INCH-POUND

MIL-M-38510/319C

14 July 2003

SUPERSEDING

MIL-M-38510/319B

4 March 1985

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, LOW-POWER SCHOTTKY TTL, 4 BY 4 REGISTER FILE, CASCADABLE, MONOLITHIC SILICON

Inactive for new design after 18 April 1997.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

- 1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, Schottky TTL, low-power, 4 by 4 register file microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).
 - 1.2 Part number. The part number should be in accordance with MIL-PRF-38535, and as specified herein.
 - 1.2.1 <u>Device types.</u> The device types should be as follows:

Device type	<u>Circuit</u>
01	4 by 4 register file with 3-state outputs, cascadable
02	4 by 4 register file with open collector outputs, cascadable

- 1.2.2 Device class. The device class should be the product assurance level as defined in MIL-PRF-38535.
- 1.2.3 <u>Case outlines</u>. The case outlines should be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
E	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat pack
2	CQCC1-N20	20	Square leadless chip carrier

Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43216-5000, by using the self addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

AMSC N/A

<u>DISTRIBUTION STATEMENT A.</u> Approved for public release; distribution is unlimited.

FSC 5962

1.3 Absolute maximum ratings.

Supply voltage rangeInput voltage range	
Storage temperature range	
Maximum power dissipation (P_D) $1/$	
Device type 01	275 mW
Device type 02	220 mW
Lead temperature (soldering, 10 seconds)	300°C
Thermal resistance, junction to case (θ_{JC}):	
Cases E, F, and 2	(See MIL-STD-1835)
Junction temperature (T _J) <u>2</u> /	+175°C

1.4 Recommended operating conditions.

Supply voltage (V _{CC})	4.5 V minimum to 5.5 V maximum
Minimum high level input voltage (V _{IH})	2.0 V
Maximum low level input voltage (V _{IL})	0.7 V
Case operating temperature range (T _C)	-55°C to +125°C
Minimum width of write enable or read enable pulse	25 ns
Minimum setup time (data)	10 ns
Minimum setup time (write select)	15 ns
Minimum hold time (data)	15 ns (with respect to GW)
Minimum hold time (write select)	5 ns
Minimum latch time for new data	25 ns

2. APPLICABLE DOCUMENTS

2.1 Government documents.

2.1.1 <u>Specifications and Standards.</u> The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents shall be those listed in the issue of the Departments of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines

(Unless otherwise indicated, copies of the above specifications and standards are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

 $[\]underline{1}$ / Must withstand the added P_D due to short-circuit test (e.g., I_{OS}).

Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with MIL-PRF-38535.

3. REQUIREMENTS

- 3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
- 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
 - 3.3.1 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.
 - 3.3.2 Truth table. The truth table shall be as specified on figure 2.
 - 3.3.3 Logic diagram. The logic diagram shall be as specified on figure 3.
- 3.3.4 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.
 - 3.3.5 Case outlines. The case outlines shall be as specified in 1.2.3.
 - 3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
- 3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.
- 3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
 - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
- 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 12 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

- 4.1 <u>Sampling and inspection.</u> Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with, MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
 - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
 - c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Conditions	Device	Lir	nits	Unit
		-55°C ≤ T _C ≤ +125°C	type	Min	Max	
High level output voltage	V _{OH}	$V_{CC} = 4.5 \text{ V}, V_{IN} = 2.0 \text{ V}$ $I_{OH} = -1 \text{ mA}$	01	2.4		V
Collector cutoff current	I _{CEX}	V _{CC} = 4.5 V, V _{OH} = 5.5 V	02		20	μА
Low level output voltage	V _{OL}	$V_{CC} = 4.5 \text{ V}, V_{IN} = 0.7 \text{ V}$ $I_{OL} = 4 \text{ mA}$	01, 02		0.4	V
Input clamp voltage	Vic	$V_{CC} = 4.5 \text{ V}, I_{IN} = -18 \text{ mA},$ $T_{C} = +25^{\circ}\text{C}$	01, 02		-1.5	V
High level input current all inputs except GR and GW	I _{IH1}	V _{CC} = 5.5 V, V _{IN} = 2.7 V	01, 02		20	μА
High level input current	I _{IH2}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	01		60	μΑ
at GR			02		40	•
High level input current at GW	I _{IH3}	V _{CC} = 5.5 V, V _{IN} = 2.7 V	01, 02		40	μА
High level input current all inputs except GR and GW	I _{IH4}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	01, 02		100	μА
High level input current	I _{IH5}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	01		300	μΑ
at GR			02		200	•
High level input current at GW	I _{IH6}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	01, 02		200	μА
Off state output current, high level voltage applied	I _{OZH}	V _{CC} = 5.5 V, V _O = 2.7 V	01		20	μА
Off state output current: low level voltage applied	I _{OZL}	V _{CC} = 5.5 V, V _O = 0.4 V	01		-20	μА
Low level input current at data, read select, and write select	I _{IL1}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	01, 02	-0.5	-460	μА
Low level input current at	I _{IL2}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	01	-90	-1300	μА
read enable			02	-90	-900	<u> </u>
Low level input current at write enable	I _{IL3}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	01, 02	-60	-840	μА
Short circuit output current	los	V _{CC} = 5.5 V <u>1</u> /	01	-15	-130	mA
Supply current	I _{CC}	V _{CC} = 5.5 V	01		50	mA
	1	Í	02		40	I

See footnote at end of table.

