IGBT - Field Stop 600 V, 60 A

FGH60N60SMD-F085

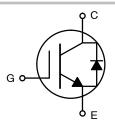
Description

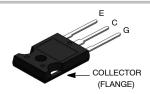
Using Novel Field Stop IGBT Technology, ON Semiconductor's new series of Field Stop Trench IGBTs offer the optimum performance for Automotive chargers, Solar Inverter, UPS and Digital Power Generator where low conduction and switching losses are essential.

Features

- Maximum Junction Temperature: $T_J = 175$ °C
- Positive Temperature Co-efficient for easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(sat)} = 1.8 \text{ V (Typ.)}$ @ $I_C = 60 \text{ A}$
- High Input Impedance
- Tightened Parameter Distribution
- This Device is Pb-Free and is RoHS Compliant
- Qualified to Automotive Requirements of AEC-Q101

Applications


- Automotive Chargers, Converters, High Voltage Auxiliaries
- Solar Inverters, UPS, SMPS, PFC



ON Semiconductor®

www.onsemi.com

V _{CES}	Ic
600 V	60 A

TO-247-3LD CASE 340CK

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Numeric Date Code

&K = Lot Code

FGH60N60SMD = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS

Symbol	Description		Ratings	Unit
V _{CES}	Collector to Emitter Voltage		600	V
V _{GES}	Gate to Emitter Voltage		±20	V
I _C	Collector Current	Collector Current $T_{C} = 25^{\circ}C$ $T_{C} = 100^{\circ}C$		А
				А
I _{CM} (Note 1)	Pulsed Collector Current		180	А
I _F	Diode Forward Current T _C = 25°C		60	А
		T _C = 100°C	30	А
I _{FM} (Note 1)	Pulsed Diode Maximum Forward Current		180	Α
P_{D}	Maximum Power Dissipation	T _C = 25°C	600	W
	T _C = 100°C		300	W
T_J	Operating Junction Temperature		-55 to +175	°C
T _{STG}	Storage Temperature Range		-55 to +175	°C
TL	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds		300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Max.	Unit
R _{0JC} (IGBT) (Note 2)	Thermal Resistance, Junction to Case	0.25	°C/W
R _{θJC} (Diode)	Thermal Resistance, Junction to Case	1.1	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (PCB Mount) (Note 2)	45	°C/W

^{2.} Rthjc for TO-247: according to Mil standard 883-1012 test method. Rthja for TO-247: according to JESD51-2, test method environmental condition and JESD51-10, test boards for through hole perimeter leaded package thermal measurements. JESD51-3: Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Package.

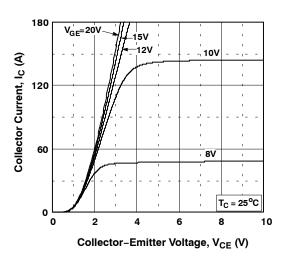
PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Packing Method	Qty per Tube
FGH60N60SMD	FGH60N60SMD-F085	TO-247	Tube	30ea

^{1.} Repetitive rating: Pulse width limited by max. junction temperature.

