

Motion SPM[®] 45 Series FNB43060T2

FNB43060T2 is an advanced Motion SPM 45 module providing a fully-featured, high-performance inverter output stage for AC Induction, BLDC, and PMSM motors. These modules integrate optimized gate drive of the built-in IGBTs to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockouts, over-current shutdown, thermal monitoring of drive IC, and fault reporting. The built-in, high-speed HVIC requires only a single supply voltage and translates the incoming logic-level gate inputs to the high-voltage, high-current drive signals required to properly drive the module's internal IGBTs. Separate negative IGBT terminals are available for each phase to support the widest variety of control algorithms.

Features

- UL Certified No. E209204 (UL1557)
- 600 V 30 A 3–Phase IGBT Inverter with Integral Gate Drivers and Protection
- Low Thermal Resistance Using Ceramic Substrate
- Low-Loss, Short-Circuit Rated IGBTs
- Built-In Bootstrap Diodes and Dedicated Vs Pins Simplify PCB Layout
- Built-In NTC Thermistor for Temperature Monitoring
- Separate Open-Emitter Pins from Low-Side IGBTs for Three-Phase Current Sensing
- Single-Grounded Power Supply
- Isolation Rating: 2000 V_{rms}/ min.

Applications

• Motion Control - Home Appliance / Industrial Motor

Integrated Power Functions

 600 V – 30 A IGBT inverter for three–phase DC / AC power conversion (please refer to Figure 2)

Integrated Drive, Protection and System Control Functions

- For Inverter High-side IGBTs: gate drive circuit, high-voltage isolated high-speed level shifting control circuit Under-Voltage Lock-Out Protection (UVLO)(Note: Available bootstrap circuit example is given in Figure 14)
- For Inverter Low-side IGBTs: gate drive circuit, Short-Circuit Protection (SCP) control supply circuit Under-Voltage Lock-Out protection (UVLO)
- Fault Signaling: corresponding to UVLO (low-side supply) and SC faults
- Input Interface: High-active interface, works with 3.3 / 5 V logic, Schmitt trigger input

3D Package Drawing (Click to Activate 3D Content)

SPMAA-C26 / 26LD, PDD STD CERAMIC TYPE, LONG LEAD DUAL FORM TYPE (SPMAB-C26) CASE MODFC

MARKING DIAGRAM

\$Y = **onsemi** Logo &Z = Assembly Plant Code

&K = 2-Digits Lot Run Traceability Code

&3 = 3-Digit Date Code
BA = Specific Product Name
FNB43060T2= Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 13 of this data sheet.

Related Resources

- <u>AN-9084 Smart Power Module, Motion SPM® 45 H V3 Series User's Guide</u>
- <u>AN-9072 Smart Power Module Motion</u> <u>SPM[®] in SPM45H Thermal Performance</u> <u>Information</u>
- <u>AN-9071 Smart Power Module Motion</u> SPM[®] in SPM45H Mounting Guidance
- <u>AN-9760 PCB Design Guidance for SPM®</u>

PIN CONFIGURATION

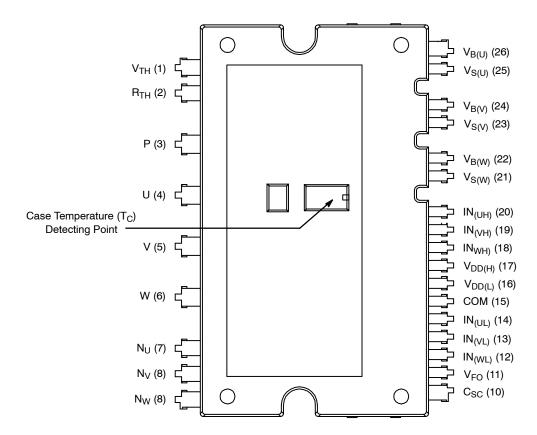
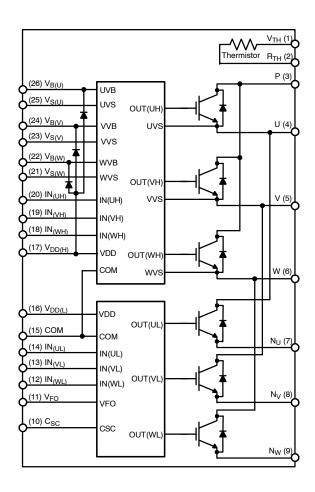