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions	Device	Lim	nits	Unit
		-55°C ≤ T _C ≤ +125°C	type	Min	Max	
Propagation delay time,	t _{PLH1}	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF} \pm 10\%,$	01	2	65	ns
low to high level from data		$R_L = 316 \Omega \pm 5\%$ for device type 01,	02	2	65	
Propagation delay time,	t _{PLH2}	$R_L = 2 \text{ k}\Omega \pm 5\%$ for device type 02	01	2	58	ns
low to high level from read select			02	2	58	
Propagation delay time,	t _{PHL1}		01	2	58	ns
high to low level from data			02	2	52	
Propagation delay time,	t _{PHL2}		01	2	65	ns
low to high level from read select			02	2	58	
Propagation delay time,	t _{PLH3}		01	2	65	ns
low to high level from write enable			02	2	65	
Propagation delay time, low to high level from read enable	t _{PLH4}		02	2	46	ns
Propagation delay time,	t _{PHL3}		01	2	72	ns
high to low level from write enable			02	2	58	
Propagation delay time, high to low level from read enable	t _{PHL4}		02	2	46	ns
Output enable time to low level	t _{PZL}		01	2	58	ns
Output enable time to high level	t _{PZH}		01	2	52	ns
Output disable time to low level	t _{PLZ}		01	2	52	ns
Output disable time to high level	t _{PHZ}		01	2	72	ns

 $[\]underline{1}/$ Not more than one output should be shorted at one time.

TABLE II. Electrical test requirements.

	Subgroups (see table III)		
MIL-PRF-38535	Class S	Class B	
test requirements	devices	devices	
Interim electrical parameters	1	1	
Final electrical test parameters	1*, 2, 3, 7, 9, 10, 11	1*, 2, 3, 7, 9	
Group A test requirements	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3, 7, 8, 9, 10, 11	
Group B electrical test parameters when using method 5005 QCI option	1, 2, 3, 7, 8 9, 10, 11	N/A	
Group C end-point electrical parameters	1, 2, 3, 7, 8 9, 10, 11	1, 2, 3	
Group D end-point electrical parameters	1, 2, 3	1, 2, 3	

^{*}PDA applies to subgroup 1.

- 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
- 4.4 Technology <u>Conformance Inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
 - 4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 shall be omitted.
 - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II MIL-PRF-38535.
 - 4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- 4.4.4 <u>Group D inspection.</u> Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
 - 4.5 Methods of inspection. Methods of inspection shall be specified and as follows:
- 4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

	Pin identification				
Pin	Device type	es 01 and 02			
number	Case 2	Case E, F			
1	NC	Data D2			
2	Data D2	Data D3			
3	Data D3	Data D4			
4	Data D4	Read Select RB			
5	Read Select RB	Read Select RA			
6	NC	Output Q4			
7	Read Select RA	Output Q3			
8	Output Q4	GND			
9	Output Q3	Output Q2			
10	GND	Output Q1			
11	NC	Read Enable GR			
12	Output Q2	Write Enable GW			
13	Output Q1	Write Select WB			
14	Read Enable GR	Write Select WA			
15	Write Enable GW	Data D1			
16	NC	Vcc			
17	Write Select WB				
18	Write Select WA				
19	Data D1				
20	V _{CC}				

FIGURE 1. Terminal connections.

Device type 01

Write function table (see notes A, B, and C)

Read function table (see notes A and D)

W	Write inputs			Word			
WB	WA	GW	Q	1	2	3	
L	L	L	Q = D	Q_0	Q_0	Q_0	
L	Н	L	Q_0	Q = D	Q_0	Q_0	
Н	L	Ш	Q°	Q_0	Q = D	Q_0	
Н	Н	L	Q°	Q°	Qo	Q = D	
Х	Х	Н	Q_0	Q_0	Q_0	Q_0	

Read inputs				Out	puts		
RB	RA	GR	Q1	Q2	Q3	Q4	
L	L	L	W0B1	W0B2	W0B3	W0B4	
L	Н	L	W1B1	W1B2	W1B3	W1B4	
Н	L	L	W2B1	W2B2	W2B3	W2B4	
Н	Η	L	W3B1	W3B2	W3B3	W3B4	
Х	Χ	Н	Z	Z	Z	Z	

NOTES:

- A. H = high level, L = low level, X = irrelevant, Z = high impedance (off)
- B. (Q = D) The four selected internal flip-flop outputs will assume the states applied to the four external data inputs.
- $C.\ Q_0$ = the level of Q before the indicated input conditions were established.
- D. W0B1 = The first bit of word 0, etc.

Device type 02

Write function table (see notes A, B, and C)

Read function table (see notes A and D)

W	Write inputs			Word			
WB	WA	GW	Q	1	2	3	
L	L	L	Q = D	Q_0	Q_0	Q_0	
L	Н	L	Q_0	Q = D	Q_0	Q_0	
Н	Ш	Ш	Q_0	Q_0	Q = D	Q_0	
Н	Ι	L	Q_0	Q°	Q_0	Q = D	
Х	Х	Н	Q_0	Q_0	Q_0	Q_0	

R	ead inpu	ts	Outputs			
RB	RA	GR	Q1	Q2	Q3	Q4
L	L	L	W0B1	W0B2	W0B3	W0B4
L	Н	L	W1B1	W1B2	W1B3	W1B4
Н	L	L	W2B1	W2B2	W2B3	W2B4
Н	Η	Ш	W3B1	W3B2	W3B3	W3B4
Χ	Χ	Н	Н	Н	Н	Н

NOTES:

- A. H = high level, L = low level, X = irrelevant
- B. (Q = D) The four selected internal flip-flop outputs will assume the states applied to the four external data inputs.
- C. Q_0 = the level of Q before the indicated input conditions were established.
- D. W0B1 = The first bit of word 0, etc.

FIGURE 2. Truth tables.

DEVICE TYPE 01

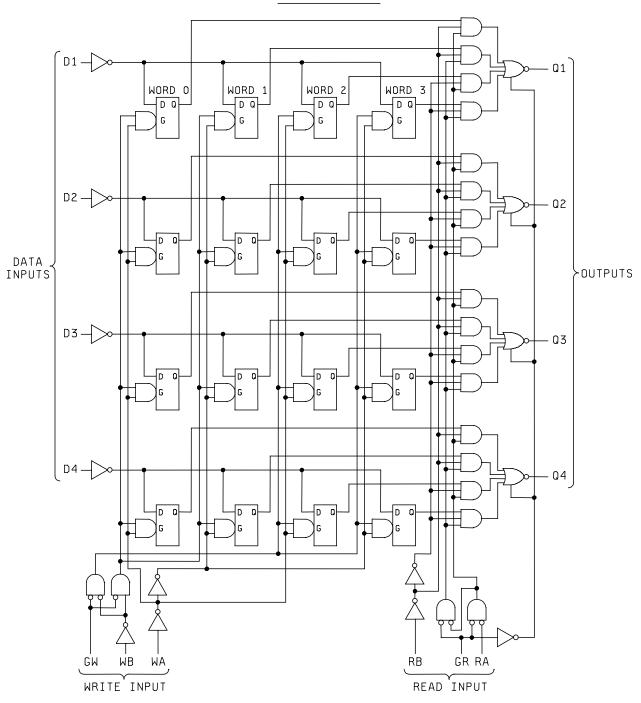
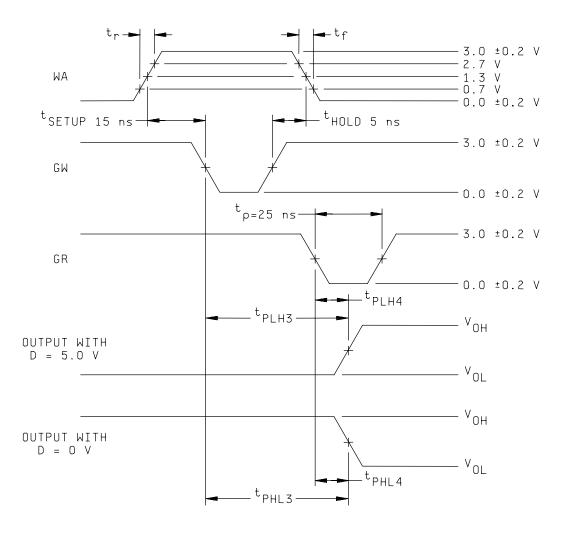



FIGURE 3 Logic diagram.

DEVICE TYPE 02 D1 -- Q1 WORD 2 WORD 0 WORD 1 WORD 3 DO D 0 D Q D Q D2 -- 02 DATA INPUTS > OUTPUTS D3-Q3 Q4 ĞW GR RA WRITE INPUT READ INPUT

FIGURE 3 Logic diagram - Continued.

NOTES:

- 1. Input pulse characteristics: PRR \leq 1.0 MHz, $t_r \leq$ 15 ns, $t_f \leq$ 6 ns, duty cycle = 50% \pm 15%.
- 2. $C_L = 50 \text{ pF} \pm 10\%$. C_L includes probe and jig capacitance.
- 3. All diodes are 1N3064 and 1N916.
- 4. Load circuits on a given output are required only where the specific test given in table III indicates "OUT" on that output. Load circuits may otherwise be omitted.

FIGURE 4. Switching test circuit and waveforms for device types 01 and 02.

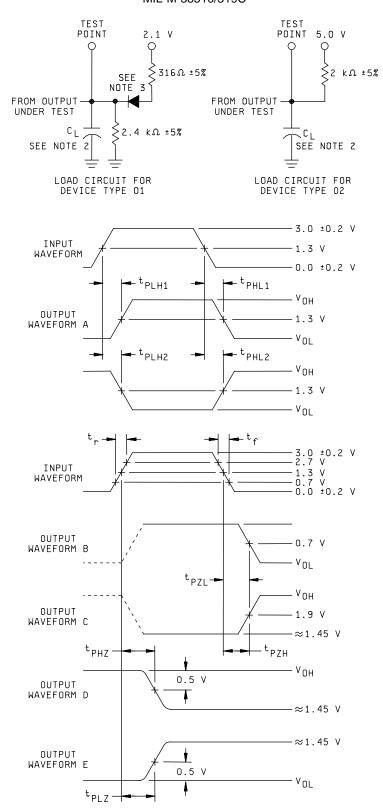


FIGURE 4. Switching test circuit and waveforms for device types 01 and 02 - Continued.

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be high $\geq 2.0~V;$ low $\leq 0.7~V;$ or open).

