

Dual Port USB Type-C & PD Controller

FUSB15201

The FUSB15201 is a highly integrated dual port USB Type–C and Power Delivery Controller optimized for automotive and industrial power sourcing applications. The FUSB15201 enables a complete solution for USB power sources through optimized hardware peripherals and complete open–source embedded firmware all in a compact solution. Maximizing total system power budgets is enabled through both hardware and firmware of the FUSB15201.

onsemi offers a complete open–source embedded firmware solution that draws inputs from various hardware peripherals and system level USB–PD identifiers to provide the most optimal power sharing across ports while staying within the total power budget.

System designers can easily tailor this algorithm to meet the specific needs of their end application through an easy to use API for the embedded firmware. The FUSB15201 also provides a completely USB PD3.1 compliant solution with interoperability with leading mobile and computing devices in the market.

Key Features

- Small Footprint Dual-port USB PD Controller Supporting the most Popular Peripherals
 - USB PD 3.1 & USB Type-C 2.1
 - I²C Master/Slave
 - ◆ Dual USB BC1.2 Provider Emulation
- Fully Programmable and Upgradable Open-source Firmware providing API for Customer Specific Device Policy Manager Development
- High Voltage Protection on CC and D+/- Pins
- Supports Firmware Upgrades via USB-C
- 10-bit ADC for Accurate Monitoring of VBUS, External Temperature and Voltages
- External Temperature Monitoring via NTC Resistors
- 24-Pin QFNW Package (4 mm x 4 mm, 0.5 mm Pitch)
- Grade 2 AEC-Q100 Qualified
- These are Pb-free Devices

Typical Applications

- Automotive
- Power Outlets
- Wall Chargers

MARKING DIAGRAM

FUSB 15201V ALYW FUSB15 201DV ALYW

FUSB15201V = Specific Device Code

= Assembly Location

L = Wafer Lot Y = Year W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
FUSB15201VMNWTWG	QFNW24	4,000 / Tape & Reel
FUSB15201DVMNWTWG	QFNW24	4,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Features

- Arm Cortex-M0+: A 32-bit core with flexible clocking up to 24 MHz
- **Memories**: A total of 132 kB of flash is available to store program code. 6 kB of SRAM program memory.
- USB Type-C and PD: Integrated USB PD PHY and Type-C termination/comparators supporting latest USB-IF specification.
- Integrated VCONN Switch: Provides the full 1.5 W power to interrogate cable eMarkers and power active cables.
- **BC1.2 Support**: Fully programmable USB BC1.2 interface is capable of presenting as CDP, DCP or SDP.
- High Voltage Protection: Robust USB-C connector interface with 28 V DC tolerant VBUS and CC. 20 V DC D+/- for FUSB15201 and 28 V DC D+/- for FUSB15201D
- **ADC**: Multi-channel 10-bit ADC for accurate monitoring of VBUS, external temperature and voltages.
- I²C: Serial communication port capable of acting as a host or device allowing control of external system peripherals by FUSB15201.

- GPIOs: Fully programmable I/Os with internal terminations. Configurable as input or output (CMOS or open-drain).
- Programmable VBUS discharge: Internal programmable resistors capable of discharging up to 100 μF
- Multiple Timers: Four independent 32-bit timers are available: 2 General Purpose, 1 Watchdog, and 1 Wake-up / General Purpose
- External NTC: Integrated current sources are used in conjunction with the ADC to monitor a variety of NTC resistors.
- Low Power Operation Modes: Programmable sleep modes allowing device to minimize power usage as needed. Automatic USB-C detection and wake-up functionality from sleep modes.
- Automotive Ready: Grade 2 temperature range performance and AECQ-100 Qualified. QFN package with 0.5 mm pitch and wettable flank.