Figure 1. Pin Configuration - Top View


PIN DESCRIPTIONS

Pin Number	Pin Name	Pin Description
1	V_{TH}	Thermistor Bias Voltage
2	R _{TH}	Series Resistor for the Use of Thermistor (Temperature Detection)
3	Р	Positive DC-Link Input
4	U	Output for U-Phase
5	V	Output for V-Phase
6	W	Output for W-Phase
7	N _U	Negative DC-Link Input for U-Phase
8	N _V	Negative DC-Link Input for V-Phase
9	N _W	Negative DC-Link Input for W-Phase
10	C _{SC}	Shut Down Input for Short-circuit Current Detection Input
11	V_{FO}	Fault Output
12	IN _(WL)	Signal Input for Low-Side W-Phase
13	IN _(VL)	Signal Input for Low-Side V-Phase
14	IN _(UL)	Signal Input for Low-Side U-Phase
15	СОМ	Common Supply Ground
16	V _{DD(L)}	Low-Side Common Bias Voltage for IC and IGBTs Driving
17	V _{DD(H)}	High-Side Common Bias Voltage for IC and IGBTs Driving

PIN DESCRIPTIONS (continued)

Pin Number	Pin Name	Pin Description
18	IN _(WH)	Signal Input for High-Side W-Phase
19	IN _(VH)	Signal Input for High-Side V-Phase
20	IN _(UH)	Signal Input for High-Side U-Phase
21	V _{S(W)}	High-Side Bias Voltage Ground for W-Phase IGBT Driving
22	V _{B(W)}	High-Side Bias Voltage for W-Phase IGBT Driving
23	V _{S(V)}	High-Side Bias Voltage Ground for V-Phase IGBT Driving
24	V _{B(V)}	High-Side Bias Voltage for V-Phase IGBT Driving
25	V _{S(U)}	High-Side Bias Voltage Ground for U-Phase IGBT Driving
26	V _{B(U)}	High-Side Bias Voltage for U-Phase IGBT Driving

INTERNAL EQUIVALENT CIRCUIT AND INPUT/OUTPUT PINS

Notes:

- 1. Inverter high-side is composed of three IGBTs, freewheeling diodes, and one control IC for each IGBT.
- Inverter low-side is composed of three IGBTs, freewheeling diodes, and one control IC for each IGBT. It has gate drive and protection functions.
- 3. Inverter power side is composed of four inverter DC-link input terminals and three inverter output terminals.

Figure 2. Internal Block Diagram

ABSOLUTE MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Rating	Unit
INVERTER PA	ART			
V _{PN}	Supply Voltage	Applied between P – N _U , N _V , N _W	450	V
V _{PN(Surge)}	Supply Voltage (Surge)	Applied between P – N _U , N _V , N _W	500	V
V _{CES}	Collector – Emitter Voltage		600	V
± I _C	Each IGBT Collector Current	T _C = 25°C, T _J < 150°C	30	Α
± I _{CP}	Each IGBT Collector Current (Peak)	T_C = 25°C, T_J < 150°C, Under 1 ms Pulse Width (Note 4)	60	Α
P _C	Collector Dissipation	T _C = 25°C per One Chip (Note 4)	59	W
TJ	Operating Junction Temperature		−40 ~ 150	°C
CONTROL PA	ART			
V _{DD}	Control Supply Voltage	Applied between V _{DD(H)} , V _{DD(L)} – COM	20	V
V_{BS}	High-Side Control Bias Voltage	Applied between $V_{B(U)} - V_{S(U)}$, $V_{B(V)} - V_{S(V)}$, $V_{B(W)} - V_{S(W)}$	20	V
V _{IN}	Input Signal Voltage	Applied between $IN_{(UH)}$, $IN_{(VH)}$, $IN_{(WH)}$, $IN_{(UL)}$, $IN_{(WL)}$ – COM	-0.3 ~ V _{DD} + 0.3	V
V_{FO}	Fault Output Supply Voltage	Applied between V _{FO} – COM	-0.3 ~ V _{DD} + 0.3	V
I _{FO}	Fault Output Current	Sink Current at V _{FO} pin	1	mA
V _{SC}	Current-Sensing Input Voltage	Applied between C _{SC} – COM	-0.3 ~ V _{DD} + 0.3	V
BOOTSTRAP	DIODE PART			
V_{RRM}	Maximum Repetitive Reverse Voltage		600	V
l _F	Forward Current	T _C = 25°C, T _J < 150°C	0.5	Α
I _{FP}	Forward Current (Peak)	T_C = 25°C, T_J < 150°C, Under 1 ms Pulse Width (Note 4)	2.0	Α
TJ	Operating Junction Temperature		−40 ~ 150	°C
TOTAL SYST	EM			
V _{PN(PROT)}	Self Protection Supply Voltage Limit (Short-Circuit Protection Capability)	$V_{DD} = V_{BS} = 13.5 \sim 16.5 \text{ V},$ $T_J = 150^{\circ}\text{C}$, Non-Repetitive, < 2 μs	400	V
T _C	Module Case Operation Temperature	See Figure 1	−40 ~ 125	°C
T _{STG}	Storage Temperature		−40 ~ 125	°C
V _{ISO}	Isolation Voltage	60 Hz, Sinusoidal, AC 1 Minute, Connect Pins to Heat Sink Plate	2000	V _{rms}