	Unit		>		=				=						=				=		МΑ	=	=	=	=			=	=						=	=	=	=		=	=	=	=	=		=	=	=	=	=
	SS.	Max	0.4		=						-1.5	н	н	н	=				=		1/	=	=	=	-						20					=	=		09	40	100	=	-	=	=	-	=		300	200
	Limits	Min					2.4	=		н											1/																													
	Measured	•	۵1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	D2	D3	D4	RB	RA	GR	GW	WB	WA	D1	D2	D3	D4	RB	RA:	WB	WA	D1	GR	GW	D2	D3	D4	RB	RA	WB	WA	D1	GR	GW	D2	D3	D4	RB	RA	WB	WA	D1	GR	GW
16	20	V	4.5 V						=						-	=	-				5.5 V	=	=	-	=	=									-	=	=			=	=		=	=	=	=			=	
15	19	D1	0.7 V				2.0 V													-18 mA								0.4 V										2.7 V										5.5 V		
.(L	18	WA	0.7 V							н									-18 mA								0.4 V										2.7 V										5.5 V			
or open)	17		0.7 V		-	-		-										-18 mA	•							0.4 V										2.7 V										5.5 V				
≤ 0.7 V;	15		0.7 V							н							-18 mA													0.4 V										2.7 V										5.5 V
(pins not designated may be nign $\geq z.0$ v; $10w \leq 0.7$ v; $10w \leq$	41	-	0.7 V							н						-18 mA	-												0.4 V	H									2.7 V					-					5.5 V	ì
lgn ≥ ∠.v	13	+	4 mA				-1 mA									-1													0										2										3	
9 De II	12	02		4 mA				-1 mA																																										
8 8	10	-	GND					۳- ا															=	-		=											=			=		=	-	_			=			
r design	6	03			4 mA				-1 mA																															-								H		
9 e	8	Q4				4 mA				-1 mA																																		_			-			
reminal conditions	7		0.7 V			4				-1					8 mA										.4 V									:	.7 \										.5 \					
11al CO	2	+	0.7 \ 0		_									-18 mA	-1									0.4 V	0								:	2.7 V	2									5.5 V	5					
3	4	74				0.7 V				2.0 V			-18 mA	-1:									0.4 V		,								2.7 V	2									5.5 V	+						
2	е	D3			0.7 V	0			2.0 V	2.		-18 mA	-18									0.4 V	-									2.7 V	7									5.5 V	H							
-	2	D2		0.7 V	o.			2.0 V			-18 mA	-18									0.4 V	0									2.7 V	2									5.5 V	H								
Cases	Case 2	+	H		3	4	2			8		0	11	12	13	4	15	9	2	8		07	7.	55	133	54	55	56	27			30	51	32	23	34	35	36	37				11	12	13	4	12	91		81
																_	•							.,		.,		2	7					,	,	(.,	(.,		3		(.,	7	7	7	7	7	7	7	7	7
-GTS- IIM			3007		-	-	3006		-	=											3009	-	=	=	-	-	=	=	=		3010					-	=	=		=	=	=	-	_	=	-	-	=	=	-
	lodmyS dr		Vol				Ю				2										5								11.2	IL3	Ξ								IH2	H3	Ŧ								H	He
	Subgroup		-	Tc = 25°C																																														

See footnotes at end of device type 01.

TABLE III. Group A inspection for device type 01.

		Unit		mA	=	-	-		Ψ		. -		: -	-	=																								SI =	=	=	=	=	-	=	=	=	=	- :		: =	-
		ts	Max	20	-130	-	=	= 8	70			: 6	07-	-	=																							Č	G =	=		45	=	-		=	=	-	=	20	: =	=
		Limits	Min		-30		=	-										2/	-	=	-		-	=	-	=		-	-			-	-	-	-	-	-		7 =			=	=	-		=			-		: =	
		Measured terminal		Vcc	Ω1	Q2	Q3	04	رم 1	Q2	C3	φ.	5 6	03	04																								D2 to Q2	D3 to Q3	D4 to Q4	D1 to Q1	D2 to Q2	D3 to Q3	D4 to Q4	RA to Q1	RA to Q2	RA to Q3	RA to Q4	RB to Q1	KB 10 QZ	RB to Q4
16	2	20	Vcc	5.5 V			=			- -			: =		=			5.0 V	=	=	=		-	=	=	=			=				=	=	=	=	-	i d	> O.C	=		=	=		н	=	=		=		: =	
<u>,</u>	2	19	D1	4.5 V	5.5 V	-	=	= 0	2.0 V				2.0 V					Α	=	=	=	а =	-	=	=	=	-		-	A	: =	-	=	В	=			1	≧			Z				GND			 - 	5.0 V		
(c) ⁷	<u>t</u>	18	WA	GND			=	= 1	0.7 V						=	_		В	Α	В	⋖	а -		=	=	-	4	В	4	В	∢ 0	n <	ζ =	В	4	В	-	2	ם פואם	=		=	-			=	=	=	= :		: =	=
or ope	2	17	WB	GND		-	=	+	0.7 V				: =	-	=	_		В	=	V	=	В :	-	=	=	=	-	A		В	: <	∢ =	=	В	=	⋖		4	פואם באם	=		-	=	=	_	=	=	=	_	5.0 V		=
≤ 0.7 V;	1	15	GW	4.5 V	SND		-		0.7.0				: =		=	_		В	-	-	-		-		A) =			= :			٥	ζ =	=			4	ב אבר פאבר	=		-	=			=	=		=		: :	
Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).		14	GR				-	-	2.0 \ (. =		=	-		В	-	-	-			-	=	-			-				=	=	-	-		-	ם ש	=		-	-		=	=	=	=	=			=
gh ≥ 2.0	2	13	Q1		GND				2.7 \ 2.2				0.4 V			_		Н	=	_		_				1 =				I			_	_	_			F				OUT				OUT				OUT		
y be hi						유		·	4	>		•	+	>		_						-																_				0	-	H			Ţ			_	_	
ated ma		12	ID Q2	DI		GND				2.7 V	-		Č	0.4		-		ום	-	-				-	Τ		-				_	-	-		-		_	<u>ا</u>	TUO				TUO	H	H		OUT			-	5	_
designa	•	10	GND	GN	=	=	<u>.</u> О				>		-	>		mitted.	tted.	GND	=	=	=	-	=	=	=	=	-	=	-		-	=	-	=	-	-	-	ć	E E	-		-	-	-	-	-	=	<u>.</u> ⊢			- -	-
ns not (б	Q3				GND			1	7.7.	,		7 7 7	+	sts are omitted	ts are omi	I	=	=	=	_ :	Ξ =	-		=			-	I	-		=	=	-		-	_		TUO	+			OUT	H			OUT		_	Ē	
ions (pi	•	∞	Q4					GND C			1	2.7 V			0.4 V	and Vic te	nd V _{ic} test	7	=	=	=	Ι.	_ =	=	I	=	=		=			=	=	=	-	-	-	C = -55°C.			TUO			H	OUT				TUO	_	+	DOUT
l condit)	7	RA		=		=	-	0.7.0				: =	=	=	= +125°C	= -55°C ar	В	A	В	⋖	а .	∢ 0	۵ ۵	((1)	=	٨	В	⋖	В	∢ (n <	ζ =	В	4	В	A	5°C and	בואם פואם	=		=	=	=	=	=	=	=	=	QN5	=	=
ermina	r	2	RB			=	=	+	0.7.					-	=	xcept T _C =	xcept T _C =	В	=	⋖	=	а :	. <	ζ =	В	=		A	=	В	: <	< =	=	В	=	٧		$t_{\rm C} = +12$	- E	=		=	-	-	=	=	=	=	=	Z =	: =	=
	•	4	Ъ	4.5 V				5.5 \			0	2.0 \			2.0 V	aroup 1. e	group 1, e	В	=	=	=	∢:	-	=	=	=			=			=	=	В	=			2 7 excep			Z				Z				GND			5.0 V
c	4	ო	D3	4.5 V			5.5 V			0	2.0 \			700		ts as subo	ts as subj	A	=	=	=	а :	-	=	=	=			=	∢:			=	В	=			r subgrou		Z				Z				GND			70))
	-	2	D2	4.5 V		5.5 V				2.0 V			700	2.0 ^		s, and limi	s, and limi	В	=	=	=	∢:	-	=	=	=				- :		=	=	В	=	-	-	ions as fo	Z				z				GND				2.0 \	
3036	Е, Р	Case 2	Test no.	49	20	51	52	53	54	55	20	20	28	60	61	Same tests, terminal conditions, and limits as subdroup 1, except $T_c = +125^{\circ}$ C and V_{1c} tests	Conditions	62	63	64	65	99	/9	00	20	71	72	73	74	H B B H 1	19	//	20/	80	81	82	83	Same tests and terminal conditions as for subgroup 7 except T _C = +125°C and T _C	85	98	87	88	89	06	91	92	93	94	92	96	/A	0 0 0 0
	MIL-STD-	883 method	1	3005	3011	-	=	=			- 1			-1		s, terminal	s, terminal	3014	=	=	=		-	=	-	-	-	-	-	= :			-	=	-	-	=	s and term	3003 Fig. 4	io =	-	=	-	-	=	=	-	-	=		: =	-
	≥	Symbol			los <u>2</u> /				OZH				OZL			Same test	Same test	Truth	table	tests																		ame tests	Г РГН1			PH 4	į		_	PLH2			$\frac{1}{2}$	PHL2	<u> </u>	
		Subgroup			Tc = 25°C							1				2	3	7 3/ 4/	$Tc = 25^{\circ}C$																			8 6	J. = 25°C			_				_				+ ,		

See footnotes at end of device type 01.

TABLE III. Group A inspection for device type 01.

Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

	ı																												1	ı	1	1	_	1	_	_	_	1
	Unit		su	=	=	=		=	=				=		=	н			=	=	=	=	н	=		=	=	=	=	=	=	=	=	=	=	=		
	its	Max	09				22				н	н	н	и	40	н			н			н	45	н	н	н	9	28	28	9	92	72	2.2	27	52	58	3	
	Limits	Min	2					"		"				н	=	н	=				"		н							=		=		=	=	=		
	Measured terminal		GW to Q1	GW to Q2	GW to Q3	GW to Q4	GW to Q1	GW to Q2	GW to Q3	GW to Q4	GR to Q1	GR to Q2	GR to Q3	GR to Q4	GR to Q1	GR to Q2	GR to Q3	GR to Q4	GR to Q1	GR to Q2	GR to Q3	GR to Q4	GR to Q1	GR to Q2	GR to Q3	GR to Q4					,							
16	20	Vcc	5.0 V	=	=	=	=	=	=	=			=	u	-					=	=	=				-												
15	19	D1	5.0 V				GND				5.0 V				5.0 V				GND				GND															
41	18	WA	Z	=	=	=		=	=		GND		=	н					=	-	=			=														
13	17	WB	GND	=					=				=	н	=	н	=		=	=			н	=														
12	15	GW	N	=					=		GND			и		н				=			н															
=======================================	41	GR	GND	=	-	-		=	=		N	"	=				=		=	=	-	-		=		-		own										
10	13	Q1	OUT				OUT				OUT				OUT				OUT				OUT					for subgroup 9, except $T_c = +125$ $^{\circ}$ C and test limits as shown										
о	12	Q2		OUT				OUT				OUT				OUT				OUT				OUT				and test										
ω	10	GND	GND	=	-	-	=	=	=	=					=		-			=	=							= +125°C										
7	6	Q3			OUT				DUT				OUT			except T _c																						
9	ω	Q4				OUT				OUT				OUT				OUT				OUT				OUT		bgroup 9,										
2	7	RA	5.0 V	=	-	-	-	=	=		GND			"	-				и	=	=		и														55°C	5
4	2	RB	GND	=	=	=	=	=	=						-	н	-			=	=		н					I condition									T-Land	מאכבלהו
က	4	D4				5.0 V				GND				5.0 V				5.0 V				GND				GND		nd termina									- 10 d	or dno
2	က	D3			5.0 V				GND				5.0 V				5.0 V				GND				GND			Same tests and terminal conditions as									o for citha	101 cases
-	2	D2		5.0 V				GND				5.0 V				2.0 V				GND				GND				San									and limite	3 10 11 11 11
Cases E, F	Case 2	Test no.	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	onditions a	S S S S S S S S S S S S S S S S S S S
MIL-STD-	883 method	-	3003	Fig. 4	=	=			-	=						=				-			=					=			=		-	=	=	=	Same tests terminal monditions and limits as for subgroup 10 except T. = -55°	9, (2111111121
2			PLH3	/9			PHL3	_			PHZ				PZH				PLZ				PZL				t _{PUH1}	t _{PHL1}	PLH2	PHL2	E H	, E	Z I	PHZ	PZH	PLZ	PZL	מווע ופסו
	Subgroup Symbol		9 t	rc = 25°C																							10 t	T _C =125°C t			<u> </u>	1			1	1	11	
	Suk			ű			_	7			+				+				+				+					ت	+	+	_		<u>, </u>	, +		- +	Ļ	

1/ Min/max limits (µA) for circuits, unless otherwise specified.

 $\frac{2}{3}$ l_{os} limits for circuits B, C, and E are -15/-100 mA. $\underline{3}$ Connect a 0.5 kΩ to 2 kΩ resistor from terminals, 6, 7, 9, and 10 to V_{cc} for subgroup 7 tests. $\underline{4}$ A = 3.0 V min., B = 0.0 V or GND, C = pulse 3.0 V $\phantom{\frac{4}{3}}$ A = 3.0 V min., B = 0.0 V or GND, C = 0.0 V $\phantom{\frac{4}{3}}$ C = 0.0 V or GND, C = 0.0 V or GND, C = 0.0 V $\phantom{\frac{4}{3}}$ C = 0.0 V or GND, C = 0.0 V or GND, C = 0.0 V $\phantom{\frac{4}{3}}$ C = 0.0 V or GND, C = 0.0

 $\underline{5}$ / Output voltages shall be: H > 1.5 V, L < 1.5 V $\underline{6}$ / Load ground into register under test prior to test. $\underline{7}$ / Load one state into register under test prior to test.

TABLE III. Group A inspection for device type 02.

		Unit		^	-	- -	. -	Υ'n	. .	=	>	> =	=	-	=		-	=	=	=	Ψį	- -	-	: =	=	=	=	=	-			=			=	=	=			=		-	=			=	=
		Ş	Max	0.4			: 6	50			4		=	=	=	н		=	=	=	1/-		-	=	-	=	=	=		20	н	=			=	=	40	40	100		=					000	200
		Limits	Min																		1/																										
		Measured terminal		21	32	33	74	۲۱	22	23	24	7 0	240	. g	Α	iR.	W	/B	/A	1	20	33	4 0	20 5	5 9	0 4	1	- K	M	12	3	4	g.	8 Q	2 <	7	S.	M	2	33	4	g) -	Ϋ́	В	₹ 5	- 0	GW
		Meas	1		G	0 0	3 (او	0 0) و	ے و	3 6		ı ez	œ	Э	G	>	>				7 6	2 0	2 5	\$ \$		10	9	۵			œ	Y S	5 5		Θ	9				œ	œ	> :	S C	ם כ) O
	16	20	Vcc	4.5 V	=		. -		. -		=	=	=	=	=	н	=	=	=		5.5 V		-	=	-	=	=	=		н		=	= :	: :	=	=	=		н				=		: =	=	=
	15	19	D1	0.7 V				2.0 V												-18 mA							0.4 \	ż								2.7 V									7 2 2	v 0.0	
en).	14	18	WA	0.7 V	-														-18 mA							V 4 V									2.7 V										5.5 \		
; or ope	13	17	WB	0.7 V	-													-18 mA							7	v 4.								7.4.0	^									5.5 V	Ī		
. 🗸	12	15	GW	0.7 V	-												-18 mA												0.4 V									2.7 V			1						5.5 V
1 <u>ype U.</u> 3 V; Iow	11	14	GR	0.7 V			.									-18 mA												0.4 V									2.7 V				1					7 2 7	,
I ABLE III. Gloup A inspection for device type ∪Z ns (pins not designated may be high ≥ 2.0 V; low	10	13	H	4 mA (-	2.5 V								-																									1				+		
ay be hi	б	12	Q2 (_	4 mA			_	5.5 V														+			-	-														+				-		
ated ma	8	10 1						Ť	2.6											_						_		_													1				+	l	F
onditions (pins not designated may be high ≥			3 GND	ß									<u> </u>			-		-	-	-											-	-							_		_			1	1		
ins not	7	6	Q3		,	4 mA	4			2.5 \	>												-				-								-						4				+		-
IADL ions (p	9	ω	Q4	/		<u> </u>	4 mA			L	2.5 <				٧								_		1	-															4		_		_		_
	2		RA		=		. -		. -	=				-	-18 mA									7 7	4.0								4	2.7 V							_	H	5.5 V		1		
Terminal	4	Ω.	RB	0.7 V	-		. -		. -	-				-18 mA										0.4 V									2.7 V									5.5 V			1		
_	3	4	D4			1	0.7 \				2.0 \		-18 mA										0.4 V									2.7 V									5.5 V						
	7	က	D3			0.7 \				2.0 V		18 m										0.4 V									2.7 V									5.5 V							
	1	2	D2		0.7 V				2.0 V		10 m	- 10 IIIA									0.4 V									2.7 V									5.5 V								
	Cases E, F	Case 2	Test no.	1	2	ε,	4 r	2	9 1	\ 0	∞ α	s 5	11	12	13	14	15	16	17	18	19	5 5	17	77	2 6	25	26	27	28	59	30	31	32	33	35	36	37	38	39	40	41	42	43	44	45	4 4	48
	MIL-STD-	883 method		3007	-								1						I		3009					=	-	=		3010	-	=	_		=	-	-	=	=	-						=	
	2	Symbol		Vol				CEX CEX				<u>o</u>									17							=	11.3	H1							H2	H3	HH4								H6
		Subgroup S			Tc = 25°C																							1	1								<u> </u>										_
	l	S			_		-	_			-	>									_							_	_	_							_	_	_		_				_	-	_

