

40 A standard Triacs in TOP3 package

Features

- On-state current ($I_{T(RMS)}$): 40 A
- Max. blocking voltage (V_{DRM}/V_{RRM}): 1200 V
- Gate current (I_{GT}): 200 mA
- Commutation at 10 V/ μ s: up to 142 A/ms
- Noise immunity: 500 V/ μ s
- Insulated package:
 - 2500 V rms (UL recognized: E81734)

Application

- Motor control
- Induction motor speed control

Description

The TPDVxx40 series use high performance alternistor technology.

Featuring very high commutation levels and high surge current capability, this family is well adapted to power control for inductive loads (motor, transformer...).

Product status link	
	TPDV640RG
	TPDV840RG
	TPDV1240RG

Product summary	
$I_{T(RMS)}$	40 A
V_{DRM}/V_{RRM}	TPDV640RG: 600 V
	TPDV840RG: 800 V
	TPDV1240RG: 1200 V
I_{GT}	200 mA

1 Characteristics

Table 1. Absolute maximum ratings (limiting values)

Symbol	Parameters		Value	Unit	
$I_{T(RMS)}$	RMS on-state current (180° conduction angle)		$T_c = 75^\circ C$	40	
I_{TSM}	Non repetitive surge peak on-state current	$t_p = 2.5 \text{ ms}$	$T_j = 25^\circ C$	590	
		$t_p = 8.3 \text{ ms}$		370	
		$t_p = 10 \text{ ms}$		250	
I^2t	I^2t value for fusing	$t_p = 10 \text{ ms}$	$T_j = 25^\circ C$	610	
dI/dt	Critical rate of rise of on-state current $I_G = 500 \text{ mA}$, $dI_G/dt = 1 \text{ A}/\mu\text{s}$	Repetitive $f = 50 \text{ Hz}$		20	
		Non repetitive		100	
V_{DRM}, V_{RRM}	Repetitive surge peak off-state voltage	$TPDV640$	$T_j = 125^\circ C$	600	
		$TPDV840$		800	
		$TPDV1240$		1200	
I_{GM}	Peak gate current	$t_p = 20 \mu\text{s}$		8	
P_{GM}	Peak gate power dissipation			40	
V_{GM}	Peak positive gate voltage			16	
$P_{G(AV)}$	Average gate power dissipation			1	
T_{stg}	Storage junction temperature range			-40 to +150	
T_j	Operating junction temperature range			-40 to +125	
T_L	Maximum lead temperature for soldering during 10 s at 2 mm from case			260	
$V_{INS}^{(1)}$	Insulation RMS voltage, 1 minute			2500	

1. A1, A2, gate terminals to case for 1 minute.

Table 2. Electrical characteristics ($T_j = 25^\circ C$, unless otherwise specified)

Symbol	Parameters	Quadrant		Value	Unit
I_{GT}	$V_D = 12 \text{ V}$, $R_L = 33 \Omega$	I - II - III	Max.	200	mA
V_{GT}		I - II - III	Max.	1.5	V
V_{GD}	$V_D = V_{DRM}$, $R_L = 3.3 \text{ k}\Omega$, $T_j = 125^\circ C$	I - II - III	Min.	0.2	V
t_{GT}	$V_D = V_{DRM}$, $I_G = 500 \text{ mA}$, $dI_G/dt = 3 \text{ A}/\mu\text{s}$	I - II - III	Typ.	2.5	μs
$I_H^{(1)}$	$I_T = 500 \text{ mA}$		Typ.	50	mA
I_L	$I_G = 1.2 I_{GT}$	I - III	Typ.	100	mA
		II	Typ.	200	
dV/dt	$V_D = 67\% V_{DRM}$ gate open, $T_j = 125^\circ C$		Min.	500	$\text{V}/\mu\text{s}$
$V_{TM}^{(1)}$	$I_{TM} = 56 \text{ A}$, $t_p = 380 \mu\text{s}$		Max.	1.8	V
I_{DRM}/I_{RRM}	$V_{DRM} = V_{RRM}$	$T_j = 25^\circ C$	Max.	20	μA
		$T_j = 125^\circ C$	Max.	8	mA
$(dI/dt)_c^{(1)}$	$(dI/dt)_c = 200 \text{ A}/\text{ms}$, $T_j = 125^\circ C$			35	A/ms
	$(dI/dt)_c = 10 \text{ A}/\text{ms}$, $T_j = 125^\circ C$			142	