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

4. These values had been made an acquisition by the calculation considered to design factor.

THERMAL RESISTANCE

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-c)Q}	Junction to Case Thermal Resistance (Note 5)	Inverter IGBT part, (Per 1 / 6 Module)	-	-	2.1	°C/W
R _{th(j-c)F}		Inverter FWDi part, (Per 1 / 6 Module)	-	_	2.8	°C/W

^{5.} For the measurement point of case temperature $(T_{\mbox{\scriptsize C}})$, please refer to Figure 1.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Symbol F		Parameter	Cond	itions	Min	Тур	Max	Unit
INVE	RTER PAR	T			•	•	•	•
V	CE(SAT)	Collector – Emitter Saturation Voltage	$V_{DD} = V_{BS} = 15 \text{ V},$ $V_{IN} = 5 \text{ V}$			1.65	2.25	V
	V _F	FWDi Forward Voltage	V _{IN} = 0 V	I _F = 30 A, T _J = 25°C	-	2.00	2.60	V
HS	t _{ON}	Switching Times	V _{PN} = 300 V, V _{DD} = V _{BS} =	15 V, I _C = 30 A,	0.45	0.85	1.35	μs
	t _{C(ON)}		$V_{IN} = 25^{\circ}C$ $V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}$, Inductive load	$T_J = 25^{\circ}C$ $V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}$ Inductive load		0.20	0.50	μs
	t _{OFF}		(Note 6)		-	0.70	1.20	μs
	t _{C(OFF)}				-	0.15	0.45	μs
	t _{rr}				_	0.10	-	μs
LS	t _{ON}		V _{PN} = 300 V, V _{DD} = V _{BS} =	= 15 V, I _C = 30 A,	0.25	0.90	1.40	μs
	t _{C(ON)}		$T_J = 25^{\circ}C$ $V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}$, Inductive	e load	_	0.30	0.60	μs
	t _{OFF}		(Note 6)		_	0.80	1.30	μs
	t _{C(OFF)}				_	0.15	0.45	μs
	t _{rr}]			_	0.15	-	μs
	I _{CES}	Collector - Emitter Leakage Current	VCE = VCES		-	-	1.00	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{6.} t_{ON} and t_{OFF} include the propagation delay of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching times of IGBT itself under the given gate driving condition internally. For the detailed information, please see Figure 3.

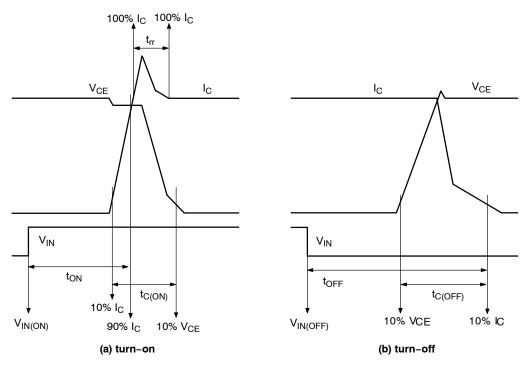


Figure 3. Switching Time Definition

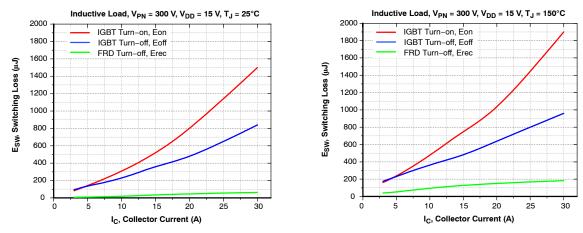


Figure 4. Switching Loss Characteristics (Typical)

Table 1. ELECTRICAL CHARACTERISTICS

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$ \begin{array}{ c c c c c } \hline U_{QDDL} & Current & V_{DD(L)} = 15 \ V, \ IN_{(UL,VL,WL)} = 0 \ V & V_{DD(L)} - COM & - & - \\ \hline U_{PDDH} & Operating \ V_{DD} \ Supply \ Current & V_{DD(H)} = 15 \ V, \ f_{PWM} = 20 \ kHz, \ duty = 50\%, \ Applied to One PWM \ Signal \ Input for High-Side & V_{DD(L)} - COM \ Applied to One PWM \ Signal \ Input for Low-Side & V_{DD(L)} - COM \ Applied to One PWM \ Signal \ Input for Low-Side & V_{DD(L)} - COM \ Applied to One PWM \ Signal \ Input for Low-Side & V_{B(U)} - V_{S(U)}, \ V_{B(V)} - V_{S(V)}, \ V_{B(V)} - V_{B(V)} - V_{B(V)}, \ V_{B(V)} - V_{B(V)}, \ V_{B(V)} $	ONTROL	. PART					•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I_{QDDH}		V _{DD(H)} = 15 V, IN _(UH,VH,WH) = 0 V	V _{DD(H)} – COM	-	-	0.10	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I_{QDDL}	Current	V _{DD(L)} = 15 V, IN _(UL,VL,WL) = 0 V	V _{DD(L)} – COM	-	-	2.65	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{PDDH}		Applied to One PWM Signal	V _{DD(H)} – COM	_	-	0.15	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{PDDL}		Applied to One PWM Signal	V _{DD(L)} – COM	-	-	4.00	mA
$\begin{array}{c} V_{FOH} \\ V_{FOL} \\ \end{array} \begin{array}{c} Fault \ Output \ Voltage \\ V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ V_{SC} = 1 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 1 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 1 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V, \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-up \\ \hline V_{SC} = 0 \ V \ V_{FO} \ Circuit: \ 4.7 \ k\Omega \ to \ 5 \ V \ Pull-$	I _{QBS}		V _{BS} = 15 V, IN _(UH, VH, WH) = 0 V	$ \begin{aligned} &V_{B(U)} - V_{S(U)}, \\ &V_{B(V)} - V_{S(V)}, \\ &V_{B(W)} - V_{S(W)} \end{aligned} $	-	-	0.30	mA
V_{FOL} V_{SC} = 1 V, V_{FO} Circuit: 4.7 kΩ to 5 V Pull-up $ V_{SC}$ Short Circuit Trip Level V_{DD} = 15 V (Note 7) C_{SC} - COM 0.45 0.50 UV_{DDD} Supply Circuit Under-Voltage Protection $-$ Reset level $-$ 11.0 $ -$	I _{PBS}	Quiescent V _{BS} Supply Current	Duty = 50%, Applied to One PWM	$ \begin{aligned} &V_{B(U)} - V_{S(U)}, \\ &V_{B(V)} - V_{S(V)}, \\ &V_{B(W)} - V_{S(W)} \end{aligned} $	-	_	2.00	mA
V _{SC(ref)} Short Circuit Trip Level V _{DD} = 15 V (Note 7) C _{SC} - COM 0.45 0.50 UV _{DDD} Supply Circuit Under-Voltage Protection Detection level 10.5 - UV _{BSD} Protection level 11.0 - UV _{BSR} Reset level 10.0 - Reset level 10.5 -	V_{FOH}	Fault Output Voltage	V_{SC} = 0 V, V_{FO} Circuit: 4.7 k Ω to 5 V Pull–up)	4.5	-	-	V
UV _{DDD} Supply Circuit Under-Voltage Protection Detection level 10.5 - UV _{DDR} Protection Reset level 11.0 - UV _{BSD} Detection level 10.0 - UV _{BSR} Reset level 10.5 -	V_{FOL}		V_{SC} = 1 V, V_{FO} Circuit: 4.7 k Ω to 5 V Pull–up)	-	-	0.5	V
UV _{DDR} Under-Voltage Protection Reset level 11.0 - UV _{BSD} Detection level 10.0 - UV _{BSR} Reset level 10.5 -	√ _{SC(ref)}	Short Circuit Trip Level	V _{DD} = 15 V (Note 7)	C _{SC} – COM	0.45	0.50	0.55	V
UV _{DDR} Protection Reset level 11.0 - UV _{BSD} Detection level 10.0 - UV _{BSR} Reset level 10.5 -	UV _{DDD}		Detection level	•	10.5	-	13.0	V
UV _{BSR} Reset level 10.5 -	UV_DDR		Reset level		11.0	-	13.5	V
	UV _{BSD}		Detection level		10.0	-	12.5	V
t _{FOD} Fault-Out Pulse Width 30 -	UV _{BSR}		Reset level	Reset level		-	13.0	V
	t _{FOD}	Fault-Out Pulse Width			30	-	_	μs
V _{IN(ON)} ON Threshold Voltage Applied between IN _(UH, VH, WH) - COM,	V _{IN(ON)}	ON Threshold Voltage	Applied between IN $_{(UH,\;VH,\;WH)}$ – COM, IN $_{(UL,\;VL,\;WL)}$ – COM		-	_	2.6	V
V _{IN(OFF)} OFF Threshold Voltage IN _(UL, VL, WL) – COM 0.8 –	IN(OFF)	OFF Threshold Voltage			8.0	-	_	V
R _{TH} Resistance of @T _{TH} = 25°C, (Note 8) - 47	R _{TH}		@T _{TH} = 25°C, (Note 8)		-	47	_	kΩ
Thermistor		rnermistor	@T _{TH} = 100°C		_	2.9	-	kΩ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{7.} Short-circuit current protection functioning only at the low-sides.

^{8.} T_{TH} is the temperature of thermistor itself. To know case temperature (T_C), please make the experiment considering your application.

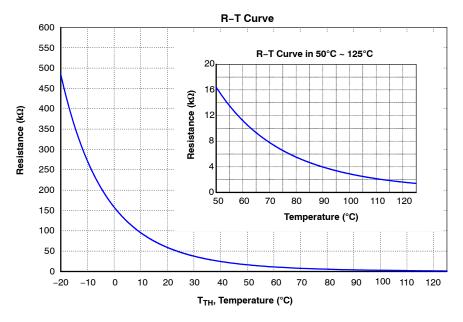


Figure 5. R-T Curve of The Built-In Thermistor

Table 2. ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions		Тур	Max	Unit
BOOTSTRAP DIODE PART						
V _F	Forward Voltage	I _F = 0.1 A, T _C = 25°C	-	2.5	-	V
t _{rr}	Reverse–Recovery Time	$I_F = 0.1 \text{ A}, dI_F / dt = 50 \text{ A}/\mu\text{s}, T_J = 25^{\circ}\text{C}$	-	80	-	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

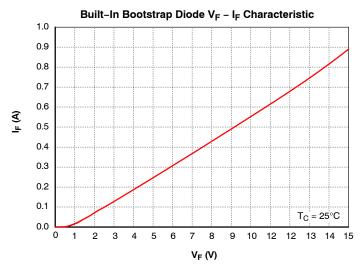


Figure 6. Built-In Bootstrap Diode Characteristic

NOTE:

9. Built-in bootstrap diode includes around 15 Ω resistance characteristic.

Table 3. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{PN}	Supply Voltage	Applied between P – N _U , N _V , N _W	-	300	400	V
V_{DD}	Control Supply Voltage	Applied between V _{DD(H)} , V _{DD(L)} – COM	13.5	15.0	16.5	V
V _{BS}	High - Side Bias Voltage	Applied between $V_{B(U)} - V_{S(U)}$, $V_{B(V)} - V_{S(V)}$, $V_{B(W)} - V_{S(W)}$	13.0	15.0	18.5	V
dV _{DD} / dt, dV _{BS} / dt	Control Supply Variation		-1	-	1	V/μs
t _{dead}	Blanking Time for Preventing Arm – Short	For each input signal	1.0	-	-	μs
f _{PWM}	PWM Input Signal	$-40^{\circ}C \le T_{C} \le 125^{\circ}C, -40^{\circ}C \le T_{J} \le 150^{\circ}C$	-	-	20	kHz
V _{SEN}	Voltage for Current Sensing	Applied between N _U , N _V , N _W - COM (Including surge voltage)	-4		4	V
P _{WIN(ON)}	Minimum Input Pulse Width	$V_{DD} = V_{BS} = 15 \text{ V}, I_C \le 60 \text{ A, Wiring Inductance}$	1.2	-	_	μs
P _{WIN(OFF)}		between N _{U, V, W} and DC Link N < 10 nH (Note 10)	1.2	-	-	
T _J	Junction Temperature		-40	-	150	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

^{10.} This product might not make response if input pulse width is less than the recommended value.

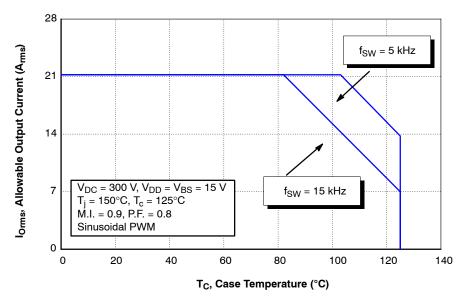


Figure 7. Allowable Maximum Output Current

NOTE:

11. This allowable output current value is the reference data for the safe operation of this product. This may be different from the actual application and operating condition.

Table 4. MECHANICAL CHARACTERISTICS AND RATINGS

Parameter	(Conditions		Тур	Max	Unit
Device Flatness	See Figure 8	See Figure 8		-	+120	μm
Mounting Torque	Mounting Screw: M3	Recommended 0.7 N • m	0.6	0.7	0.8	N • m
	See Figure 9	See Figure 9 Recommended 7.1 kg • cm	6.2	7.1	8.1	kg • cm
Weight		-	_	11.00	-	g

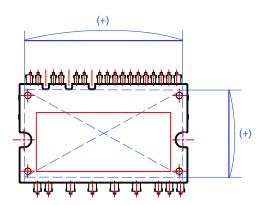


Figure 8. Flatness Measurement Position

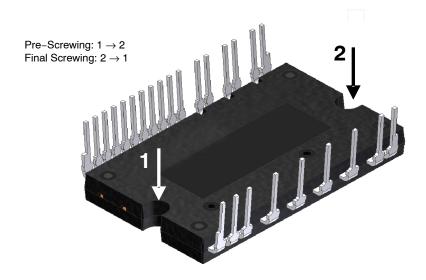
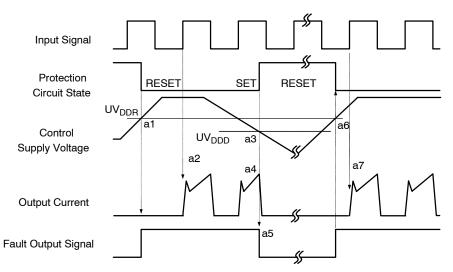
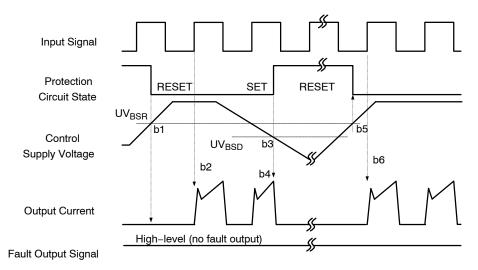



Figure 9. Mounting Screws Torque Order

NOTES:


- 12. Do not make over torque when mounting screws. Much mounting torque may cause ceramic cracks, as well as bolts and Al heat-sink destruction.
- 13. Avoid one–sided tightening stress. Figure 9 shows the recommended torque order for mounting screws. Uneven mounting can cause the ceramic substrate of package to be damaged. The pre–screwing torque is set to 20 ~ 30% of maximum torque rating.

TIME CHARTS OF PROTECTIVE FUNCTION

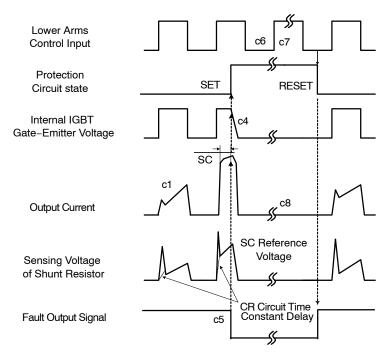
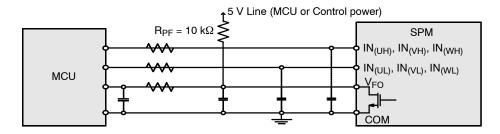

- a1: Control supply voltage rises: after the voltage rises UVDDR, the circuits start to operate when next input is applied.
- a2: Normal operation: IGBT ON and carrying current.
- a3: Under-voltage detection (UV_{DDD}).
- a4: IGBT OFF in spite of control input condition.
- a5: Fault output operation starts with a fixed pulse width.
- a6: Under-voltage reset (UVDDR).
- a7: Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.

Figure 10. Under-Voltage Protection (Low-Side)

- b1: Control supply voltage rises: after the voltage reaches UV_{BSR}, the circuits start to operate when next input is applied.
- b2: Normal operation: IGBT ON and carrying current.
- b3: Under voltage detection (UV_{BSD}).
- b4: IGBT OFF in spite of control input condition, but there is no fault output signal.
- b5: Under-voltage reset (UV_{BSR}).
- b6: Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.

Figure 11. Under-Voltage Protection (High-Side)



(with the external sense resistance and RC filter connection)

- c1: Normal operation: IGBT ON and carrying current.
- c2: Short circuit current detection (SC trigger).
- c3: All low-side IGBT's gate are hard interrupted.
- c4: All low-side IGBTs turn OFF.
- c5: Fault output operation starts with a fixed pulse width.
- c6: Input HIGH: IGBT ON state, but during the active period of fault output the IGBT doesn't turn ON.
- c7: Fault output operation finishes, but IGBT doesn't turn on until triggering next signal from LOW to HIGH.
- c8: Normal operation: IGBT ON and carrying current.

Figure 12. Short-Circuit Protection (Low-Side Operation Only)

INPUT/OUTPUT INTERFACE CIRCUIT

NOTE:

14. RC coupling at each input might change depending on the PWM control scheme used in the application and the wiring impedance of the application's printed circuit board. The input signal section of the Motion SPM 45 product integrates 5 kΩ (typ.) pull–down resistor. Therefore, when using an external filtering resistor, please pay attention to the signal voltage drop at input terminal.

Figure 13. Recommended MCU I/O Interface Circuit

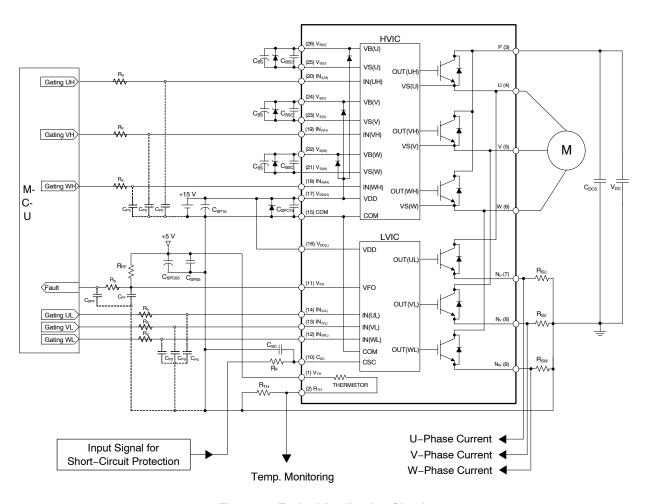


Figure 14. Typical Application Circuit

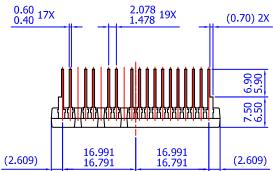
NOTES:

