

ON Semiconductor

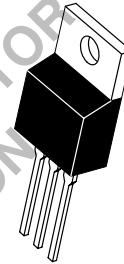
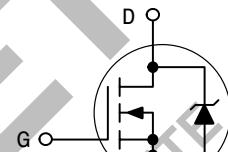
Is Now

To learn more about onsemi™, please visit our website at
www.onsemi.com

onsemi and **onsemi** and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

TMOS E-FET™

Power Field Effect Transistor



N-Channel Enhancement-Mode Silicon Gate

This high voltage MOSFET uses an advanced termination scheme to provide enhanced voltage-blocking capability without degrading performance over time. In addition, this advanced TMOS E-FET is designed to withstand high energy in the avalanche and commutation modes. This new energy efficient design also offers a drain-to-source diode with a fast recovery time. Designed for low voltage, high speed switching applications in power supplies, converters, PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional safety margin against unexpected voltage transients.

- Robust High Voltage Termination
- Avalanche Energy Specified
- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- Diode is Characterized for Use in Bridge Circuits
- I_{DSS} and $V_{DS(on)}$ Specified at Elevated Temperature

MTP8N50E

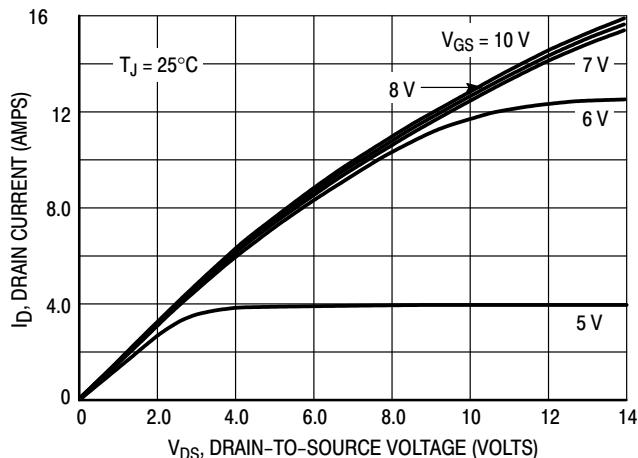
TMOS POWER FET
8.0 AMPERES
500 VOLTS
 $R_{DS(on)} = 0.8 \text{ OHM}$

CASE 221A-09, Style 5
TO-220AB

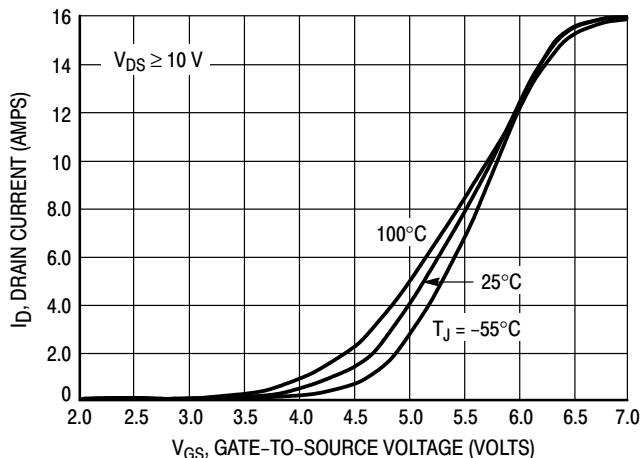
MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	500	Vdc
Drain-to-Gate Voltage ($R_{GS} = 1.0 \text{ M}\Omega$)	V_{DGR}	500	Vdc
Gate-to-Source Voltage – Continuous – Non-repetitive ($t_p \leq 10 \text{ ms}$)	V_{GS} V_{GSM}	± 20 ± 40	Vdc Vpk
Drain Current — Continuous @ $T_C = 25^\circ\text{C}$ — Continuous @ $T_C = 100^\circ\text{C}$ — Single Pulse ($t_p \leq 10 \mu\text{s}$)	I_D I_D I_{DM}	8.0 5.0 32	Adc Adc Apk
Total Power Dissipation @ $T_C = 25^\circ\text{C}$ Derate above 25°C	P_D	125 1.0	Watts W/ $^\circ\text{C}$
Operating and Storage Temperature Range	T_J, T_{stg}	-55 to 150	$^\circ\text{C}$
Single Pulse Drain-to-Source Avalanche Energy – STARTING $T_J = 25^\circ\text{C}$ ($V_{DD} = 25 \text{ Vdc}$, $V_{GS} = 10 \text{ Vdc}$, PEAK $I_L = 8.0 \text{ Apk}$, $L = 16 \text{ mH}$, $R_G = 25 \Omega$)	E_{AS}	510	mJ
Thermal Resistance – Junction-to-Case – Junction-to-Ambient	$R_{\theta JC}$ $R_{\theta JA}$	1.0 62.5	$^\circ\text{C/W}$
Maximum Lead Temperature for Soldering Purposes, 1/8" from Case for 5 sec.	T_L	260	$^\circ\text{C}$

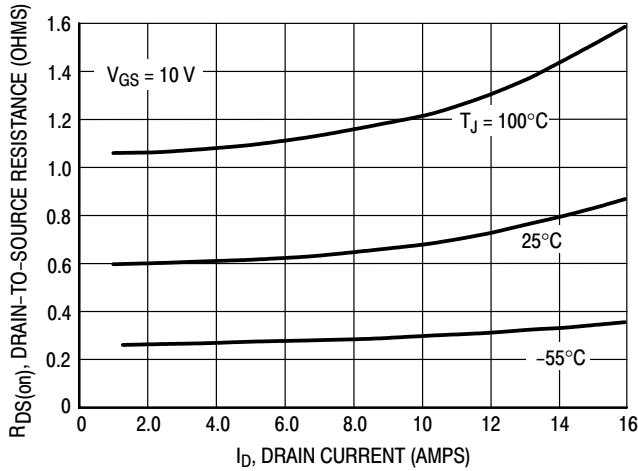
MTP8N50E

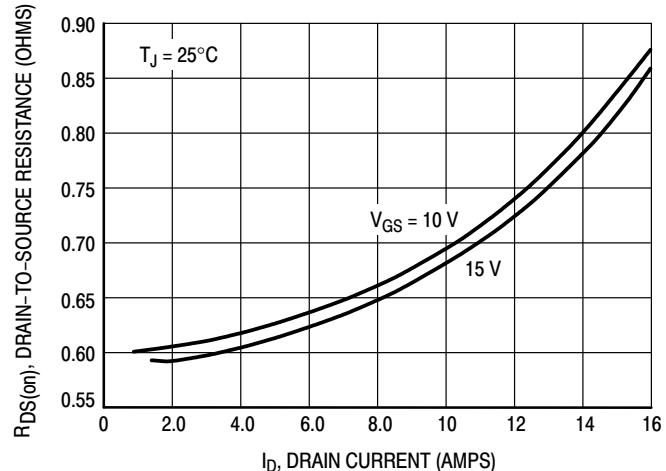

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

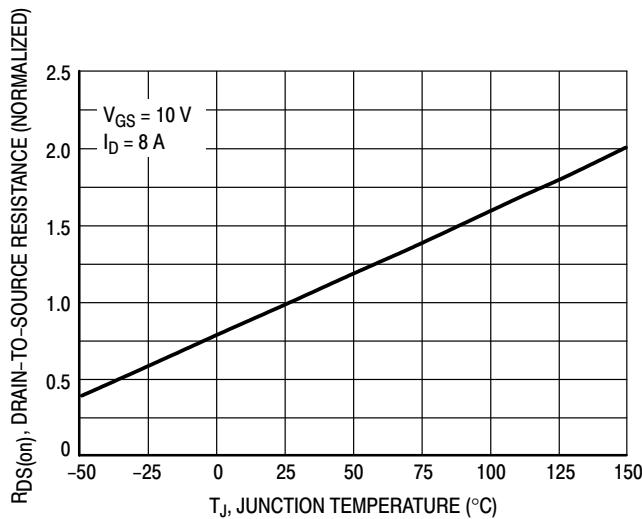
Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-to-Source Breakdown Voltage ($V_{GS} = 0$ Vdc, $I_D = 250$ μA dc) Temperature Coefficient (Positive)	$V_{(\text{BR})\text{DSS}}$	500 —	— 500	— —	Vdc $\text{mV}/^\circ\text{C}$
Zero Gate Voltage Drain Current ($V_{DS} = 500$ Vdc, $V_{GS} = 0$ Vdc) ($V_{DS} = 400$ Vdc, $V_{GS} = 0$ Vdc, $T_J = 125^\circ\text{C}$)	I_{DSS}	— —	— —	250 1000	μA dc
Gate-Body Leakage Current ($V_{GS} = \pm 20$ Vdc, $V_{DS} = 0$ Vdc)	I_{GSS}	— —	— —	100	nAdc
ON CHARACTERISTICS (1)					
Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = 250$ μA dc) Threshold Temperature Coefficient (Negative)	$V_{GS(\text{th})}$	2.0 —	2.8 6.3	4.0 —	Vdc $\text{mV}/^\circ\text{C}$
Static Drain-to-Source On-Resistance ($V_{GS} = 10$ Vdc, $I_D = 4.0$ Adc)	$R_{DS(\text{on})}$	—	0.6	0.8	Ohms
Drain-to-Source On-Voltage ($V_{GS} = 10$ Vdc) ($I_D = 8.0$ Adc) ($I_D = 4.0$ Adc, $T_J = 125^\circ\text{C}$)	$V_{DS(\text{on})}$	— —	5.0 —	7.2 6.4	Vdc
Forward Transconductance ($V_{DS} = 15$ Vdc, $I_D = 4.0$ Adc)	g_{FS}	4.0	—	—	mhos
DYNAMIC CHARACTERISTICS					
Input Capacitance	$(V_{DS} = 25$ Vdc, $V_{GS} = 0$ Vdc, $f = 1.0$ MHz)	C_{iss}	—	1450	1680
Output Capacitance		C_{oss}	—	190	246
Transfer Capacitance		C_{rss}	—	45.4	144
SWITCHING CHARACTERISTICS (2)					
Turn-On Delay Time	$(R_{\text{go}} + C_{17n} = 9.1$ Ω)	$t_{\text{d}(\text{on})}$	—	15	50
Rise Time		t_r	—	33	72
Turn-Off Delay Time		$t_{\text{d}(\text{off})}$	—	40	150
Fall Time		t_f	—	32	60
Gate Charge (see Figure 8)	$(V_{DS} = 400$ Vdc, $I_D = 8.0$ Adc, $V_{GS} = 10$ Vdc)	Q_T	—	40	64
		Q_1	—	8.0	—
		Q_2	—	17	—
		Q_3	—	17.3	—
SOURCE-DRAIN DIODE CHARACTERISTICS					
Forward On-Voltage ($I_S = 8.0$ Adc, $V_{GS} = 0$ Vdc) ($I_S = 8.0$ Adc, $V_{GS} = 0$ Vdc, $T_J = 125^\circ\text{C}$)	V_{SD}	—	1.2	2.0	Vdc
		—	1.1	—	
Reverse Recovery Time	$(I_S = 8.0$ Adc, $V_{GS} = 0$ Vdc, $dI_S/dt = 100$ A/ μs)	t_{rr}	—	320	—
		t_a	—	179	—
		t_b	—	141	—
Reverse Recovery Stored Charge		Q_{RR}	—	3.0	μC
INTERNAL PACKAGE INDUCTANCE					
Internal Drain Inductance (Measured from the drain lead 0.25" from package to center of die)	L_D	—	4.5	—	nH
Internal Source Inductance (Measured from the source lead 0.25" from package to source bond pad)	L_S	—	7.5	—	


(1) Pulse Test: Pulse Width ≤ 300 μs , Duty Cycle $\leq 2.0\%$.

(2) Switching characteristics are independent of operating junction temperature.


TYPICAL ELECTRICAL CHARACTERISTICS


Figure 1. On-Region Characteristics


Figure 2. Transfer Characteristics

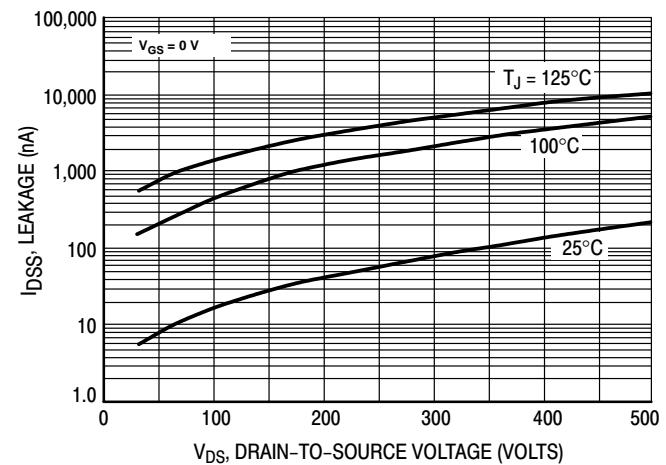

Figure 3. On-Resistance versus Drain Current and Temperature

Figure 4. On-Resistance versus Drain Current and Gate Voltage

Figure 5. On-Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current versus Voltage

TYPICAL ELECTRICAL CHARACTERISTICS

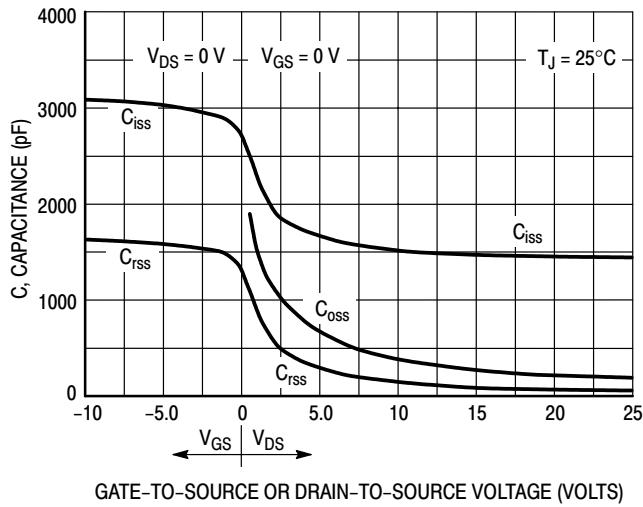


Figure 7. Capacitance Variation

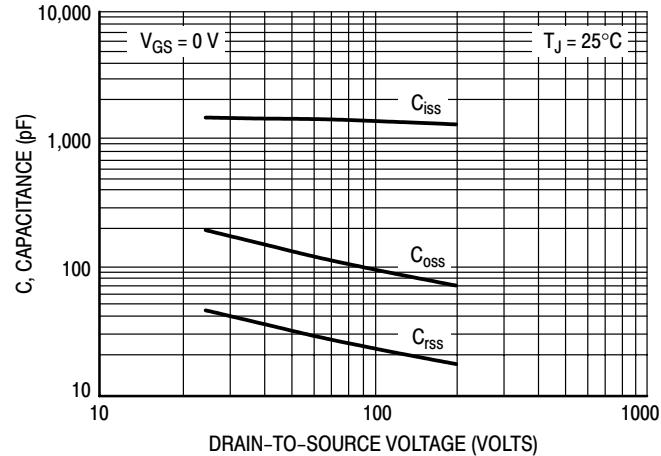


Figure 8. High Voltage Capacitance Variation

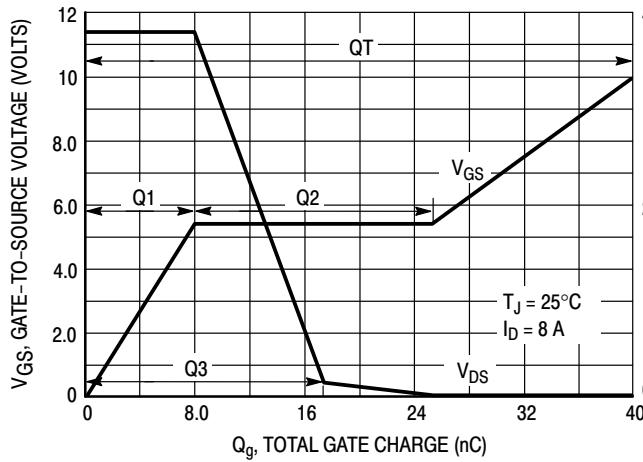


Figure 9. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

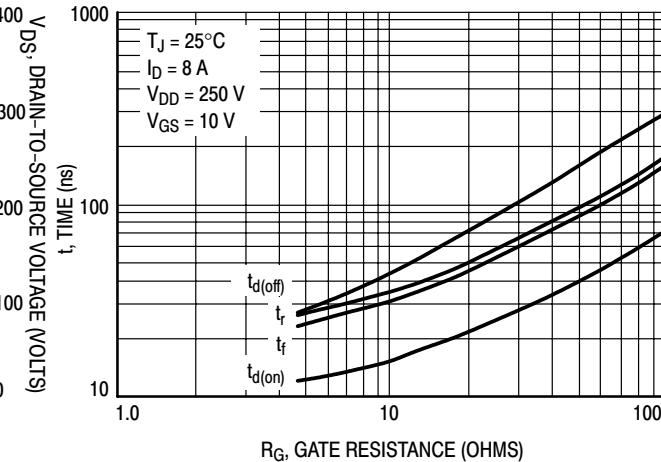


Figure 10. Resistive Switching Time Variation versus Gate Resistance

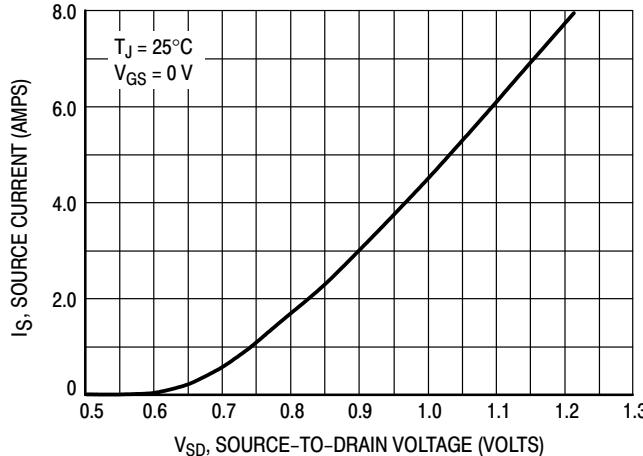


Figure 11. Diode Forward Voltage versus Current

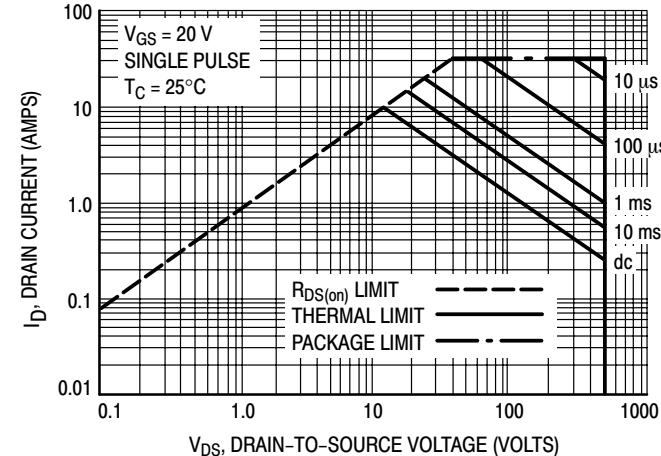
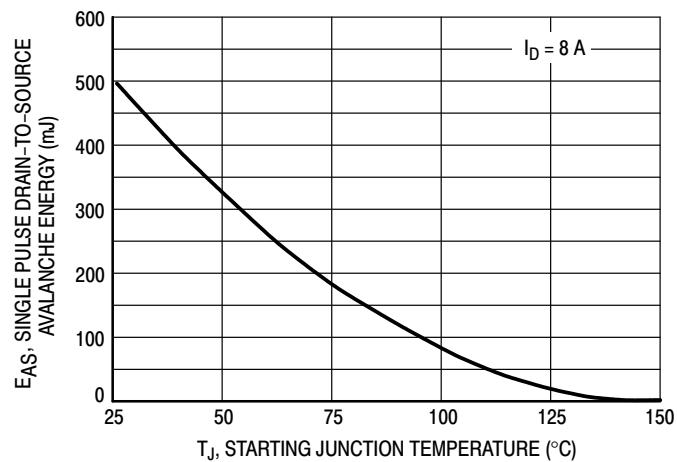
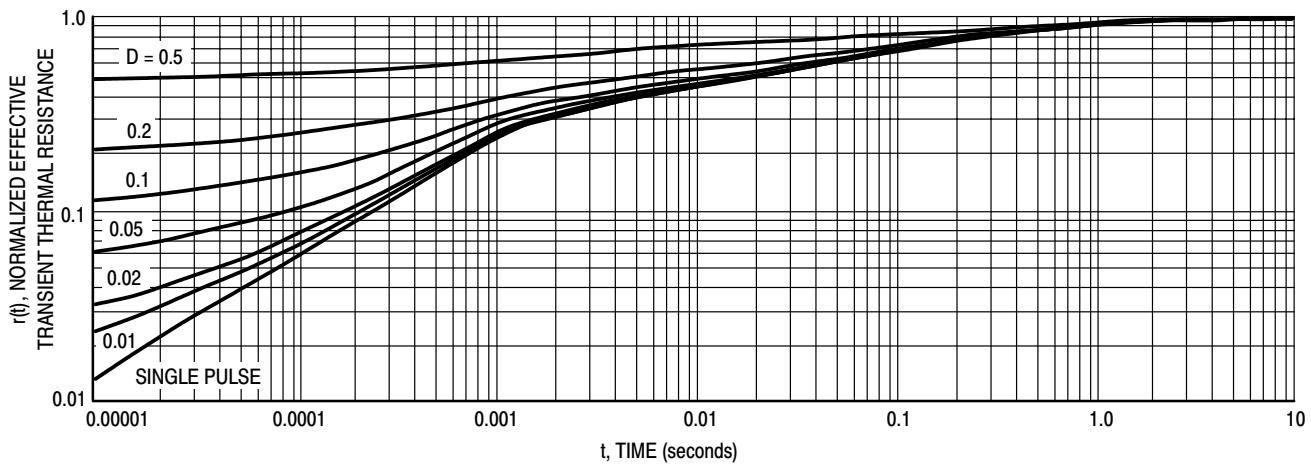




Figure 12. Maximum Rated Forward Biased Safe Operating Area

MTP8N50E

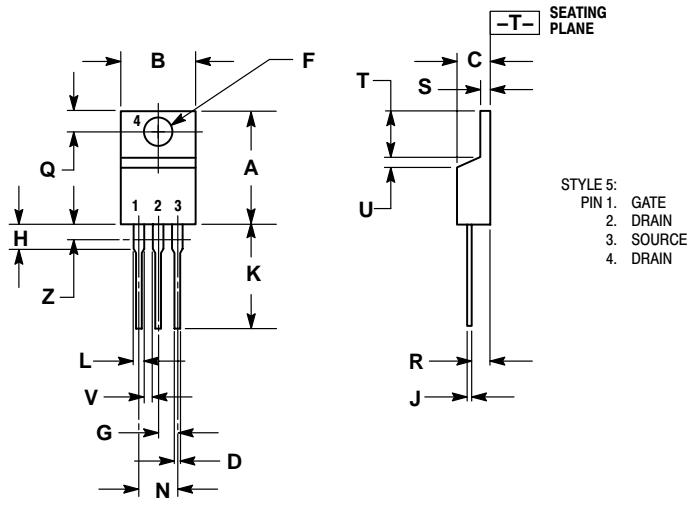

Figure 13. Maximum Avalanche Energy versus Starting Junction Temperature

Figure 14. Thermal Response

MTP8N50E

PACKAGE DIMENSIONS CASE 221A-09 ISSUE AA

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	---	0.080	---	2.04

Notes

E-FET and TMOS are trademarks of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET)
Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET)
Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)
Email: ONlit-spanish@hibbertco.com
Toll-Free from Mexico: Dial 01-800-288-2872 for Access –
then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001-800-4422-3781
Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com

ON Semiconductor Website: <http://onsemi.com>

For additional information, please contact your local
Sales Representative.