Guide

p ale Semiconductor, Inc.

MC33816 Assembler User Guide

An Introduction to Programming the MC33816 Device

© Freescale Semiconductor, Inc., 2014. All rights reserved.

Downloaded from AFFOW.Com.

Bl Administrator: C\Windows\system32\cmd.exe

launching assembler for MC33816 freescale
Freescale MC33816 Assembler.

FSL-ASM [<sourceFile» [z <syntax>] [-c filel [ro <path>] [-h | sver]l 1 | [-1 {1

inkFile> >

Uzage :

{sourceFile> The name of the file containing the source code to he
compiled. If the path is relative, it will he found
from the current directory.

/5 {syntax> Coptional> The name of the file containing the
instruction set description of the ASIC. If the path
iz relative,. it will bhe found from the current
directory. If not specified,. the file "syntax.xml'
from the config directory will be selected.

/¢ {cyphFile> A ciphered compiled code is produced. in addition to
normal output. The file referes to the filepath of the
cypher key

o0 {path> Coptional) Qutput directory for the outputs C(hin.
hex, cip.bin,. cip.hex>. In case it is not specified,
the outputs are in the same directory as the input.

+h Displays this help

suepr Diplays the change log of the compiler versions

#1 {linkfile> Uses the link file in order to select the sources
files and the offsets of the code

- Return values:

B: compilation successfull
1: error on command line
2: syntax error on source file, compilation not ok

|_|:|'|E|ﬁ:h-‘I

Document Number: MC33816ASM_APPSPUG

Rev. 1.0, 1/2014

freescale

http://www.arrow.com

r
A

4
Contents
1 INtrodUCHION . . .o 3
2 JUMD StaI . . .o e e 3
3 Contents of MC33816 Assembler Download. 3
4 System Functionality 3
4.l PrereqUISIEES. . o ot e e e 3
4.2 Installation 4
4.3 Assembler Program e 4
A4 INPUL FIlES. . .o 5
4.5 OUIPUL FIlES . .o e e e 8
5 Specific Assembler Languaget 8
5.1 Writing an INStruCtiono 9
5.2 Insertinga Comment Field e 9
5.3 Defining @ CoNnstant e 10
5.4 Including a Data RAM Address Definition File 10
5.5 UsingalLine label. e e 11
5.6 Numbering CONVENtION. e 11
5.7 Conditional Assembly 12
B REfEIENCES. . . 13
7 ReVISION HiStOrY . . . o o 14
MC33816ASM_APPSPUG User's Guide Rev. 1.0 1/2014
2 Freescale Semiconductor, Inc.

Downloaded from AFFOW.Com.

http://www.arrow.com

Introduction

Introduction

The MC33816 Assembler is designed to compile MC33816 assembler code into its binary equivalent for the
KIT33816AEEVM evaluation board or any other hardware based on the MC33816. The tool is provided as a
command line application.

Jump Start

The MC33816 Assembler (in addition to related software and documentation) can be downloaded from the
Freescale website by following the steps listed below:

» Go to www.freescale.com/analogtools

e Under the column with the heading “Kit Number”, click on the KIT33816AEEVM entry.

» The link opens a Tool Summary Page for the evaluation board that features the MC33816 device.
» Look on that page for the following heading

Jump Start Your Design

* Clicking on the link opens a pop-up window that lists downloads for the MC33816 device. The MC33816
Assembler download has the name MC33816ASM_APPSP.zip.

Contents of MC33816 Assembler Download

The MC33816 assembler zip file contains the following files:
« MC33816ASM.bat (the executable file)
o delivery (folder)
e hin (folder)
» Assembler_exec.jar
» cipher (folder)
e key4.key
» config (folder)
* log4j.properties
e syntax.xml
* syntax.xsd
» verif (folder)
e (empty - for future usage)
 MC33816 Assembler Release Notes

System Functionality

Prerequisites

The MC33816 Assembler has been evaluated on the Windows 7 32-bit operating system only. The assembler
is based on Java. It should run smoothly on any Java-compatible platform. The minimum requisite for Java is
version 1.6 or later. Please download and install Java from the following link:
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase6-419409.html.

The assembler has most recently been validated using Java 1.6u35. It is highly recommended to use this
version of Java. The assembler tests for the presence of Java and issues an error if Java is not detected.

MC33816ASM_APPSPUG User’s Guide Rev. 1.0 1/2014

Freescale Semiconductor, Inc.

Downloaded from AFFOW.Com.

http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase6-419409.html
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase6-419409.html
http://www.freescale.com/analogtools
http://www.arrow.com

‘unctionality

A 4
4\

4.2 Installation

The package is delivered as a zip file. Installation is performed by unzipping the file into an empty directory.

421 Directories

The standard directories created by the installation are:

4 | delivery
bin
cipher
config

verif

Figure 1. Assembler Directory Hierarchy

e The delivery directory groups all system directories and holds the start command for the assembler
(MC33816ASM.bat).

» The bin directory contains different executable programs. The user must not modify this directory.

» The config directory contains the configuration files. The user must not modify this directory.

e The cipher directory is provided to the end user to store the cipher files.

» The verif directory is empty. This folder is reserved for future usage.

4.3 Assembler Program

The assembler is a command line program. The program start command must be entered with the suitable
options.

MC33816ASM_APPSPUG User’s Guide Rev. 1.0 1/2014
4 Freescale Semiconductor, Inc.

Downloaded from AFFOW.Com.

http://www.arrow.com

System Functionalit
‘ A y y

4.3.1 Help Menu

Open a command console within the delivery directory and type MC33816asm <enter> to see the options for
that command.

Figure 2 shows the command line help listing, which can be obtained by running the program either without
options or with the /h option.

Bl Administrator: C\Windows\system32\cmd.exe |ﬂ‘ﬁj

launching assembhler for MC3I3B16 Ffreescale

Freescale MC33816 Assembler.

FSL-ASM [<sourceFile> [/s <syntax>] [+c filel [~o <path>*] [+h | ~sverl 1 | [/1 {1
inkFile>

Usage =

{zsourceFile> The name of the file containing the source code to be
compiled. If the path is relative, it will he found
from the current directory.

2 {syntax> {optional> The name of the file containing the
instruction set description of the ASIC. If the path
is relative, it will bhe found from the current
directory. If not specified, the file "syntax.xml"
from the config directory will be selected.

#c <cyphFile’> A ciphered compiled code iz produced,. in addition to
normal output. The file veferes to the filepath of the
cypher key

<0 <path> Coptional> OQutput directory for the outputs <bin.
hex, cip.bhin,. cip.hex?>. In case it is not specified.
the outputs are in the same directory as the input.

#h Dizplays this help

suer Diplays the change log of the compiler versions

#1 {linkfile’ Uses the link file in order to select the sources
files and the offsets of the code

— Return values:

B: compilation successfull
1: error on command line
2: syntax error on source file, compilation not ok

Figure 2. MC33816 Assembler Help Menu

The command MC33816asm is followed by the required options and source file names.

The options <sourceFile>, /h, and /ver must be first in the command line in order for them to be taken into
account. Other options may follow in any order.

The <sourceFile>and /1 options may only be used together if the link file contains 0 source files; otherwise,
they are mutually exclusive. This combination is allowed in order to restrict the maximum number of instructions
that can be assembled.

4.4 Input Files
4.4.1 Input Files Extension
In order to perform source code compilation, the following files listed in Table 1 must be provided to the

assembler as options.

Table 1. List of MC33816 Assembler Input Files and Extensions

Extension Description
*_.dfi (or *.psc) The microcode source file
*_link The source files link file
*_xml The instruction syntax library file
*_key The cipher key file

MC33816ASM_APPSPUG User’s Guide Rev. 1.0 1/2014

Freescale Semiconductor, Inc. 5

Downloaded from AFFOW.Com.

http://www.arrow.com

‘unctionality

A 4
4\

4.4.2 Syntax File

A custom syntax file may be created based on the included default syntax.xml file. The custom syntax file must
be valid with respect to the schema which is included in the config directory. Custom syntax files may be used
through the use of the /s option detailed in the command help.