ELECTRICAL CHARACTERISTICS OF THE IGBT

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
OFF CHARACT	ERISTICS				•	
BV _{CES}	Collector to Emitter Breakdown Voltage	$V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$	600	-	_	V
$\Delta BV_{CES} / \Delta T_{J}$	Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$	-	0.22	=	V/°C
I _{CES}	Collector Cut-Off Current	V _{CE} = V _{CES} , V _{GE} = 0 V	-	-	250	μΑ
		I _{CES} at 80 % *BVCES, 175 °C	-	-	1100	
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±400	nA
ON CHARACTE	ERISTICS			•		•
V _{GE(th)}	G-E Threshold Voltage	$I_C = 250 \mu A, V_{CE} = V_{GE}$	3.5	4.7	6.0	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 60 A, V _{GE} = 15 V,	-	1.8	2.5	V
		I _C = 60 A, V _{GE} = 15 V, T _C = 175°C	-	2.14	-	٧
OYNAMIC CHA	RACTERISTICS				-	
C _{ies}	Input Capacitance	V _{CE} = 30 V, V _{GE} = 0 V,	-	2780	3700	pF
C _{oes}	Output Capacitance	– f = 1 MHz	-	260	345	pF
C _{res}	Reverse Transfer Capacitance	1	_	80	110	pF
SWITCHING CH	HARACTERISTICS				-	
T _{d(on)}	Turn-On Delay Time	$V_{CC} = 400 \text{ V}, I_C = 60 \text{ A},$	-	22	29	ns
T _r	Rise Time	$R_G = 3 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 25^{\circ}C$	-	46	60	ns
T _{d(off)}	Turn-Off Delay Time	1 [-	116	151	ns
T _f	Fall Time] [-	14	18	ns
E _{on}	Turn-On Switching Loss] [-	1.59	2.23	mJ
E _{off}	Turn-Off Switching Loss] [-	0.39	0.55	mJ
E _{ts}	Total Switching Loss] [-	1.98	2.78	mJ
T _{d(on)}	Turn-On Delay Time	$V_{CC} = 400 \text{ V}, I_{C} = 60 \text{ A},$ $R_{G} = 3 \Omega, V_{GE} = 15 \text{ V},$	-	22	28	ns
T _r	Rise Time	Inductive Load, $T_C = 175^{\circ}C$	-	44	58	ns
T _{d(off)}	Turn-Off Delay Time	1	-	124	161	ns
T _f	Fall Time	1	-	15	20	ns
E _{on}	Turn-On Switching Loss	1	-	2.41	3.13	mJ
E _{off}	Turn-Off Switching Loss	1	-	1.08	1.42	mJ
E _{ts}	Total Switching Loss]	-	3.49	4.55	mJ
Qg	Total Gate Charge	$V_{CE} = 400 \text{ V}, I_{C} = 60 \text{ A},$	-	187	280	nC
Q _{ge}	Gate to Emitter Charge	– V _{GE} = 15 V	-	20	29	nC
Q _{gc}	Gate to Collector Charge	1	-	92	138	nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS OF THE DIODE ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V_{FM}	Diode Forward Voltage	I _F = 30 A	T _C = 25°C	-	2.1	2.7	V
			T _C = 175°C	-	1.48	-	
T _{rr}	Diode Reverse Recovery Time	I _F = 30 A, dI _F /dt = 200 A/μs	T _C = 25°C	-	33	42	ns
		αι _Γ /αι – 200 <i>-</i> γ/μο	T _C = 175°C	-	115	-	
Q _{rr}	Diode Reverse Recovery Charge		T _C = 25°C	-	53	69	nC
			T _C = 175°C	-	606	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Typical Output Characteristics

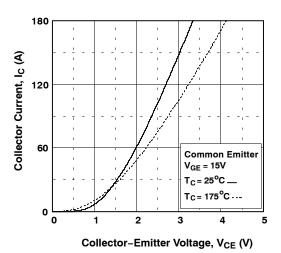


Figure 3. Typical Saturation Voltage Characteristics

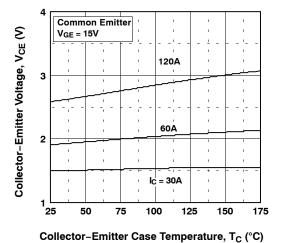


Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

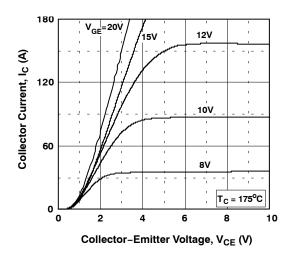


Figure 2. Typical Output Characteristics

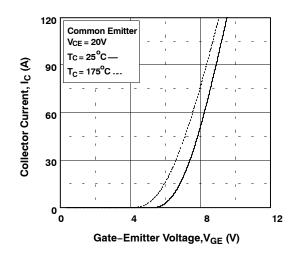


Figure 4. Transfer Characteristics

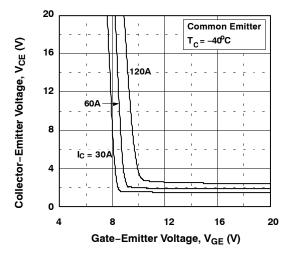


Figure 6. Saturation Voltage vs. V_{GE}

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

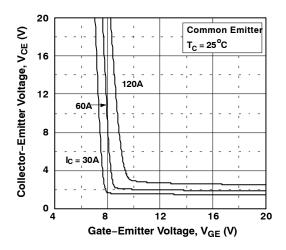


Figure 7. Saturation Voltage vs. V_{GE}

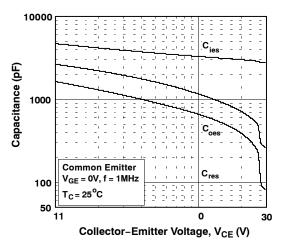


Figure 9. Capacitance Characteristics

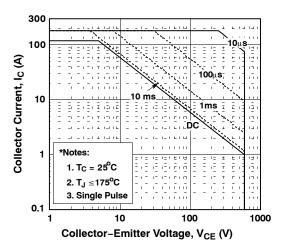


Figure 11. SOA Characteristics

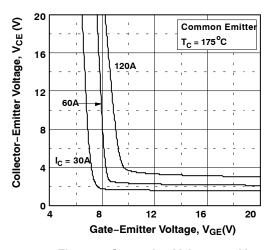


Figure 8. Saturation Voltage vs. V_{GE}

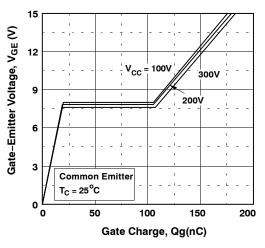


Figure 10. Gate Charge Characteristics

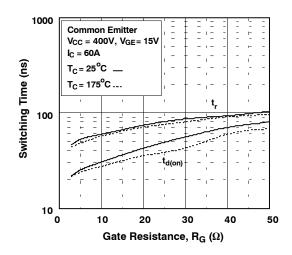


Figure 12. Turn-on Characteristics vs. Gate Resistance

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

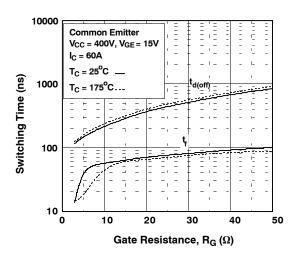


Figure 13. Turn-off Characteristics vs. Gate Resistance

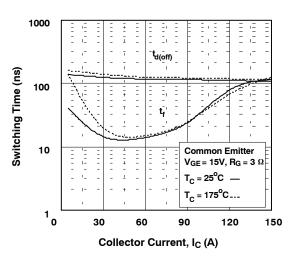


Figure 15. Turn-off Characteristics vs. Collector Current

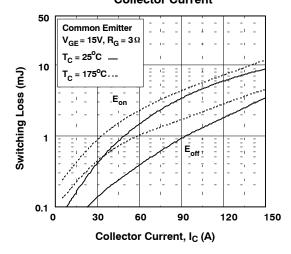


Figure 17. Switching Loss vs. Collector Current

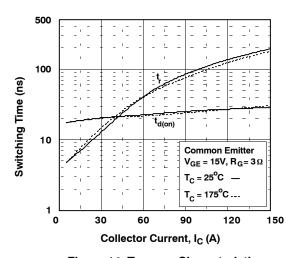


Figure 14. Turn-on Characteristics vs. Collector Current

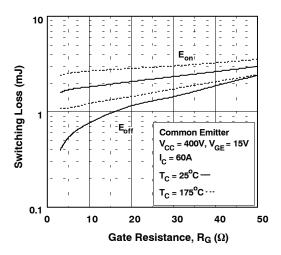


Figure 16. Switching Loss vs.
Gate Resistance

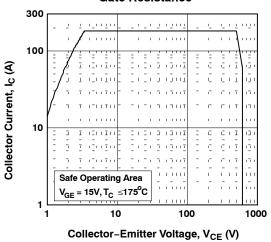


Figure 18. Turn Off Switching SOA Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

