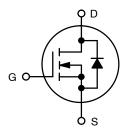
N-Channel QFET® MOSFET

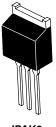
600 V, 2.4 A, 3.4 Ω

This N-Channel enhancement mode power MOSFET is produced using ON Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

Features

- 2.4 A, 600 V, $R_{DS(on)} = 3.4 \Omega$ (Max.) @ $V_{GS} = 10$ V, $I_D = 1.2$ A
- Low Gate Charge (Typ. 10.5 nC)
- Low C_{rss} (Typ. 5 pF)
- 100% Avalanche Tested
- These Devices are Pb-Free and are RoHS Compliant


Applications


- LCD / LED TV
- Lighting
- Charger / Adapter

ON Semiconductor®

www.onsemi.com

CASE 369AR

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 2 of this data sheet.

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Value	Unit	
V _{DSS}	Drain-to-Source Voltage		600	V
V _{GSS}	Gate-to-Source Voltage		±30	V
I _D	Drain Current	Continuous (T _C = 25°C)	2.4	Α
		Continuous (T _C = 100°C)	1.5	
I _{DM}	Drain Current	Pulsed (Note 1)	9.6	Α
E _{AS}	Single Pulse Avalanche Energy (Note 2)		150	mJ
I _{AR}	Avalanche Current (Note 1)		2.4	Α
E _{AR}	Repetitive Avalanche Energy (Note 1)		4.0	mJ
dv/dt	Peak Diode Recovery (Note 3)		4.5	V/ns
P _D	Power Dissipation	T _C = 25°C	50	W
		Derate Above 25°C	0.4	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes (1/8" from case for 5 seconds)		300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature. 2. $I_{AS} = 2.4 \text{ A}$, $V_{DD} = 50 \text{ V}$, L = 47 mH, $R_G = 25 \Omega$, starting $T_J = 25^{\circ}\text{C}$. 3. $I_{SD} \le 3 \text{ A}$, di/dt $\le 200 \text{ A}/\mu\text{s}$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}\text{C}$.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case, Max.	2.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient, Max.	110	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FQU3N60CTU	FQU3N60C	IPAK	Tube	N/A	N/A	75 units

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS					
BV _{DSS}	Drain-to-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	600	_	_	V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	0.6	-	V/°C
I _{DSS}	I _{DSS} Zero Gate Voltage Drain Current	V _{DS} = 600 V, V _{GS} = 0 V	-	_	1	μΑ
		V _{DS} = 480 V, T _C = 125°C	-	_	10	
I _{GSSF}	Gate-to-Body Leakage Current	V _{GS} = 30 V, V _{DS} = 0 V	-	-	100	nA
I _{GSSR}	Gate-to-Body Leakage Current	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$	_	-	-100	nA
ON CHARAC	TERISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.0	-	4.0	V
R _{DS(on)}	Static Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 1.2 A	-	2.8	3.4	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 1.2 A	-	3.5	-	S
DYNAMIC CH	HARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz	-	435	565	pF
C _{oss}	Output Capacitance		-	45	60	
C _{rss}	Reverse Transfer Capacitance	1	_	5	8	
SWITCHING	CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 300 V, I _D = 3 A,	-	12	34	ns
t _r	Turn-On Rise Time	\widetilde{H}_{G}^{C} = 25 Ω (Note 4)	_	30	70	
t _{d(off)}	Turn-Off Delay Time		_	35	80	
t _f	Turn-Off Fall Time		_	35	80	
Qg	Total Gate Charge at 10 V	$V_{DS} = 480 \text{ V}, I_{D} = 3 \text{ A},$	-	10.5	14	nC
Q_{gs}	Gate-to-Source Gate Charge	V _{GS} = 10 V (Note 4)	_	2.1	_	
Q _{gd}	Gate-to-Drain "Miller" Charge	1	_	4.5	-	
DRAIN-SOU	RCE DIODE CHARACTERISTICS					
IS	Maximum Continuous Drain to Source Diode Forward Current		_	_	3	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	_	12	
V_{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 2.4 \text{ A}$	-	_	1.4	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V}, I_{S} = 3 \text{ A},$	-	260	_	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/μs	-	1.6	-	μС

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially independent of operating temperature.

TYPICAL CHARACTERISTICS

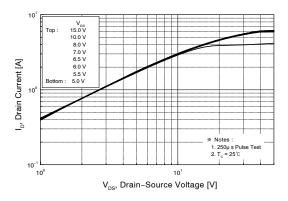


Figure 1. On-Region Characteristics

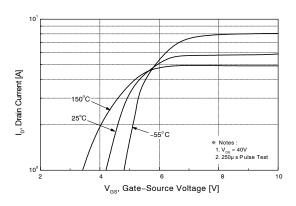


Figure 2. Transfer Characteristics

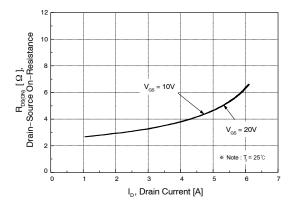


Figure 3. On–Resistance Variation vs. Drain Current and Gate Voltage

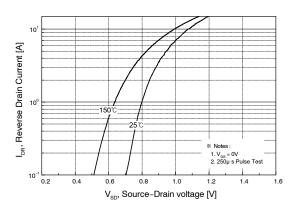


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

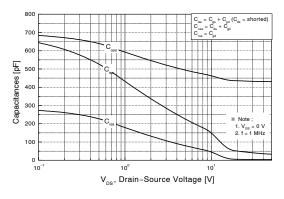


Figure 5. Capacitance Characteristics

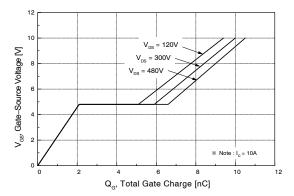


Figure 6. Gate Charge Characteristics

TYPICAL CHARACTERISTICS

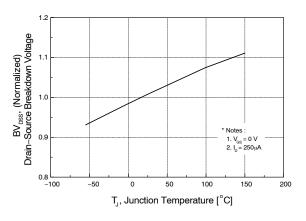


Figure 7. Breakdown Voltage Variation vs. Temperature

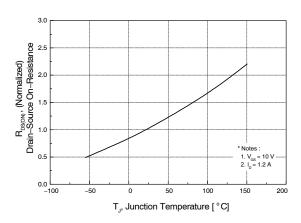


Figure 8. On–Resistance Variation vs. Temperature

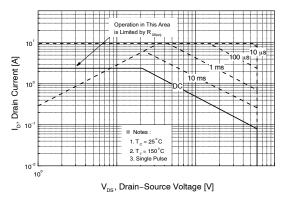


Figure 9. Maximum Safe Operating Area

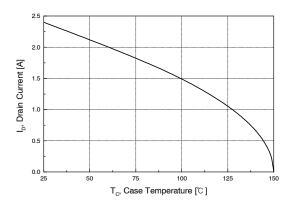


Figure 10. Maximum Drain Current vs. Case Temperature

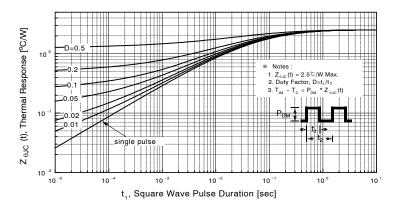


Figure 11. Transient Thermal Response Curve

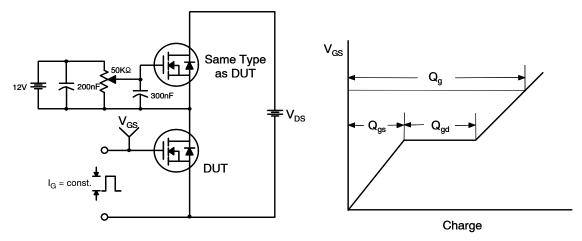


Figure 12. Gate Charge Test Circuit & Waveform

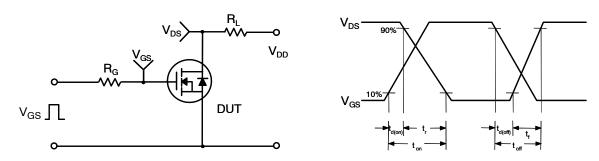


Figure 13. Resistive Switching Test Circuit & Waveforms

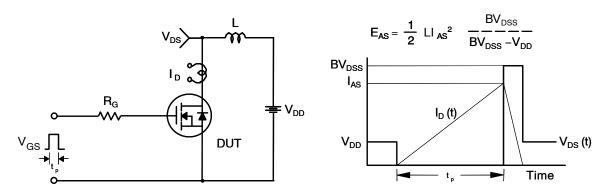
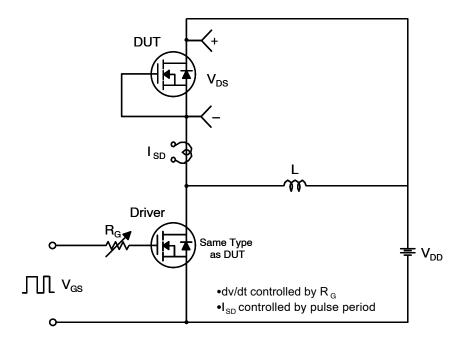



Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

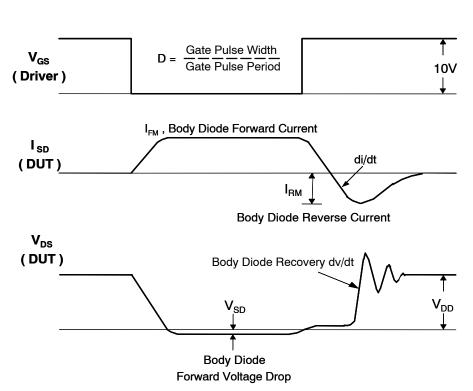
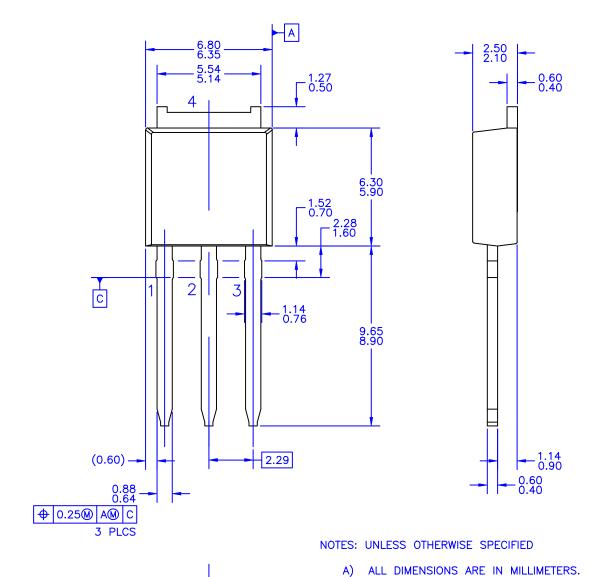


Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

THIS PACKAGE CONFORMS TO JEDEC, TO-251,


ISSUE C, VARIATION AA, DATED SEP 1988.

DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

DPAK3 (IPAK) CASE 369AR ISSUE O

DATE 30 SEP 2016

DOCUMENT NUMBER:	98AON13815G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK3 (IPAK)		PAGE 1 OF 1		

B)

C)

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales