

Low-Noise Precision Instrumentation Amp

AMP01

1.0 SCOPE

This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at http://www.analog.com/marketSolutions/militaryAerospace/pdf/Die Broc.pdf is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/AMP01

2.0 **Part Number**. The complete part number(s) of this specification follow:

Part Number **AMP01-000C**

Description Low-Noise Precision Instrumentation Amplifier

3.0 **Die Information**

Die Dimensions 3.1

Die Size	Die Thickness	Bond Pad Metalization		
111 mil x 149 mil	19 mil ± 2 mil	Al/Cu		

Die Picture 3.2

1. R _G	10. V- (OUTPUT)
2. RG	11. V-
3INPUT	12. V+
4. Voos NULL	13. V+ (OUTPUT)
5. VOOS NULL	14. R _S
	15. R _S
6. TEST PIN*	16. VIOS NULL
7. SENSE	17. VIOS NULL
8. REFERENCE	18. +INPUT
9. OUTPUT	18. HINPOT

Make no electrical connection to unlabeled pads.

ASD0012820

Rev. H Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2009 Analog Devices, Inc. All rights reserved.

3.3 Absolute Maximum Ratings <u>1/</u>

Supply Voltage (V_S)	±18V dc
Common Mode Input Voltage	Supply Voltage
Differential Input Voltage:	
$R_G \ge 2k\Omega $	±20V dc
$R_G < 2k\Omega$	±10V dc
Output Short Circuit Duration	Indefinite
Storage Temperature Range	-65°C to +150°C
Ambient Operating Temperature Range	-55°C to +125°C
Junction Temperature (T _J)	+150°C

Absolute Maximum Ratings Notes:

<u>1/</u> Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

4.0 Die Qualification

In accordance with class-K version of Mil-Prf-38534, Appendix C, Table C-II, except as modified herein.

(a) Qual Samples Size and Qual Acceptance Criteria -25/2

(b) Qual Sample Package - DIP

(c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

	Table I	-Dice Electrical Cha	racteristics				
Parameter	Symbol	Conditions		Limit Min	Limit Max	Units	
Input Bias Current	IB				±4	nA	
Input Offset Current	I _{IO}				1	nA	
			G = 1000	120			
Offset Referred to Input vs.	+PSR	V + = +5V to $+15V$,	G = 100	110		dB	
Positive Supply	TLQK	V - = -15V	G = 10	95		uБ	
			G = 1	75			
			G = 1000	105			
Offset Referred to Input vs.	-PSR	V - = -5V to $-15V$,	G = 100	90		db	
Negative Supply	-PSK	V + = +15V	G = 10	70		- dB	
			G = 1	50			
Input Voltage Range	IVR			±10		V	
· · · ·	CMR		G = 1000	125		- dB	
Common Mode Rejection		$V_{CM} = IVR$	G = 100	120			
Common Wode Rejection			G = 10	100			
			G = 1	85			
Gain Equation Accuracy	GE	$G = 20R_s/R_s$	G		0.8	%	
Output Short Circuit Current	I _{OS +}			60	120	— mA	
Suput Short Circuit Current	I _{OS}			-120	-60	1112 \$	
Reference Input Resistance	R _{INREF}			35	65	kΩ	
Quiescent Current	I _Q	+V Linked to +V _{OP} -V Linked to -V _{OP}			4.8	mA	
Input Offset Voltage	V _{IOS}				120	μV	
Output Offset Voltage	V _{OOS}				6	mV	
Output Voltage Swing	Vo	$R_L = 2k\Omega$	±13				
		$R_L = 500\Omega$	±13		V		
		$R_L = 50\Omega$	±2.5				

Table I Notes:

 $\underline{1/V_{S}} = \pm 15V$, $R_{S} = 10k\Omega$, $R_{L} = 2k\Omega$, $T_{A} = 25^{\circ}C$, unless otherwise specified.