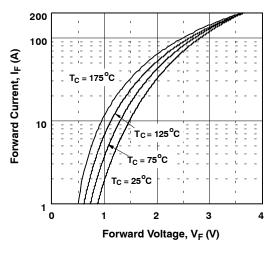


Figure 19. Forward Characteristics

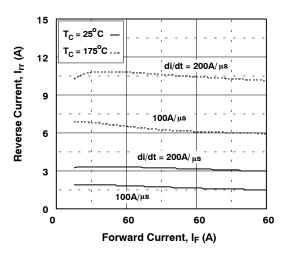


Figure 20. Reverse Recovery Current

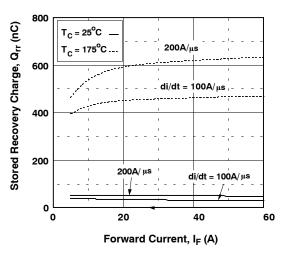


Figure 21. Stored Charge

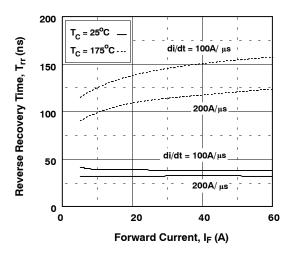


Figure 22. Reverse Recovery Time

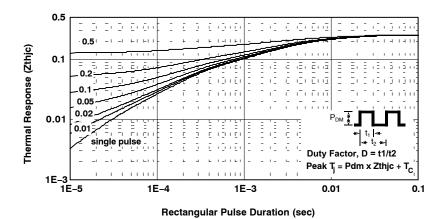
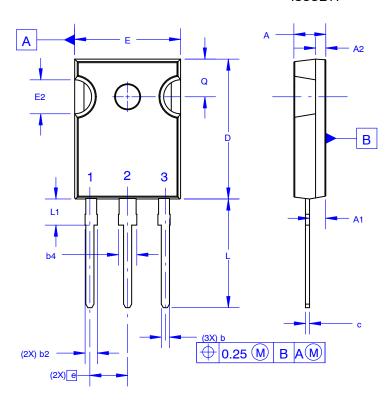



Figure 23. Transient Thermal Impedance of IGBT

TO-247-3LD SHORT LEAD

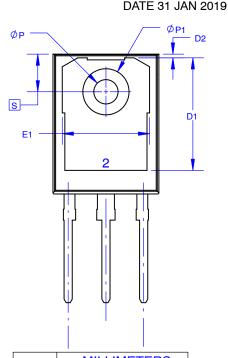
CASE 340CK ISSUE A

NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code


A = Assembly Location

Y = Year

WW = Work Week

ZZ = Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DIM	MILLIMETERS			
DIIVI	MIN	NOM	MAX	
Α	4.58	4.70	4.82	
A1	2.20	2.40	2.60	
A2	1.40	1.50	1.60	
b	1.17	1.26	1.35	
b2	1.53	1.65	1.77	
b4	2.42	2.54	2.66	
С	0.51	0.61	0.71	
D	20.32	20.57	20.82	
D1	13.08	~	~	
D2	0.51	0.93	1.35	
E	15.37	15.62	15.87	
E1	12.81	~	~	
E2	4.96	5.08	5.20	
е	~	5.56	~	
L	15.75	16.00	16.25	
L1	3.69	3.81	3.93	
ØΡ	3.51	3.58	3.65	
Ø P1	6.60	6.80	7.00	
Q	5.34	5.46	5.58	
S	5.34	5.46	5.58	

DOCUMENT NUMBER:	98AON13851G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-247-3LD SHORT LEAD		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