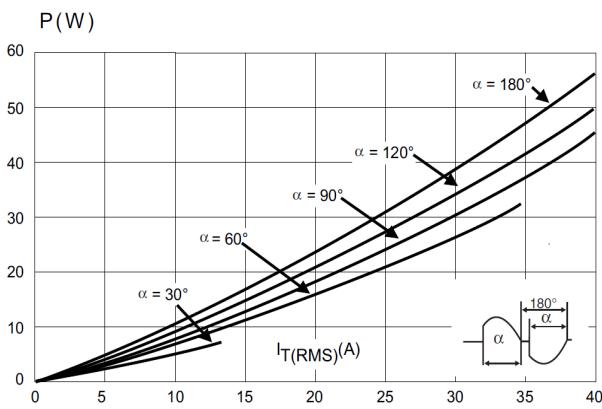
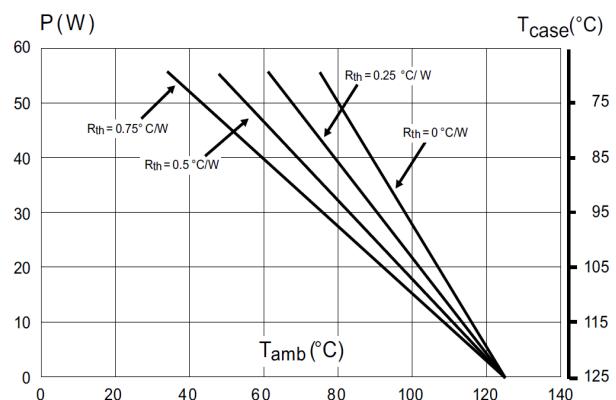
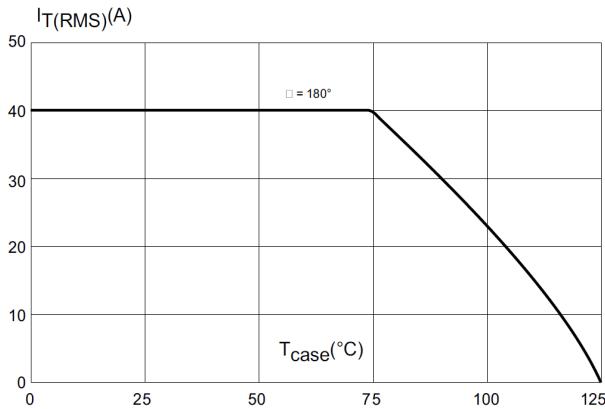
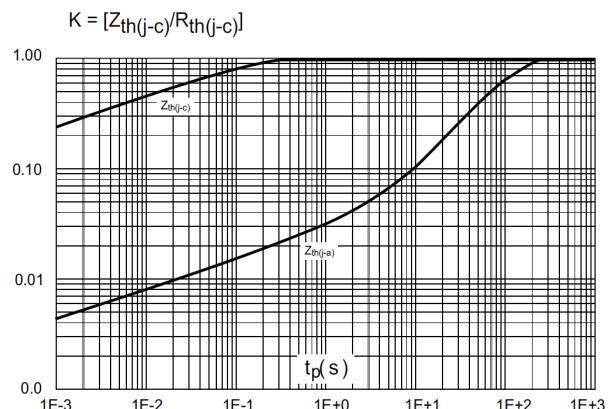

1. For both polarities of A2 referenced to A1

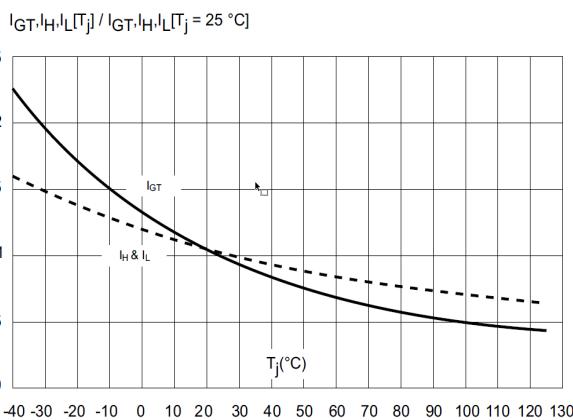
Table 3. Thermal resistance

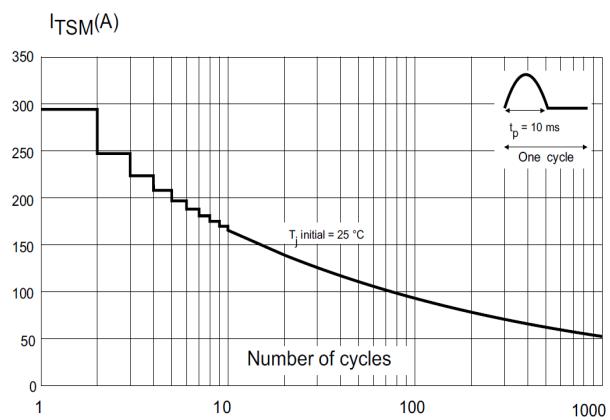

Symbol	Parameters	Value	Unit
$R_{th(j-c)}$	Junction to case (DC)	1.2	°C/W
	Junction to case (AC) for 360 ° conduction angle ($f = 50$ Hz)	0.9	
$R_{th(j-a)}$	Junction to ambient	50	

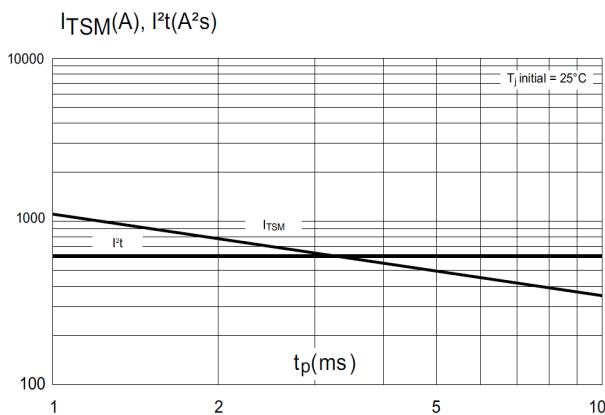
1.1 Characteristics (curves)

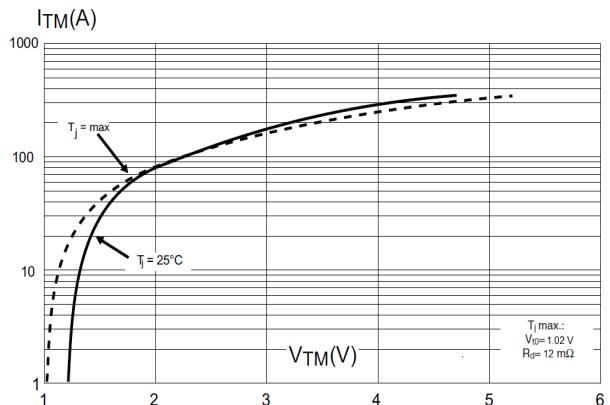

Figure 1. Max. rms power dissipation versus on-state rms current ($f = 50\text{Hz}$, curves limited by $(\text{d}I/\text{d}t)c$)


Figure 2. Max. rms power dissipation and max. allowable temperatures (T_{amb} and T_{case}) for various R_{th}


Figure 3. On-state rms current versus case temperature


Figure 4. Relative variation of thermal impedance versus pulse duration


Figure 5. Relative variation of gate trigger current and holding current versus junction temperature


Figure 6. Non-repetitive surge peak on-state current versus number of cycles

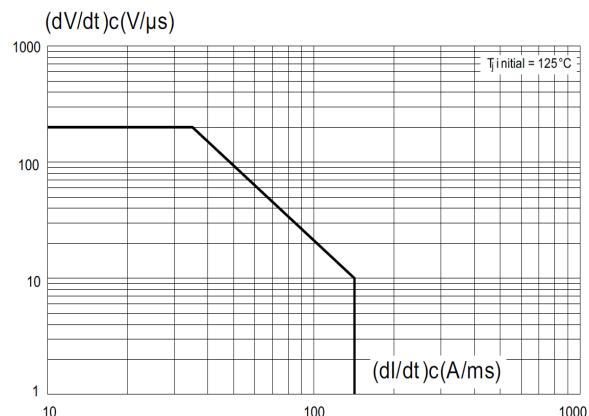
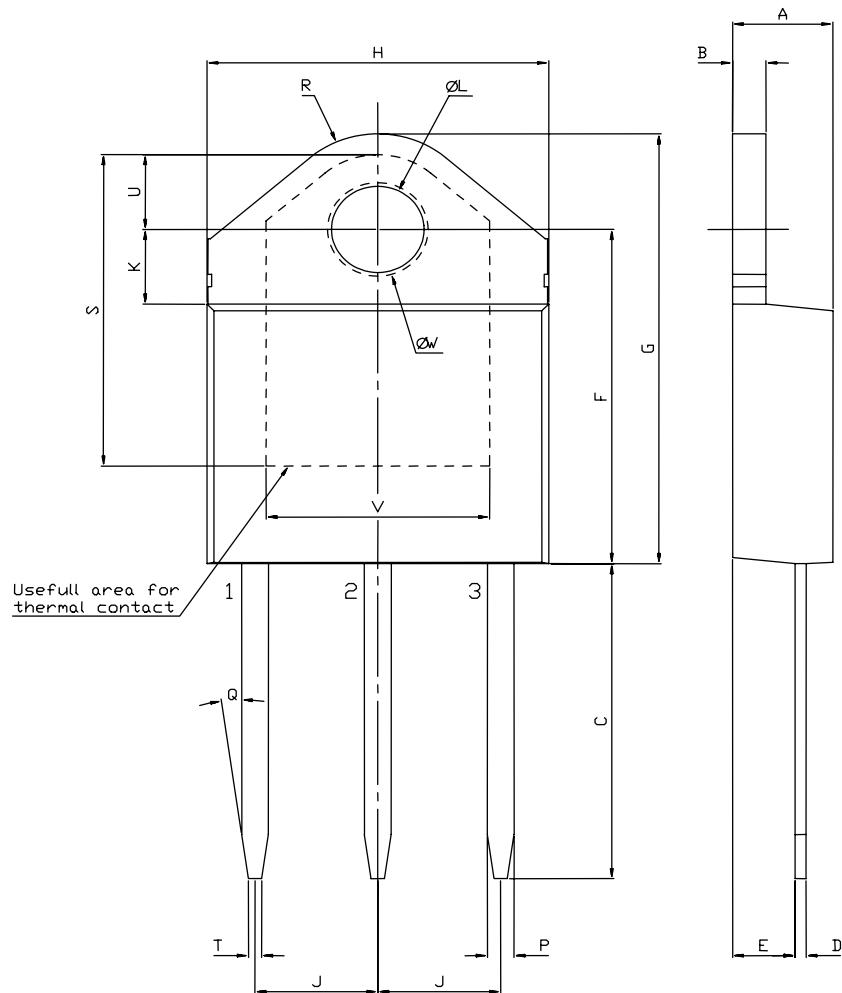

Figure 7. Non-repetitive surge peak on-state current for a sinusoidal pulse and corresponding values of I^2t

Figure 8. On-state characteristics (maximum values)

Figure 9. Safe operating area below curve


2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of **ECOPACK** packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 Package information

- **ECOPACK** (lead-free plating and halogen free package compliance)
- Lead-free package leads finishing
- Halogen-free molding compound resin meets UL94 standard level V0
- Recommended torque: 1.05 N·m (max. torque: 1.2 N·m)

Figure 10. Package outline

Table 4. Mechanical data

Ref.	Dimensions					
	mm			Inches ⁽¹⁾		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	4.40		4.60	0.1732		0.1811
B	1.45		1.55	0.0571		0.0610
C	14.35		15.60	0.5650		0.6142
D	0.50		0.70	0.0197		0.0276
E	2.70		2.90	0.1063		0.1142
F	15.80		16.50	0.6220		0.6496
G	20.40		21.10	0.8031		0.8307
H	15.10		15.50	0.5945		0.6102
J	5.40		5.65	0.2126		0.2224
K	3.40		3.65	0.1339		0.1437
L	4.08		4.17	0.1606		0.1642
P	1.10		1.30	0.0430		0.0510
R		4.60			0.1811	

1. Inches given for reference only

3 Ordering information

Table 5. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
TPDV640RG	TPDV640	TOP3 Ins.	4.5 g	30	Tube
TPDV840RG	TPDV840				
TPDV1240RG	TPDV1240				

Revision history

Table 6. Document revision history

Date	Revision	Changes
30-Mar-2011	1	Initial release.
10-Jun-2015	2	Updated <i>Table 3</i> . Updated <i>Figure 9</i> . Format updated to current standard.
06-Oct-2023	3	Updated Section 2.1 Package information .

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved