7NZ14L8X-L22185	P6	8-Lead MicroPak, 1.6 mm Wide	5000 / Tape & Reel

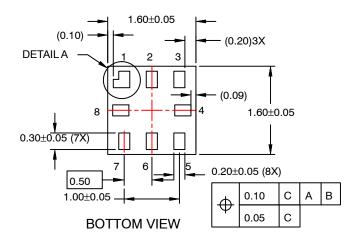
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

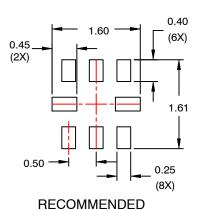
7. **DISCONTINUED:** This device is not recommended for new design. Please contact your **onsemi** representative for information. The most

MicroPak is trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

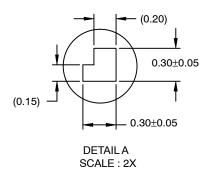



current information on this device may be available on www.onsemi.com.




UQFN8 1.6X1.6, 0.5P CASE 523AY ISSUE O

DATE 31 AUG 2016

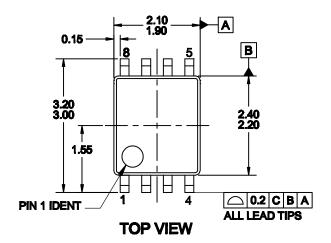


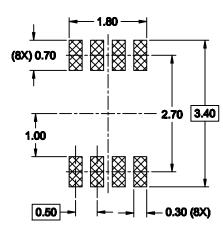
NOTES:

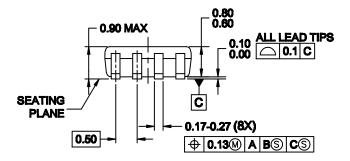
- A. PACKAGE CONFORMS TO JEDEC MO-255 VARIATION UAAD.
- B. DIMENSIONS ARE IN MILLIMETERS.

LAND PATTERN

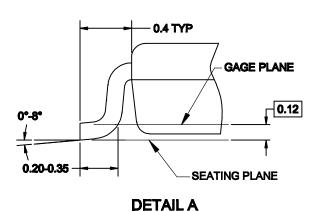
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

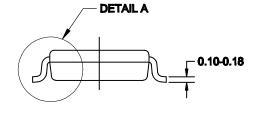

DOCUMENT NUMBER:	98AON13591G	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	UQFN8 1.6X1.6, 0.5P		PAGE 1 OF 1		


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


US8 CASE 846AN ISSUE O

DATE 31 DEC 2016


RECOMMENDED LAND PATTERN



NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-187
- **B. DIMENSIONS ARE IN MILLIMETERS.**
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1994.

SIDE VIEW

DOCUMENT NUMBER:	98AON13778G	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	US8		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales