

TN2010H-6T

High temperature 20 A SCRs

Datasheet - production data

Description

Packaged in a non-isolated TO-220AB, this device offers high thermal performance during operation of up to 20 A_{RMS} , thanks to a junction temperature of up to 150 °C.

The combination of noise immunity and low gate triggering current allows to design strong and compact control circuit.

Table 1: Device summary

Order code	Package	V _{DRM} /V _{RRM}	l _{GT}	
TN2010H-6T	TO-220AB	600 V	10 mA	

Features

- High junction temperature: T_j = 150 °C
- High noise immunity dV/dt = 400 V/μs up to 150 °C
- Gate triggering current I_{GT} = 10 mA
- Peak off-state voltage V_{DRM}/V_{RRM} = 600 V
- High turn on current rise dl/dt = 100 A/µs
- ECOPACK®2 compliant component

Applications

- Motorbike voltage regulator circuits
- Inrush current limiting circuits
- Motor control circuits and starters
- Light dimmers
- Solid state relays

Characteristics TN2010H-6T

1 Characteristics

Table 2: Absolute maximum ratings (limiting values), $T_j = 25$ °C unless otherwise specified

Symbol	Parameter			Value	Unit
I _{T(RMS)}	RMS on-state current (180 ° conduction angle)		T _c = 132 °C	20	А
			T _c = 132 °C	12.7	
I _{T(AV)}	Average on-state current (180 ° conduction angle)		T _c = 137 °C	10	Α
	(100 conduction angle)		T _c = 140 °C	8	
l	Non repetitive surge peak on-state current (T _i initial = 25 °C)		$t_p = 8.3 \text{ ms}$	197	^
Ітѕм			$t_p = 10 \text{ ms}$	180	Α
l ² t	I ² t value for fusing		$t_p = 10 \text{ ms}$	162	A ² s
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, tr $\leq 100 \text{ ns}$		f = 60 Hz	100	A/µs
V _{DSM} /V _{RSM}	Non repetitive surge peak off-state voltage		t _p = 10 ms	700	V
l _{GM}	Peak gate current	t _p = 20 μs	T _j = 150 °C	4	Α
$P_{G(AV)}$	Average gate power dissipation $T_j = 150 \text{ °C}$			1	W
V _{RGM}	Maximum peak reverse gate voltage			5	V
T _{stg}	Storage junction temperature range			-40 to +150	°C
Tj	Operating junction temperature range			-40 to +150	°C
TL	Maximum lead temperature for soldering during 10 s			260	°C

Table 3: Electrical characteristics ($T_j = 25$ °C unless otherwise specified)

Symbol	Test conditions			Value	Unit
1			Тур.	5	mA
I _{GT}	$V_D = 12 \text{ V}, R_L = 33 \Omega$		Max.	10	mA
V_{GT}			Max.	1.3	V
V_{GD}	$V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega$ $T_j = 150 \text{ °C}$		Min.	0.1	V
Ін	I _T = 500 mA, gate open			40	mA
IL	I _G = 1.2 x I _{GT}		Max.	60	mA
dV/dt	$V_D = 402 \text{ V}$, gate open $T_j = 150 \text{ °C}$		Min.	400	V/µs
t _{gt}	$I_{TM} = 40 \text{ A}, V_D = 402 \text{ V}, I_G = 20 \text{ mA}, (dI_G/dt) \text{ max} = 0.2 \text{ A/µs}$ Typ		Тур.	1.9	μs
tq	$I_{TM} = 40 \text{ A}, V_D = 402 \text{ V}, (d_i/dt) \text{off} = 30 \text{ A/}\mu\text{s}, \ V_R = 25 \text{ V}, dV_D/dt = 40 \text{ V/}\mu\text{s}$ $T_j = 150 \text{ °C}$ Type		Тур.	70	μs

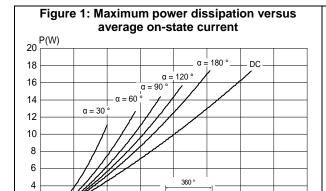
TN2010H-6T Characteristics

Table 4: Static characteristics

Symbol	Test conditions			Value	Unit
V _{ТМ}	$I_{TM} = 40 \text{ A}, t_p = 380 \mu\text{s}$	T _j = 25 °C	Max.	1.6	V
V _{TO}	Threshold voltage	T _j = 150 °C	Max.	0.82	V
R _D	Dynamic resistance	T _j = 150 °C	Max.	17.5	mΩ
		T _j = 25 °C		5	μΑ
I _{DRM} , I _{RRM}	$V_D = V_{DRM}, V_R = V_{RRM}$	T _j = 125 °C	Max.	2	^
		T _j = 150 °C		3.9	mA

Table 5: Thermal parameters

Symbol	Parameter		Value	Unit
R _{th(j-c)}	Junction to case (DC)	Max.	1.0	°C/W
R _{th(j-a)}	Junction to ambient (DC)	Тур.	60	-C/VV


Characteristics TN2010H-6T

 $I_{T(AV)}(A)$

15

1.1 Characteristics (curves)

2

10

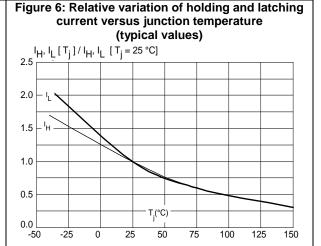
Figure 2: Average and DC on-state current versus case temperature $I_{T(AV)}(A)$ 24 DC 22 20 18 16 14 12 $\alpha = 120$ 10 $\alpha = 90^{\circ}$ 8 $\alpha = 60^{\circ}$ α = 30 ° 6 4 2 T_c(°C) 0 6 75 100 125

Figure 3: Average and D.C. on state current versus ambient temperature $I_{\mathsf{T}(\mathsf{AV})}(\mathsf{A})$ 3.0 2.5 DC 20 $\alpha = 180$ 1.5 1.0 0.5 T_a(°C) 0.0 25 50 75 100 125 150

Figure 4: Relative variation of thermal impedance versus pulse duration

K = [Z_{th}/ R_{th}]

1.0E+00


Z_{th(j-c)}

1.0E-01

1.0E-02

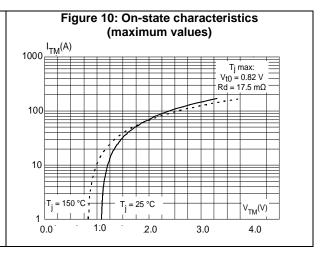
1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03

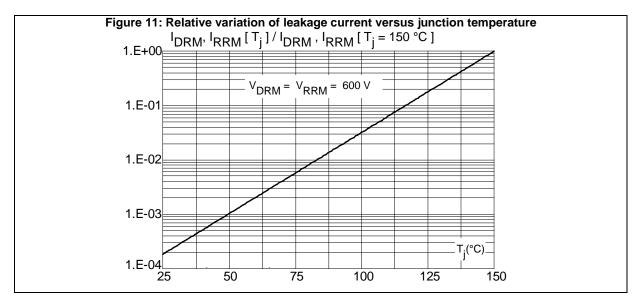
Figure 5: Relative variation of gate triggering current and gate voltage versus junction temperature (typical values) I_{GT}, V_{GT} [T_i] / I_{GT}, V_{GT} [T_i = 25 °C] 2.0 1.5 1.0 V_{GT} 0.5 T_i(°C) 0.0 -50 -25 0 25 50 75 100 125 150

4/9 DocID030739 Rev 1

TN2010H-6T Characteristics

Figure 7: Relative variation of static dV/dt immunity versus junction temperature (typical values)


dV/dt [T_j] / dV/dt [T_j = 150 °C]

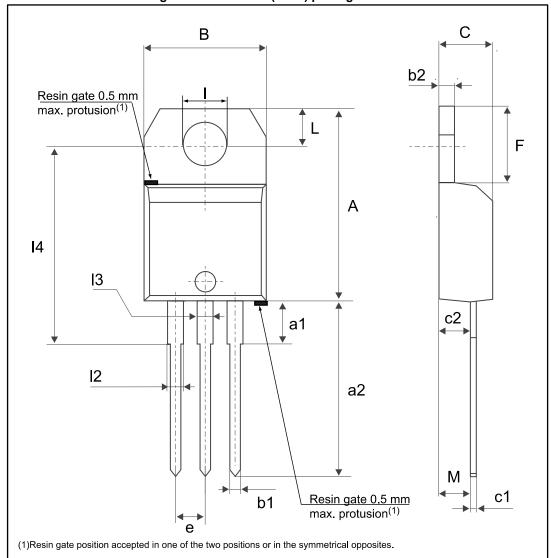

Above test equipment capability

Above test equipment capability

T_j(°C)

25 50 75 100 125 150

Package information TN2010H-6T


2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

- Epoxy meets UL94, V0
- Lead-free, halogen-free package
- Recommended torque value (TO-220AB): 0.4 to 0.6 N.m.

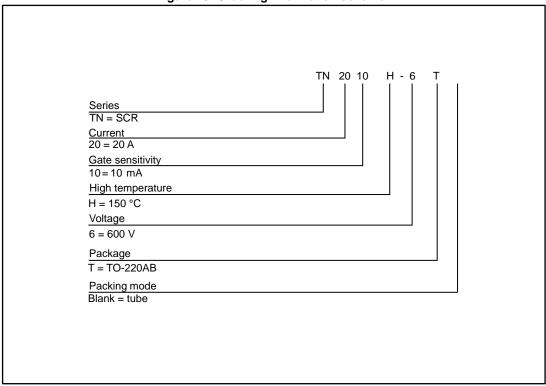
2.1 TO-220AB package information

Figure 12: TO-220AB (NIns.) package outline

TN2010H-6T Package information

Table 6: TO-220AB (NIns.) package mechanical data

	Dimensions					
Ref.		Millimeters				
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	15.20		15.90	0.5984		0.6260
a1		3.75			0.1476	
a2	13.00		14.00	0.5118		0.5512
В	10.00		10.40	0.3937		0.4094
b1	0.61		0.88	0.0240		0.0346
b2	1.23		1.32	0.0484		0.0520
С	4.40		4.60	0.1732		0.1811
c1	0.49		0.70	0.0193		0.0276
c2	2.40		2.72	0.0945		0.1071
е	2.40		2.70	0.0945		0.1063
F	6.20		6.60	0.2441		0.2598
I	3.73		3.88	0.1469		0.1528
L	2.65		2.95	0.1043		0.1161
12	1.14		1.70	0.0449		0.0669
13	1.14		1.70	0.0449		0.0669
14	15.80	16.40	16.80	0.6220	0.6457	0.6614
М		2.6			0.1024	


Notes:

⁽¹⁾Inch dimensions are for reference only.

Ordering information TN2010H-6T

3 Ordering information

Figure 13: Ordering information scheme

Table 7: Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
TN2010H-6T	TN2010H6	TO-220AB	2.3 g	50	Tube

4 Revision history

Table 8: Document revision history

Date	Revision	Changes
29-Aug-2017	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