FUSB15201 INTERNAL BLOCK DIAGRAM

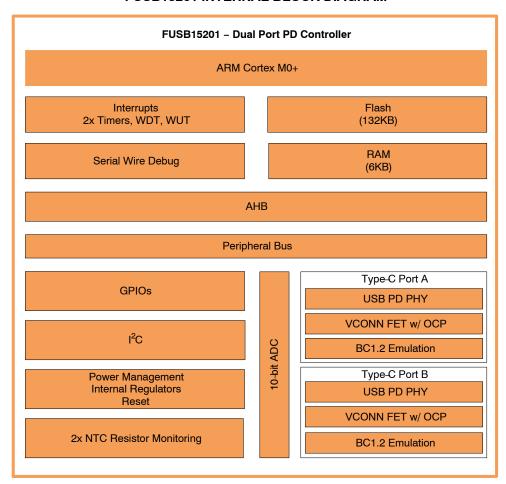


Figure 1. FUSB15201 Block Diagram

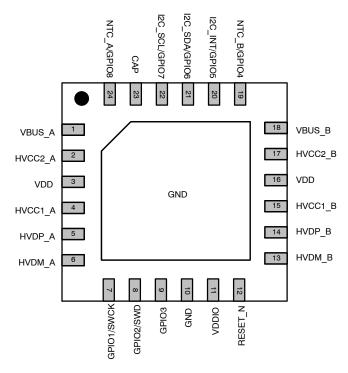


Figure 2. Pin Diagram

Table 1. FUNCTION DESCRIPTION

Pin#	Name	Port	Description	
1	VBUS_A	Analog	Port A VBUS. Monitoring Discharge (28 V)	
2	HVCC2_A	Analog	Port A High Voltage Configuration Channel 2 (28 V)	
3	VDD	Power	Power Supply	
4	HVCC1_A	Analog	Port A High Voltage Configuration Channel 1 (28 V)	
5	HVDP_A	Analog	Port A High Voltage USB 2.0 D+ (FUSB15201: 20 V; FUSB15201D: 28 V)	
6	HVDM_A	Analog	Port A High Voltage USB 2.0 D- (FUSB15201: 20 V; FUSB15201D: 28 V)	
7	GPIO1/SWCK	PA1	General Purpose I/O/ Serial Wire Debug Port Clock	
8	GPIO2/SWD	PA2	General Purpose I/O/ Serial Wire Debug Port Data	
9	GPIO3	PA3	General Purpose I/O	
10	GND	Ground	Ground	
11	VDDIO	Power	I/O Power Supply	
12	RESET_N	Input	Reset	
13	HVDM_B	Analog	Port B High Voltage USB 2.0 D- (FUSB15201: 20 V; FUSB15201D: 28 V)	
14	HVDP_B	Analog	Port B Hight Voltage USB 2.0 D+ (FUSB15201: 20 V; FUSB15201D: 28 V)	
15	HVCC1_B	Analog	Port B High Voltage Configuration Channel 1 (28 V)	
16	VDD	Power	Power Supply	
17	HVCC2_B	Analog	Port B High Voltage Configuration Channel 2 (28 V)	
18	VBUS_B	Analog	Port B VBUS. Monitoring Discharge (28 V)	
19	NTC_B/GPIO4	PA4	Port B External NTC sense Pin / General Purpose I/O	
20	I2C_INT1/GPIO5	PA5	I ² C Port Interrupt / General Purpose I/O	
21	I2C_SDA1/GPIO6	PA6	I ² C Port Data / General Purpose I/O	
22	I2C_SCL1/GPIO7	PA7	I ² C Port Clock / General Purpose I/O	
23	CAP	Analog	1.5V capacitor	
24	NTC_A/GPIO8	PA8	Port A External NTC sense Pin / General Purpose I/O	
DAP	GND	Ground	Ground	

APPLICATIONS DIAGRAM

The figure below shows a typical dual port automotive source application. The FUSB15201 communicates to the DC-DC controllers via integrated I²C host peripheral.

External NTC resistors monitor temperature at each port and is used for over-temperature protection or to dynamically change power capabilities.

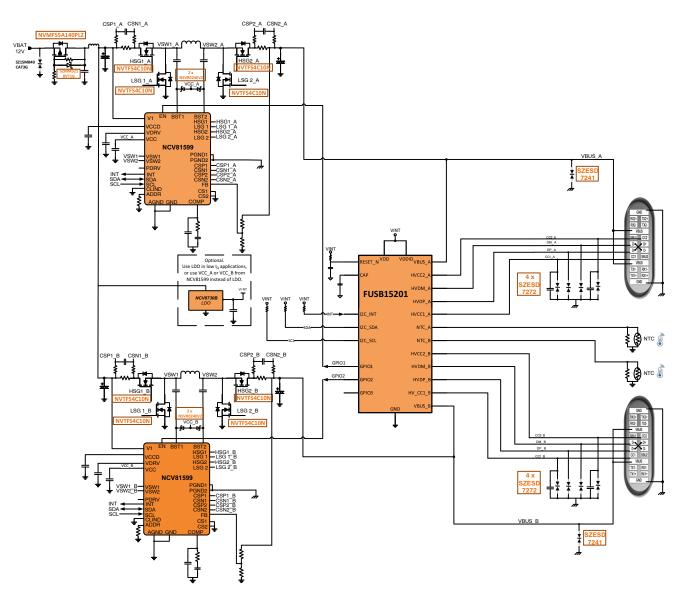


Figure 3. Automotive Application Schematic

ELECTRICAL SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS (Notes 1, 2, 3)

Symbol	Parameter	Minimum	Maximum	Unit
VBUS	VBUS Pin Voltage	-0.3	28	V
V _{CONNECTOR}	HVCC1, HVCC2 Connector Pins	-0.3	28	V
V _{USB}	HVDP, HVDM Connector Pins (FUSB15201)	-0.3	20	V
	HVDP, HVDM Connector Pins (FUSB15201D)	-0.3	28	V
VIO	I/O Voltage	-0.5	6.0	V
VDD	Supply Voltage	-0.5	6.0	V
VDDIO	VDDIO Supply	-0.3	6.0	V
VCAP	CAP Pin	-0.5	2.0	V
T_J	Junction Temperature	-40	150	°C
T _{STG}	Storage Temperature	-40	150	°C
TL	Lead Temperature (Soldering, 10 Seconds)		260	°C
ESD _{HBM}	Human Body Model, ANSI/ESDA/JEDEC JS - 001 - 2012 (Note 3)	2		kV
ESD _{CDM}	Charged Device Model, JESD22 - C101 (Note 3)	750		V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. All voltage values, except differential voltages, are given with respect to the GND Pin.
- 2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.
- 3. Meets JEDEC standards JS-001-2012 and JESD 22-C101.

Table 3. RECOMMENDED ESD DEVICES

Function	Manufacturer	Part Number	
Type-C Connector Pins ESD	onsemi	TBD	

Table 4. THERMAL RATINGS (Note 4)

Symbol	Parameter	Min	Тур	Max	Unit
$\theta_{\sf JA}$	θ _{JA} Junction-to-Ambient Thermal Resistance		57		°C/W

^{4.} $T_A = 25$ °C unless otherwise specified with JEDEC 2S2P board with no thermal vias.

Table 5. OPERATING RATINGS

Symbol	Parameter	Min	Тур	Max	Unit
V_{DD}	Supply Voltage Range	3.0	3.3	5.5	V
V_{BUS}	V _{BUS} Voltage	3.1		22.05	V
V_{DDIO}	I/O Supply Voltage	1.7		5.5	V
V _{HVCCx}	Communication Channel Pins	0		5.5	V
V _{HVUSB}	HVDM, HVDP Pins	0		3.6	V
V _{IO}	GPIO, I ² C, RESET	0		5.5	V
T _A	Operating Ambient Temperature	-40		+105	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 6. ELECTRICAL CHARACTERISTICS Minimum and maximum values are at V_{DD} = 2.8 V to 5.5 V, T_A = -40°C to +105°C unless otherwise noted. Typical values are at T_A = 25°C, V_{DD} = 3.3 V

TYPE-C AND P	D SECTION					
USB PD PHY						
TRANSMITTER						
Symbol	Parameter	Conditions	Min	Тур	Max	Units
UI	Unit Interval		3.03	3.33	3.7	μs
pBitRate	Maximum difference between the bit-rate during the payload and last 32 bits of preamble				0.25	%
tEndDriveBMC	Time to cease driving the line after the end of the last bit of the Frame				23	μs
tHoldLowBMC	Time to cease driving the line after the final high-to-low transition		1			μs
tInterFrameGap	Any PD transmission cannot be sent out before a dead time of at least tInterFrameGap from receiving or sending a packet		25			μѕ
tFall	Fall Time		300			ns
tRise	Rise Time		300			ns
tStartDrive	Time before the start of the first bit of the preamble when the transmitter shall start driving the line		-1		1	μs
vSwing	BMC voltage swing		1.05	1.125	1.2	V
zDriver	TX output impedance at 750 kHz with an external 220 pF or equivalent load		33		75	Ω
RECEIVER						
cReceiver	Receiver capacitance when driver isn't turned on	Vrms=0.371; Vdc=0.5 V; Freq.=1 MHz		75		pF
tRxFilter	Rx bandwidth limiting filter		100			ns
tTransitionWindow	Time window for detecting non-idle		12		20	μs
vFRSwapCableTx	The Fast Role Swap Request has to be below this voltage threshold to be detected.		490	520	550	mV
zBmcRx	Receiver Input Impedance (cannot be tested but can be simulated and guaranteed by design)		1			MΩ
TYPE-C FRONT	T END					
R _{VBUS-LEAK}	VBUS Leakage Impedance to ground when VBUS is not sourced		72.4			kΩ
I _{80_CCX}	SRC 80 μA CC current (Default)		64	80	96	μА
I _{180_CCX}	SRC 180 μA CC current (1.5 A)		166	180	194	μА
I _{330_CCX}	SRC 330 µA CC current (3 A)		304	330	356	μА
R _{DEVICE}	Device pull-down resistance		4.6	5.1	5.6	kΩ
R _A	Powered Cable Termination		800		1200	Ω
zOPEN	CC resistance for disabled state, when Vdd is valid		126			kΩ
R _{SW_CCx}	Rdson for VDD to CC1 or VDD to CC2	I _{SW_CCX} = 0 to 600 mA, VCONN_OCP > 80 mA		0.85	1.8	Ω

Table 6. ELECTRICAL CHARACTERISTICS (continued) Minimum and maximum values are at $V_{DD}=2.8~V$ to 5.5 V, $T_{A}=-40^{\circ}C$ to +105°C unless otherwise noted. Typical values are at $T_{A}=25^{\circ}C$, $V_{DD}=3.3~V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
TYPE-C FRON	T END	'		<u> </u>		•
R _{SW_CCx_LOW_O}	Low OCP setting Rdson for VDD to CC1 or VDD to CC2	$I_{SW_CCx} = 0$ to 80 mA, VCONN_OCP \leq 80 mA		2.7	5	Ω
I _{SW_CCx}	Over Current Protection (OCP) limit at which VCONN switch shuts off over the entire VCONN voltage range	VCONN_OCP = 800 mA	600	800	1000	mA
V_{CCx_OVP}	CC1/2 Over–Voltage Protection		5.6		6.0	V
vRdSRCUSB	Source attach threshold for CC Pin at default current		1.5	1.6	1.65	V
vRdSRC1.5	Source attach threshold for CC Pin at 1.5 A current		1.5	1.6	1.65	٧
vRdSRC3.0	Source attach threshold for CC Pin at 3 A current		2.45	2.6	2.75	٧
vRaSRCUSB	Source Ra threshold for CC Pin at default current		0.15	0.2	0.25	V
vRaSRC1.5	Source Ra threshold for CC Pin at 1.5 A current		0.35	0.4	0.45	V
vRaSRC3.0	Source Ra threshold for CC Pin at 3 A current		0.75	0.8	0.85	V
vRdSNKUSB	Attach threshold for CC Pin SNK (default current)		0.61	0.66	0.7	٧
vRdSNK1.5	Attach threshold for CC Pin SNK (1.5 A current)		1.16	1.23	1.31	٧
vRdSNK3.0	Attach threshold for CC Pin SNK (3 A current)		2.04	2.11	2.18	٧
vRaSNK	Attach threshold for CC Pin SRC or SNK		0.15	0.2	0.25	٧
VSafe0V	Safe Operating Voltage at 0 V		0.6		0.8	V
VBUS DISCHA	RGE					•
R _{VBUS} DISCH 0	Pull-down Resistance applied to	VBUS = 0.8 V to 21.5 V	315	450	585	Ω
R _{VBUS DISCH 1}	VBUS when selected	VBUS = 0.8 V to 21.5 V	420	600	780	
R _{VBUS DISCH 2}		VBUS = 0.8 V to 21.5 V	525	750	975	
R _{VBUS} DISCH 3		VBUS = 0.8 V to 21.5 V	700	1000	1300	
R _{VBUS} DISCH 4	1	VBUS = 0.8 V to 21.5 V	1400	2000	2600	
R _{VBUS DISCH 5}	1	VBUS = 0.8 V to 21.5 V	4.20	6.00	7.80	kΩ
CURRENT CON	ISUMPTION	l l				
I _{SLEEP} -UNATTACH ED	Current consumption when in deep sleep	VDD = VDDIO = 3.0 to 5.5 V VBUS = 0 V; Not Type-C attached, DRP Toggling; LSOSC enabled; BC1.2 disabled			75	μА
I _{SLEEP}	Sleep Current	VDD = VDDIO = 3.0 to 5.5 V VBUS = 0 V; No I ² C traffic, LSOSC running; PD Peripheral and ADC enabled. No PD traffic.		700		μА

Table 6. ELECTRICAL CHARACTERISTICS (continued) Minimum and maximum values are at $V_{DD} = 2.8 \text{ V}$ to 5.5 V, $T_{A} = -40^{\circ}\text{C}$ to +105°C unless otherwise noted. Typical values are at $T_{A} = 25^{\circ}\text{C}$, $V_{DD} = 3.3 \text{ V}$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CURRENT CO	NSUMPTION					
I _{PD-ACTIVE}	Port with PD traffic	Active and communicating via USB PD transmitting and receiving packets on both ports		4.0		mA
PMU						
$V_{VDD\ POR}$	POR Trip point	VDD Rising	1.0		2.4	V
V _{VDD_} GOOD	Minimum VDD level for enabling device	VDD Rising	3.0			
V _{VDDIO_GOOD}	VDDIO Detection Threshold used in asserting PMU_STS when VDDIO is above it.	VDDIO Rising			1.0	V
V _{VDD BRWN}	VDD Brown Out Threshold	VDD Falling	2.6		3.0	V
CLOCKS						
F _{LS_CLK}	Low Speed Clock for Idle, Type-C Attach		114	120	126	kHz
F _{HS_CLK}	Internal clock for Active Core and full function		22.8	24	25.2	MH
INTERNAL TEI	MPERATURE PROTECTION					
T _{SHUT}	Temperature for internal temperature protection	VDD= 3.0 V to 5.5 V		145		°C
T _{HYS}	Temp hysteresis for internal temperature protection	VDD= 3.0 V to 5.5 V		10		°C
EXTERNAL TE	MPERATURE MEASUREMENT	·				
I _{NTCA}	Current Source on NTCA		55	60	65	μА
I _{NTCB}	Current Source on NTCB		55	60	65	μΑ
BC1.2 DETECT	TION					
R _{DCP}	DCP Emulation Resistance	VD+/D- = 0 V, 1.0 V, ION = 2 mA		80	180	Ω
R _{Dx_DWN}	DP/DM pull down resistance	VD+/- = 0 V - 3.6 V	16	19.5	23	kΩ
I _{DP_SRC}	DCD Source Current	VDD = 3.0 V to 5.5 V	7	10	13	μΑ
I _{Dx_SNK}	Sink Current to Dx	VDD = 3.0 V to 5.5 V	25	75	175	μΑ
V_{DIV}	Divider Mode Output Voltage	VDD = 3.0 V to 5.5 V	2.65	2.75	2.85	V
R _{DIVP}	Divider Mode resistance on DP	5μA pulled out of DP	24	30	36	kΩ
R_{DIVM}	Divider Mode resistance on DM	5μA pulled out of DM	24	30	36	kΩ
R _{DAT_LKG}	Resistor weak pull-down on D+ and D-	V(sw) = 0 V to 3.6 V	300	700	1100	kΩ
V _{Dx_SRC}	Source Voltage	VDD = 3.0 V to 5.5 V	0.5	0.6	0.7	V
V _{Dx OVP}	D+/D- Over-Voltage Protection		4.4	4.55	4.7	V
R _{PU MOS}	Pull-Up Moisture Detection Resistor		288	320	352	kΩ
V _{SRC MOS}	Voltage Source for Moisture Detection		0.9	1.0	1.1	V
SERIAL WIRE	DEBUG INTERFACE			•		•
F _{SWDCLK}	Serial Wire Debug Input Clock Frequency	Core frequency = 24 MHz			10	МН

Table 6. ELECTRICAL CHARACTERISTICS (continued) Minimum and maximum values are at $V_{DD} = 2.8 \text{ V}$ to 5.5 V, $T_{A} = -40^{\circ}\text{C}$ to +105°C unless otherwise noted. Typical values are at $T_{A} = 25^{\circ}\text{C}$, $V_{DD} = 3.3 \text{ V}$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
SERIAL WIRE	DEBUG INTERFACE					
T _{SWDI_SET}	Serial Wire Debug Data Setup timing		0.25*(1/SWCLK)			ns
T _{SWDI_HOLD}	Serial Wire Debug Data Hold Timing		0.25*(1/SWCLK)			ns
V _{IH-SWD}	Serial Wire Debug	VDDIO = 1.7 V to 5.5 V	0.7 x VDDIO			V
V_{IL-SWD}	Input voltage threshold	VDDIO = 1.7 V to 5.5 V			0.3 x VDDIO	
V _{HYS-SWD}	Serial Wire Debug Input Voltage Hysteresis	VDDIO = 1.7 V to 5.5 V		300		mV
I _{LKG-SWD}	Serial Wire Debug Input Leakage	VDDIO = 1.7 V to 5.5 V, Input Voltage 0 V to 5.5 V	-10		+10	μΑ
V_{OH-SWD}	Serial Wire Debug Output Voltage High	VDDIO = 1.7 V to 5.5 V, lout = -2 mA	VDDIO-0.5 V			٧
V_{OL-SWD}	Serial Wire Debug Output Voltage Low	VDDIO = 1.7 V to 5.5 V, lout = +4 mA			0.4 V	٧
RESET						
RESET_N_VIL1	Low level input voltage	VDD = 2.8 V to 5.5 V			0.3 x VDD	V
RESET_N_VIH1	High Level Input Voltage	VDD = 2.8 V to 5.5 V	0.7 x VDD			V
RESET_N_RPU	Internal Pull-Up Resistor to VDD			100		kΩ
RESET_N_ILKG	Input Leakage		-120			μΑ
GPIO						
VI _{H-GPIO}	High Level Input Voltage	VDDIO = 1.7 V to 5.5 V	0.7 x VDDIO			V
V _{IL-GPIO}	Low level input voltage	VDDIO = 1.7 V to 5.5 V			0.3 x VDDIO	٧
V _{OH-GPIO}	Output High Voltage	VDDIO = 1.7 V to 5.5 V, lout = -2 mA	VDDIO-0.5			V
V _{OL-GPIO}	Output Low Voltage	VDDIO = 1.7 V to 5.5 V, lout = +4 mA			0.4	V
V _{OH-NTC}	Output High Voltage for PA4 and PA8	VDD = 2.8 V to 5.5 V, lout = -2 mA	VDD – 0.5			V
V _{OL-NTC}	Output Low Voltage for PA4 and PA8	VDD = 2.8 V to 5.5 V, lout = +4 mA			0.4	V
V _{HYS-GPIO}	Input Hysteresis	VDDIO = 1.7 V to 5.5 V, 3.6 V Typ		300		mV
I _{IN-GPIO}	Input Leakage	VDDIO = 1.7 V to 5.5 V, Input Voltage 0 V to 5.5 V	-5		5	μΑ
I _{OFF-GPIO}	Off Input Leakage	VDDIO = 0 V, VDD = 0 V to 5.5 V Input Voltage 0 V to 5.5 V	-5		5	μΑ
R _{PD-GPIO}	Pull-Down resistance	PORT_PDx = 1		100		kΩ
R _{PU-GPIO}	Pull-up resistance	PORT_PUx = 1		100		kΩ
C _{GPIO}	Pin Capacitance			5		pF
I ² C I/O			•			
I _{CCTI2C}	VDD current when SDA or SCL is HIGH	VDD = 2.8 V to 5.5, VIN = 1.8 V	-10		10	μА
I _{I2C}	Input Current of SDA and SCL Pins	VDD = 2.8 V to 5.5, VI = 0 to 5.5 V	-10		10	μА
V _{IH-I2C}	High-Level Input Voltage	VDD = 2.8 V to 5.5 V	1.2			V

Table 6. ELECTRICAL CHARACTERISTICS (continued) Minimum and maximum values are at $V_{DD}=2.8~V$ to 5.5 V, $T_{A}=-40^{\circ}C$ to +105°C unless otherwise noted. Typical values are at $T_{A}=25^{\circ}C$, $V_{DD}=3.3~V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I ² C I/O						
V _{IL-I2C}	Low-Level Input Voltage	VDD = 2.8 V to 5.5 V			0.4	V
V _{OL1-I2C}	Low-Level Output Voltage at 3mA Sink Current (Open-Drain)	VDD = 2.8 V to 5.5 V	0		0.3	V
V _{OL2-I2C}	Low-Level Output Voltage at 2mA Sink Current (Open-Drain)	VDD = 2.8 V to 5.5 V	0		0.3	٧
V _{HYS-I2C}	Hysteresis of Schmitt Trigger Inputs	VDD = 2.8 V to 5.5 V	0.1	0.2		V
I _{OLSDA}	Low-Level Output Current (Open-Drain)	VDD = 2.8 V to 5.5 V, V_OL = 0.4 V (Note 5)	20			mA
V _{OL_INT}	INT_N Output Low Voltage	VDD = 2.8 V to 5.5 V, I_OL = 4 mA			0.4	V
C _{I-I2C}	Capacitance for Each I/O Pin	VDD = 2.8 V to 5.5 V		5		pF
t _{SP}	Pulse Width of Spikes that Must Be Suppressed by the Input Filter		0		50	ns
V _{IH_INT}	High-Level Input Voltage	VDD = 2.8 V to 5.5 V	1.2			V
V _{IL_INT}	Low-Level Input Voltage	VDD = 2.8 V to 5.5 V			0.4	V
FLASH						
NEND	Sector Endurance		20,000			Erase/ write cycles
T _{DR}	Data Retention	T = 25°C	100			years
		T = 105°C	20			years
		T = 125°C	10			years

^{5. (20} mA guaranteed over -40° C to 85° C)

Arm Cortex-M0+ Processor

The FUSB15201 integrates an Arm Cortex-M0+ processor with Nested Vector Interrupt Controller (NVIC), Wake-up Interrupt Controller (WIC), and Debug Access Port (DAP). The processor uses the Thumb instruction set and is optimized for high performance with reduced code size and low power operation. The Arm Cortex-M0+ efficiently handles multiple parallel peripherals and has integrated sleep modes. Test and debug capability is enhanced with the Arm Serial Wire Debug Port.

The Arm implementation in the FUSB15201 includes a 132 kB Flash RAM and 6 kB of SRAM.

The MCU, Memory and DAP are interconnected using the AMBA (Advanced Microcontroller Bus Architecture) AHB-Lite interface and peripherals are connected to the AHB via APB interface (Advanced Peripheral Bus).

In addition to the base Arm Cortex-M0+ processor interrupts, the FUSB15201 implements multiple external

source interrupts for peripheral devices. A powerful nested, pre-emptive and priority based interrupt handling system assures timely and flexible response to external events.