Tab	le II - Ele	ectrical Characteri	istics for Q		-		
Parameter	Symbol	Conditions	Sub- groups	Limit Min	Limit Max	Units	
Input Bias Current	I _B		-	1 2,3		± 4 ± 10	nA
Input Offset Current	I _{IO}		-	1 2,3		1 3	nA
Input Voltage Range	IVR			1,2,3	±10V		V
Offset Referred to Input vs. Positive Supply	+PSR	V + = +5V to +15V, V - = -15V	G = 1000 G = 100 G = 10 G = 1	1,2,3	120 110 95 75		dB
Offset Referred to Input vs. Negative Supply	-PSR	V = -5V to 15V, V = +15V	G = 1000 G = 100 G = 10 G = 1 G = 1	1,2,3	105 90 70 50		dB
Common Mode Rejection		V _{CM} = IVR, 1kΩ Source Imbalance	G = 1000 - $G = 100$ -	1 2,3 1	125 120 120		
	CMR		G = 100 G = 10	2,3 1 2,3	115 100 95		dB
Gain Equation Accuracy	GE	2/	G = 1	1 2,3	85 80	0.8	%
Gain Range	G	<u></u>		1	1	1000	/0
Dutput Short Circuit Current	I _{OS} + I _{OS}			1	60 -120	120 -60	mA
Reference Input Resistance	R _{INREF}			1	35	65	kΩ
Quiescent Current	I _Q	+V Linked to + -V Linked to -		1		4.8	mA
Input Offset Voltage	V _{IOS}		-	4 5,6		120 170	μV
Output Offset Voltage	V _{oos}		-	4 5,6		6 10	mV
Output Offset Voltage Drift	TCV _{OOS}	$RG = \infty$		8		50	μV/°
Output Voltage Swing	Vo	$RL = 500\Omega, 2I$	4 5,6	± 13 ± 12 ± 2.5		v	
Average Input Offset Voltage Drift	TCV _{IOS}	$RL = 50\Omega$ $T_{A} = -55^{\circ}C, +12$	4 8	±2.5		μV/°	

Table II Notes:

 $\underline{1/}$ V_S = ±15V, R_S = 100 Ω , R_L= 2k Ω , unless otherwise specified. $\underline{2/}$ G = 20R_S/R_G, accuracy measured at G = 1, 10, 100, and 1000.

Table III -Life Test Endpoint and Delta Parameter (Product is tested in accordance with Table II with the following exceptions)								
Parameter	Symbol	Sub- groups	Burn In Limit Min	Burn In Limit Max	Life Test Limit Min	Life Test Limit Max	Life Test Delta	Units
Input Offset Voltage	V_{IOS}	4		160		200	± 40	μV
input onset voltage	• 108	5,6				250		μv
Output Offset Voltage	V _{oos}	4		10		16	±6	mV
Output Offset Voltage	V OOS	5,6				20		111 V
Input Bias Current	I _B	1		± 7		± 10	± 3	nA
		2, 3				±16		117 X

5.0 Life Test/Burn-In Information

- 5.1 HTRB is not applicable for this drawing.
- **5.2** Burn-in is per MIL-STD-883 Method 1015 test condition B.
- **5.3** Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
Α	Initiate	15-NOV-01
В	Update web address	Jan. 25, 2002
С	Update web address	Aug. 5, 2003
D	Correct limits on Output Offset Voltage	18-JUL-2006
E	Update 1.0 Scope Description	18-Jul-07
F	Update header/footer and add to 1.0 scope description.	Mar. 3, 2008
G	Add Junction Temperature (T _J)+150°C to 3.3 Absolute Max. Ratings	April 2, 2008
Н	Updated Section 4.0c note to indicate pre-screen temp testing being performed.	5-JUN-2009

© 2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. Printed in the U.S.A. 06/09

www.analog.com

ASD0012820 Rev. H | Page 6 of 6