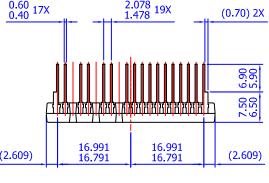
- 15. To avoid malfunction, the wiring of each input should be as short as possible (less than $2 \sim 3$ cm).
- 16. V_{FO} output is open-drain type. This signal line should be pulled up to the positive side of the MCU or control power supply with a resistor that makes I_{FO} up to 1 mA.
- 17. C_{SP15} of around seven times larger than bootstrap capacitor C_{BS} is recommended.
- 18. Input signal is active–HIGH type. There is a 5 k Ω resistor inside the IC to pull down each input signal line to GND. RC coupling circuits are recommended for the prevention of input signal oscillation. R_SC_{PS} time constant should be selected in the range 50 ~ 150 ns (recommended R_S = 100 Ω , C_{PS} = 1 nF).
- 19. To prevent errors of the protection function, the wiring around R_F and C_{SC} should be as short as possible.
- 20. In the short–circuit protection circuit, please select the $R_F C_{SC}$ time constant in the range 1.5 ~ 2 μ s. Do enough evaluaiton on the real system because short–circuit protection time may vary wiring pattern layout and value of the $R_F C_{SC}$ time constant.
- 21. The connection between control GND line and power GND line which includes the N_U, N_V, N_W must be connected to only one point. Please do not connect the control GND to the power GND by the broad pattern. Also, the wiring distance between control GND and power GND should be as short as possible.
- 22. Each capacitor should be mounted as close to the pins of the Motion SPM 45 product as possible.
- 23. To prevent surge destruction, the wiring between the smoothing capacitor and the P & GND pins should be as short as possible. The use of a high–frequency non–inductive capacitor of around 0.1 ~ 0.22 μF between the P and GND pins is recommended.
- 24. Relays are used in almost every systems of electrical equipment in home appliances. In these cases, there should be sufficient distance between the MCU and the relays.
- 25. The zener diode or transient voltage suppressor should be adopted for the protection of ICs from the surge destruction between each pair of control supply terminals (recommanded zener diode is 22 V / 1 W, which has the lower zener impedance characteristic than about 15 Ω).
- 26. Please choose the electrolytic capacitor with good temperature characteristic in C_{BS} . Also, choose 0.1 ~ 0.2 μF R-category ceramic capacitors with good temperature and frequency characteristics in C_{BSC} .

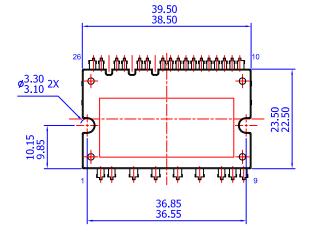
ORDERING INFORMATION

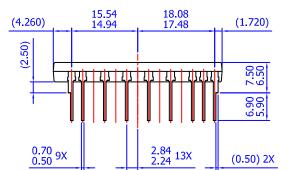
Device	Device Marking	Package	Shipping
FNB43060T2	FNB43060T2	SPMAA-C26 / 26LD, PDD STD CERAMIC TYPE, LONG LEAD DUAL FORM TYPE (Pb-Free)	72 Units / Tube

SPM is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

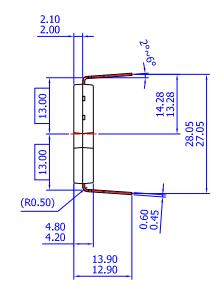


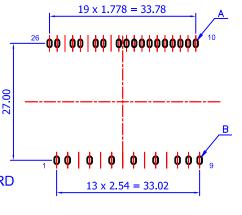

DATE 31 JAN 2017

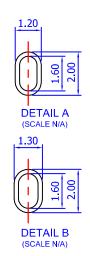



SPMAA-C26 / 26LD, PDD STD CERAMIC TYPE, LONG LEAD DUAL FORM TYPE

CASE MODFC ISSUE O






TO ANY CURRENT PACKAGING STANDARD

- B) ALL DIMENSIONS ARE IN MILLIMETERS
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS

D)() IS REFERENCE

LAND PATTERN RECOMMENDATIONS

DOCUMENT NUMBER:	98AON13555G	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SPMAA-C26 / 26LD, PDD STD CERAMIC TYPE, LONG LEAD DUAL		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