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02. Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$; low $\leq 0.7 \text{ V}$; or open).
--

																																									П	
	Unit		mA																									us.	=	=	=	=		=		-	-	=		-	=	=
	its	Max	40																									20	=		40		=	=	45	=		=	н	=	=	=
	Limits	Min				/4	=	=	-	-	-	-	-	=	=	-	= :				-	=	-			=		2 =	=	=	=	-		=	=	=	-	=		=	=	
	Measured terminal		Vcc																								•	D1 to Q1	D2 to Q2	D4 to Q4	D1 to Q1	D2 to Q2	D3 to Q3	D4 to Q4	RA to Q1	RA to Q2	RA to Q3	RA to Q4	RB to Q1	RB to Q2	RB to Q3	RB to Q4
16	20	Vcc	5.5 V			2.0 V	=		=					=	=	=	=				=	=	=			=		5.0 V					=	=		=		=	и	-	=	-
15	19	D1	4.5 V			Α				В	н	н	н		=		=		Ą	=	-		В					Z			Z				5.0 V				5.0 V			
14	18	WA	GND			В	A	В	A	В				=	=	4	В	∢ (я.	V	В	A	ш	∢ (В			GND	-		=					-			GND	-	=	=
13	17	WB	GND			В	-	٧	-	В				Α	В		∢	: (я.		A	=	В		۷.	=		GND	-			=		-		-		-	5.0 V		=	-
12	15	GW	4.5 V			В	_			н			Α	=	В		=					=	∢			=		GND	=		=	-										
11	41	GR	4.5 V			В								=	A	В	=		Α.		-	=	В			=	ŀ	GND	-	=	=								н		=	-
10	13	۵1	4			н					н			7	ェ		=	<u> </u>			-		-					OUT			OUT				OUT				OUT			
6	12	Q2 C					_		_	н	Γ .				=		_				_	_		_		_		+	5		0	7			0	5			H	OUT		_
			٥			1 0				_																		\dashv	0			LNO				TUO				ō		_
ω	10	GND	GND	itted.		GND	-		-					=	=	-	=	<u>'</u>			=	=	=					GND	-	=	-	-		-		-		-		-		-
7	6	Q3		s are or	are omitt	I	=		=	_	I			_	I	_	=	: :	I ·		=	=	=			=			LIC)			OUT				TUO				OUT	
9	8	Q4		d V _{IC} test	and V _{IC} tests are omitted	7	=		=	I	7						=				=	=	=			=	= -55°C.			TUO				TUO				TUO				OUT
4 5 6 7 8 9 10	2	RA	GND	-125°C an	55°C and	В	٧	В	٧	В	Α	В	Α	В	=	۷	В	۱ ک	ъ.	∢	В	۷	В	∢ (В.	۷ .	$^{ m C}$ and $^{ m C}$	GND	=	=	=	=	=	=	Z	=		=	GND	=	=	=
4	9	RB	QNĐ	ept T _C = 4	ept $T_c = -$	В	=	٧	=	В		Α	н	В	=	=	∢	: (ъ.		A	=	a	-	¥:	=	c = +125°	GND	=	=	=			=	н	=	и	=	N	=		=
ဇ	4	Ъ	4.5 V	oup 1, exc	oup 1, exc	В	=		=	Α			В	=	=	٧	=	. .		-	=	=	മ			=	7 except T			Z				Z				5.0 V				5.0 V
2	3	D3	4.5 V	as subgr	as subgr	Α	=		=	В						-	=		Κ:		=		В			=	ubgroup		Z				Z				5.0 V				5.0 V	
-	2	D2	4.5 V	and limits	and limits	В	=	=	=	Α				=	=	-	=			-		=	Ф		-	=	ns as for s	2	2			Z				5.0 V				5.0 V		
Cases E, F	Case 2	Test no.	49	Same tests, terminal conditions, and limits as subgroup 1, except $T_{\rm C}$ = +125°C and $V_{\rm IC}$ tests are omitted	conditions,	20	3°C table " 51 " " A	52	53	54	55	99	22	58	59	09	61	62	63	64	65	99	29	89	69	20	Same tests and terminal conditions as for subgroup 7 except $T_{\rm C}$ = +125°C and $T_{\rm C}$	71	73	74	75	9/	77	78	62	80	81	82	83	84	85	86
MIL-STD-	883 method	<u> </u>	3005	s, terminal	s, terminal	3014	-		-	-				-			= 1					-				=	s and termi	3003	5 4	-	=	-	-	-				-	=			
2	Symbol		8	ame test	ame test	Truth	table	tests																			ame test.	t РГН1			PHL1				PLH2	_			PHL2	_		_
						7 2/3/	c = 25°C 1	-																					2 S2 = 3		<u> </u>										_	_
	Subgroup		1 Tc = 25°C	2	3	7 2/3/	$Tc = 25^{\circ}C$																					6	2, cz = 5													

See footnotes at end of device type 02.

2

TABLE III. Group A inspection for device type 02. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.7 V; or open).

	. 46 .
12 13 14 15 16 16 16 17 18 19 20 Measured Limits 19 20 Min 20 20 20 20 20 20 20 2	
1	-
12 13 14 15 16 16 16 17 18 19 20 18 19 20 19 19 19 19 19 19 19 1	
12 13 14 15 16 16 16 17 18 19 20 18 19 20 19 19 19 19 19 19 19 1	
1 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	
4 15 13 14 18 MA WB WA GND IN	
1 12 13 14 15 14 1	
1	
- 4 αβ	
10 11 6R 0UT 6ND 0UT 6ND 0UT 6ND 0UT 6ND	
10 01 13 00UT 00UT 00UT 13 sits as sh	
9 22 22 00TT 00UT and test	
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
9 9 9 0UT OUT OUT SXCept T _C	
9 8 04 00UT 00UT 00UT 00UT	
S as for such	.55°C.
Sonditions	cept T _c = .
3 GND GND GND d terminal	oup 10, ex
3 4 5 7 7 8 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	for subgre
2 2 2 2 Sam	nd limits as
E, F Cases Case Case 2 88 89 90 90 91 91 92 92 93 94 94 94 97 96 97 97 97 97 97 97 97 97 97 97 97 97 97	PHL4 " 110 Same tests, terminal conditions and limits as for subgroup 10, except T _C = -55°
MIL-STD. 883 3003 3003 Fig. 4	, terminal c
	PHL4 ame tests
Subgroup Symbol TC = 26°C 5/5/7 TC = 100 10 10 10 10 10 10 10 10 10 10 10 10	11

1/ Min/max limits (µA) for circuits, unless otherwise specified.

	F	-135/-370 except	-150/-380 for test 23		-320/-800	-320/-800	
its (mA)	Е	-120/-360 except	-0.5/-360 for tests	22 and 24	-240/-720	-240/-720	
Min/max limits (mA)	С	-160/-400 except	-120/-360 for test 24		-305/-760	-305/-760	
	В	-30/-300			006-/06-	009-/09-	
	А	-120/-360			-240/-720	-240/-720	
	Test	lц			בוון	เม	

 $\underline{2}/$ Connect a 0.5 k Ω to 2 k Ω resistor from terminals, 6, 7, 9, and 10 to V_{∞} for subgroup 7 tests.

3.0 V $\frac{3}{4}$ A = 3.0 V min., B = 0.0 V or GND, C = pulse 3.0 V - 0.0 V

 $\underline{4}$ Output voltages shall be: H > 1.5 V, L < 1.5 V

5/ Load ground into register under test prior to test.

6/ Load one state into register under test prior to test.

5. PACKAGING

5.1 <u>Packaging requirements</u>. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature which may be helpful, but is not mandatory.)

- 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
 - 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. Complete part number (see 1.2).
 - c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - j. Requirements for "JAN" marking.
- 6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
- 6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

V _{IC}	Current flowing into an input terminal. Input clamp voltage. Voltage level at an input terminal. Output current in the high impedance mode with the output voltage low. Output current in the high impedance mode with the output voltage high.
t _{PLZ}	Output disable time from low level - The time between the specified reference points on the input and output voltage waveforms with the three state output changing from the defined low level to a high impedance (off) state.
t _{PZH}	Output enable time to high level - The time between the specified reference points on the input and output voltage waveforms with the three state output changing from a high impedance (off) state to the defined high level.
t _{PZL}	Output enable time to low level - The time between the specified reference points on the input and output voltage waveforms with the three state output changing from a high impedance (off) state to the defined low level.

- 6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
- 6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Г	Military device	Generic-industry
	type	type
	01	54LS670
	02	54LS170

6.8 <u>Manufacturers' designation</u>. Manufacturers' circuits, which form a part of this specification, are designated with an "X" as shown in table IV herein.

TABLE IV. Manufacturer's designator.

			Manufacturer		
	Circuit A	Circuit B	Circuit C	Circuit E	Circuit F
Device type	Texas Instruments	Signetics Corp.	National Semiconductor	Fairchild Semiconductor	Motorola Inc.
01	Х	Х	Х	Х	Х
02	Х	Х	X	Х	X

6.9 <u>Changes from previous issue.</u> Asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

Custodians:

Army - CR Navy - EC Air Force - 11 DLA - CC

Preparing activity: DLA - CC

(Project 5962-1966)

Review activities: Army - MI, SM Navy - AS, CG, MC, SH, TD Air Force - 03, 19, 99

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

INSTRUCTIONS

- 1. The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter should be given.
- 2. The submitter of this form must complete blocks 4, 5, 6, and 7, and send to preparing activity.
- 3. The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts.

Comments submitted on this form do not co contractual requirements.	nstitute or imply authorization to waive any p	ortion of the referenced document(s) or to amend
I RECOMMEND A CHANGE:	DOCUMENT NUMBER MIL-M-38510/319C	2. DOCUMENT DATE (YYYYMMDD) 2003-07-14
3. DOCUMENT TITLE MICROCIRCUITS DIGITAL LOW-POL	WER SCHOTTKY TTI 4 BY 4 REGIST	ER FILE, CASCADABLE, MONOLITHIC SILICON
4. NATURE OF CHANGE (Identify paragraph		
5. REASON FOR RECOMMENDATION		
6. SUBMITTER a. NAME (Last, First Middle Initial)	b. ORGANIZATION	
c. ADDRESS (Include Zip Code)	d. TELEPHONE (Inc. (1) Commercial (2) DSN (If applicable)	clude Area Code) 7. DATE SUBMITTED (YYYYMMDD)
8. PREPARING ACTIVITY		
a. NAME Defense Supply Center, Columbus	b. TELEPHONE (Inc (1) Commercial 61	
c. ADDRESS (Include Zip Code) DSCC-VA P. O. Box 3990 Columbus, Ohio 43216-5000	Defense Standard 8725 John J. King Fort Belvoir, Virgir	CEIVE A REPLY WITHIN 45 DAYS, CONTACT: ization Program Office (DLSC-LM) man Road, Suite 2533 nia 22060-6221 57-6888 DSN 427-6888

DD Form 1426, FEB 1999 (EG)

PREVIOUS EDITIONS ARE OBSOLETE.