Low power features on FUSB15201 include the WIC, adjustable clock rates, and different software controlled power modes to maximize opportunities to save power in the final application.

Power Management Unit

The Power Management Unit (PMU) provides appropriate power to all the blocks in the FUSB15201.

The FUSB15201 power management unit prevents system brown-outs in case VDD voltage dips below the specified minimum voltage required for reliable operation. Firmware monitors the power supply and safely shuts down the system as needed.

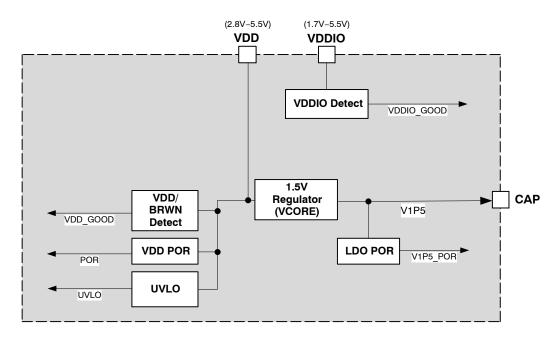


Figure 4. FUSB15201 PMU

Reset Sources

The FUSB15201 has various sources of reset including:

- Internal Power-On Reset (VDD_POR) The VDD_POR reset asserts when the regulated supply is below threshold levels for proper operation. The VDD_POR resets the entire chip including core, debug port, peripherals, wakeup timer, and watchdog.
- Software Issued Reset The software reset can be called by writing to a given register in the Cortex address space. It is typically called on exit from a processor exception. Software reset resets the entire chip including core, peripherals, wakeup timer, and watchdog.
- Watchdog Timer Reset The watchdog timer reset is caused by the watchdog timeout and is used to prevent errant software from locking up the device. The watchdog reset resets the entire chip including core, debug port, peripherals, and watchdog. The watchdog timer is disabled upon power up and must be enabled by software. The watchdog is not paused when the debugger halts the processor.
- External Pin Reset The external reset is under user control with the external RESET_N Pin. External pin reset resets the entire chip including core, debug port, peripherals, wakeup timer, and watchdog.

Power and Sleep Behavior

The FUSB15201 has been optimized to conserve power by utilizing peripheral interrupts and hardware autonomy. The device can be configured via firmware to enter low power states, disable unneeded peripherals and scale clock frequencies based on different application needs.

The Type-C block is designed to function at the lowest power states and will automatically wake when a Type-C attach is detected. This minimizes total power consumption when no device is attached.

Clock Sources

FUSB15201's implements a dual oscillator architecture to minimize power consumption.

- A 24 MHz internal RC oscillator to enable full functionality.
- A 120 kHz internal RC oscillator that can be used for very low power sleep modes.

TIMERS

32-bit General Purpose Timers (TIM0/1)

There are two 32-bit down-counters that generate interrupts and status when the counter reaches 0. The timing resolution depends on the programmable clock source and pre-scale ratios.

32-bit Wake-up Timer (WUT)

The main purpose of the wakeup timer is to facilitate scheduled exit from low power modes. It can also be used for general purpose event timing.

32-bit Watchdog Timer (WDT)

The watchdog timer applies a reset to the system in the event of a software failure, providing a way to recover from software crashes. The watchdog timer is disabled by default and must be enabled through software.

The watchdog is protected with a lock mechanism to prevent rogue software from disabling the watchdog functionality. A special value has to be written to the lock register to access watchdog control. The watchdog timer is clocked from the same oscillator as the core, which can be LS_CLK or HS_CLK.

Serial Wire Debug Interface (SWD)

The Arm M0+ implementation includes a Debug Access Port (DAP). The debug mode implementation includes 4 hardware breakpoints and 2 hardware watch points.

The Debug Access Port interface implementation is the Arm Serial Wire Debug Port (SW-DAP) connected to Pins SWCLK and SWDIO. The Serial Wire Debug Port Interface uses a single bi-directional data connection. Each operation consists of three phases: Packet request, Acknowledge response, and Data transfer phase. Use any Serial Wire Debug (SWD) compliant hardware debugger interface to interact with the internals of the FUSB15201.

USB Type-C & PD Peripheral Overview

The USB Type-C and PD peripheral is a fully compliant USB Type-C and PD solution.

This peripheral consists of an analog front end and a digital state machine. Firmware implements the higher level protocol and policy layers whereas the analog and digital components can perform lower level PD protocol and PHY layer functions.

The Type-C block includes all terminations and comparators required for Source/Sink/DRP operation: plug orientation detection, power capability advertisement and power role detection. If no VDD is applied, the CC Pins are high impedance.

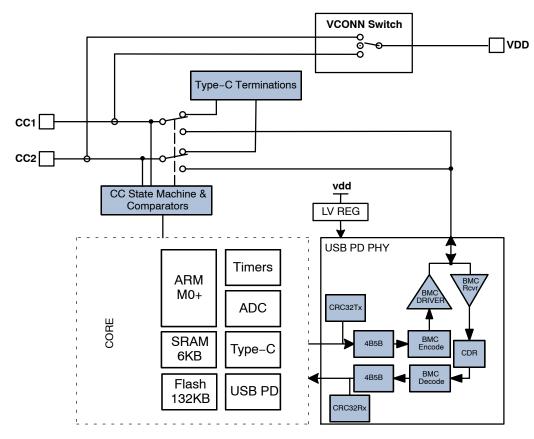


Figure 5. USB Type-C and PD

VCONN Switch

Some applications require that a VCONN voltage be sourced in order to provide additional capabilities, such as greater than 3 A VBUS sourcing or support for full-featured Type-C cables.

The FUSB15201 can provide 1.5 W or more depending on VDD level.

USB PD PHY State Machine Logic

The FUSB15201 PD module includes the following digital functions to enable USB PD messaging:

- Serialization and de-serialization
- Clock and data recovery (CDR)
- 4B5B coding
- BMC coding
- Packet CRC generation and checking
- Coding and detection of Power Delivery K-Codes
- Automatic GoodCRC packet response

VBUS Discharge

The FUSB15201 is able to discharge VBUS via selectable pull-down resistors.

Typical source applications will rely on the DC-DC converter to transition between VBUS voltages.

If the application requires the FUSB15201 to discharge VBUS, the firmware may select the proper resistance of the discharge. Selection of discharge resistance needs to take into account any capacitive load on VBUS as not to violate VsrcSlewNeg in the USB PD spec (30 mV/μs).

Source applications, where the FUSB15201 internal discharge is utilized, will have to isolate any large bulk capacitances in order to prevent extreme internal temperature rises. Typical isolated source capacitances are around 4.7 μF_{\cdot}

The FUSB15201 is capable of discharging up to $100 \mu F$ from VBUS in the entire operating range.

INTERNAL PROTECTION

The FUSB15201 integrates multiple system level protections to enable robust designs.

VCONN Over-Current Protection

Each port's VCONN Switch provides over-current detection and protection for the switch that is enabled based on the Type-C orientation and can be software configured based on application needs. The level of OCP can be controlled via a register setting.

In case of an over-current event the switch will be opened.

CC, DP, DM Over-Voltage Protection

Over-voltage protection on connector Pins protects the internal circuitry damage from high voltages.

Interrupts can be used to inform the software that an OVP

Internal Over Temperature Protection

event has occurred and take appropriate actions.

Internal over temperature protection is always on. Two potential sources of elevated internal temperature are:

- High Current through VCONN Switch
- High current through VBUS discharge

In either case, if the over temperature is triggered (T > Tshut), both ports' VCONN switches and VBUS discharge circuitry will be disabled.

Connector Moisture Detection

If moisture or pollutants are present in the connector and the device provides VBUS, there could be a resistive short between VBUS and other connector Pins.

The FUSB15201 provides a method to detect if there is moisture or other pollutants in the connector.

Moisture detection can be turned on or off as not to conflict with cable attach detection.

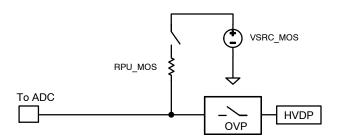


Figure 6. Moisture Detection

Port Control and GPIOs

The FUSB15201 includes a number of Pins that can be configured to be used as standard GPIO or for use with a dedicated peripheral such as I²C. A subset of these Pins can also be connected as an input to the ADC. Internal pull–up/down resistors are programmable. Pull–up resistors are always connected to VDDIO.

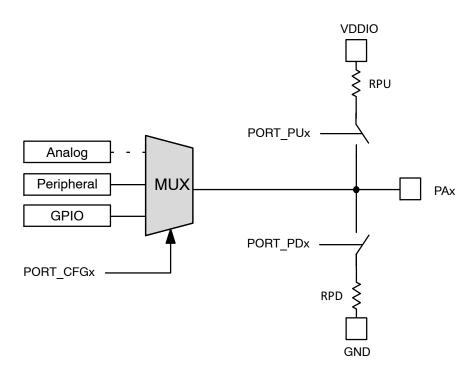


Figure 7. Typical Port Configuration

When the PORT is configured as GPIOs it will have the following capabilities:

- Bi-directional capability
- Push pull or open drain configuration
- Individually configurable interrupt lines
- Rising or Falling edge interrupt
- High or Low level interrupt

The port mapping and power domain is shown in the table below:

Table 7. PIN – PORT CONFIGURATION AND POWER DOMAIN

Pin #	Name	Port	Power Domain
7	GPIO1	PA1	VDDIO
	SWCK		VDDIO
8	GPIO2	PA2	VDDIO
	SWD		VDDIO
9	GPIO3	PA2	VDDIO
19	GPIO4	PA4	VDD
	NTC_B		VDD
20	I2C_INT	PA5	VDD
	GPIO5		VDDIO
21	I2C_SDA	PA6	VDD
	GPIO6		VDDIO
22	I2C_SCL	PA7	VDD
	GPI07		VDDIO
24	GPIO8	PA8	VDD
	NTC_A		VDD

External Temperature Measurements

There are two Pins that can be configured to monitor external NTC resistors that can be located near where high temperature devices are located. A parallel resistor is recommended for measurement linearity.

These NTC measurements are useful for reporting Source temperatures to a Sink device via FUSB15201 provided PD Status messages. Other uses include protection due to excessive thermals and dynamic power capabilities reduction.

Firmware implementation of the external temperature measurements make NTC selection flexible.

The pull-up current sources INTCA and INTCB provide a bias to the external NTC resistor networks. If desired, this current source may be turned-off.

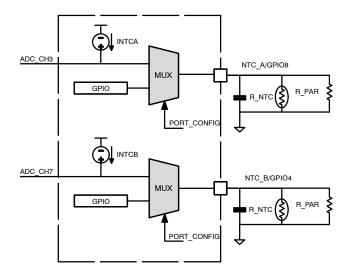


Figure 8. External NTC Diagram

BC1.2 Support

The FUSB15201 is capable of emulating and detecting BC1.2 and Divider Mode.

The following modes are supported:

- SDP
- CDP
- DCP
- 2.4 A Divider Mode (Provider only)

The analog circuitry is firmware configurable for the function required by the application and follows the final BC1.2 specification.

I²C

The FUSB15201's serial interface is compatible with Standard, Fast, and Fast Mode Plus I²C bus specifications. The I²C peripheral can be configured for either host or device modes.

Bus Timing

As shown in figure below, for data bits, SDA must be stable while SCL is HIGH. SDA may only transition when SCL is LOW. Data is clocked in on the rising edge of SCL. Typically, data transitions shortly at or after the falling edge of SCL to allow ample time for the data to set up before the next SCL rising edge.

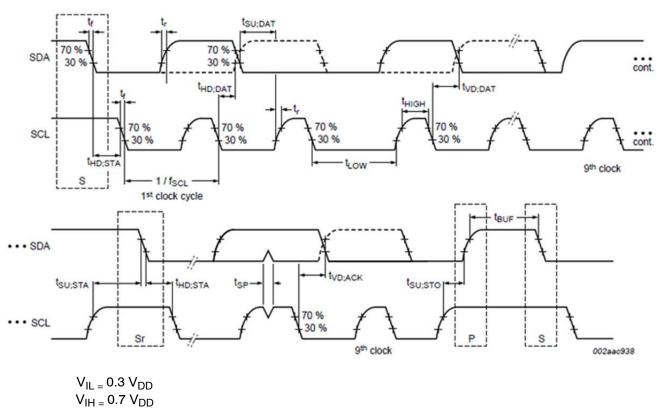


Figure 9. I²C Bus Timing Definition

Each bus transaction begins and ends with SDA and SCL HIGH. A transaction begins with a START condition, which is defined as SDA transitioning from 1 to 0 with SCL HIGH.

A transaction ends with a STOP condition, which is defined as SDA transitioning from 0 to 1 with SCL HIGH.

During a read from the FUSB15201, the host issues a Repeated Start after sending a data command and before resending the device address. The Repeated Start is a 1-to-0 transition on SDA while SCL is HIGH.

¹ Bus timing referenced from I²C-bus specification Rev. 6 – 4 April 2014

ADC

The FUSB15201 allows for up to 12 signals to be measured and converted using the internal 10-bit ADC. For most applications, this will consist of two VBUS

voltages, two NTC temperature channels, two D+/D- BC1.2 and, optionally, two CC1/2 ports. The table below shows the typical FUSB15201 configuration along with the expected settings for the ADC module.

Table 8. ADC CONFIGURATION

ADC Channel	Pin Measurement	Resolution	Range	Full Scale Voltage
0	VBUS_A	10 mV	0 V to 10.23 V	1.024 V
		20 mV	0 V to 20.46 V	2.048 V
		40 mV	0 V to 40.92 V	4.096 V
1	DP_A	4 mV	0 V to 4.096 V	4.096 V
2	DM_A	4 mV	0 V to 4.096 V	4.096 V
3	NTC1 Temperature	1°C	0°C to 160°C	1.28 V
4	HVCC1_A	4 mV	0 V to 4.096 V	4.096 V
5	HVCC2_A	4 mV	0 V to 4.096 V	4.096 V
6	VBUS_B	10 mV	0 V to 10.23 V	1.024 V
		20 mV	0 V to 20.46 V	2.048 V
		40 mV	0 V to 40.92 V	4.096 V
7	DP_B	4 mV	0 V to 4.096 V	4.096 V
8	DM_B	4 mV	0 V to 4.096 V	4.096 V
9	NTC2 Temperature	1°C	0°C to 160°C	1.28 V
10	HVCC1_B	4 mV	0 V to 4.096 V	4.096 V
11	HVCC2_B	4 mV	0 V to 4.096 V	4.096 V

Development Tools

FUSB15201 is supported by a full suite of comprehensive tools including:

- An easy-to-use development board
- Software Development Kit (SDK) including:
 USB PD protocol stacks, shared capacity algorithms, sample code, libraries, and documentation

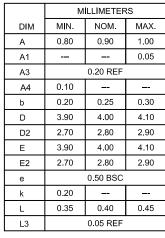
Specifications References

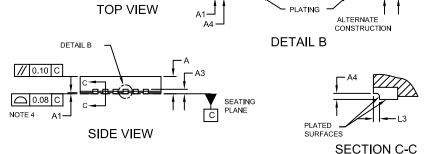
- Universal Serial Bus Power Delivery specification revision 3.1 Version 1.3, dated January 2022
- Universal Serial Bus Type C Cable and Connection Specification release 2.1, dated May 2021
- USB Battery Charging Specification, revision 1.2, dated December 7, 2010
- I²C-bus specification Rev. 6 4 April 2014

Arm, Cortex, and the Arm logo are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. **onsemi** is licensed by the Philips Corporation to carry the I2C bus protocol.

PIN 1 QUADRANT

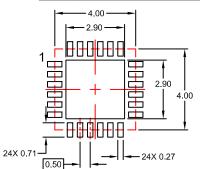
DET


QFNW24 4x4, 0.5P CASE 484AU **ISSUE O**


EXPOSED COPPER

DATE 07 AUG 2020

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSION b APPLIES TO THE PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 FROM THE TERMINAL TIP.
- 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

В

TAIL A 7	-24X L	ALTERNATE CONSTRUCTION AIL A
e	0.10 C A B 0.05 C	

LAND PATTERN RECOMMENDATION*

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE
STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD
THE ON SEMICONDUCTOR SOLDERING AND MOUNTING
TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

BOTTOM VIEW

XXXXXX XXXXXX **AWLYWW** XXXX = Specific Device Code

= Assembly Location

= Wafer Lot WL = Year

WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON24253H	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	QFNW24 4x4, 0.5P		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

 \Diamond