4.4.3 Cipher Key File

The output binary data may be ciphered using a key file. The key file must have the following format:

NFSR=0123456789ABCDEF0123
LFSR=0123456789ABCDEF0123

Cipher files may be used through the use of the /c option detailed in the command help.

MC33816ASM_APPSPUG User’s Guide Rev. 1.0 1/2014
6 Freescale Semiconductor, Inc.

Downloaded from AFFOW.Com.

http://www.arrow.com

‘ y System Functionality

4.4.4 Source Files Link Option

The assembler can perform code assembly using two modes:
» Single source code assembly
* Linked files assembly

In single source code assembly, the source code file is provided as an assembler <sourceFi le> option. In the
link file assembly mode, a link file is provided to the assembler by means of the /1 <linkfile> option. Link
file assembly makes it possible to assemble several source code files to predefined memory locations. In this
mode, the link file source code files and definition files must all be located in the same input folder. The link file
format is as follows:

LinkFileName = “link.link~

LinkFileVersion = "LinkFileVersionNumber*
ConcatenateMaxLine="MaximumNumberOfConcatenatedLines”
SourceFileNumber = "<n>"

SourcelFile = "SourcelFileName*

Offsetl = "OffsetSize~

Source2File = “Source2FileName*

Offset2 = "OffsetSize”

Source<n>File = "Source2FileName*

Offset<n> = "OffsetSize"

Below is a specific example:

LinkFileName = "Concat_chl ch2.link"
LinkFileVersion = "1.0"
ConcatenateMaxLine= "1023"
SourceFileNumber = "2*

SourcelFile = "MC33816_chil.dfi*
Offsetl = "0~

Source2File = "MC33816_ch2.dfi*
Offset2 = "100*°

MC33816ASM_APPSPUG User’s Guide Rev. 1.0 1/2014

Freescale Semiconductor, Inc.

Downloaded from AFFOW.Com.

http://www.arrow.com

A 4

4\ Assembler Language

4.5 Output Files

451 Extension

Following successful compilation, the assembler produces the series of files described in Table 2.

Table 2. List of Assembler Output Files and Extensions

Extension Description

*_hex The hexadecimal result of the assembled file

*_bin The binary result of the assembled file

*_asm The complete assembler file corresponding to the expected

Code RAM memory (processor memory). This
pre-processed file based on the source code file (*.dfi)
does not contain comments, labels, define or include.

*_log The compilation report

*_rep The CRC in bin and Hex format, all labels of the source
code, code size

*_cip.bin The encrypted binary file

*_cip-hex The encrypted hexadecimal file

Note: If the output folder already contains one or more files with any of the extensions listed in the above table,
the compilation is aborted. The output folder must be cleared before running the assembler.

5 Specific Assembler Language

The MC33816 requires a microcode to enable most of its functions. The main benefit is the large flexibility in
setting the device. This microcode is defined by the software engineer in a source file, coding the 33816 specific
instructions in assembler language.

The extension *.dfi or *.psc is generally used for the source file. Any other extension can be used as a
source code extension, with the exception of assembler’s input file extensions (*. link, *.xml, *_key) or
output file extensions. (*.cip, *.hex, *.bin, *.asm, *.log, *.reg, *.cip.bin, *_cip.hex).

The assembler language coding rules are defined in the following sections.

MC33816ASM_APPSPUG User’s Guide Rev. 1.0 1/2014
8 Freescale Semiconductor, Inc.

Downloaded from AFFOW.Com.

http://www.arrow.com

4\ Specific Assembler Language
5.1 Writing an Instruction
Instructions allow the software designer to define the behavior that is executed independently by each
microcore.

The allowed instructions and parameters are only the ones defined in the default instructions library (syntax.xml)
or the custom syntax files.

All the instructions must be followed by the mandatory parameters. All the instructions must terminate with the
character ';'. The instruction syntax is as follows:

InstructionName ParameterlNameOrValue Parameter2NameOrValue...;

The instruction and parameter descriptions are provided in the MC33816 Data Sheet. The instructions and the
associated parameters are case sensitive. They can only be placed:

e At the beginning of the line
* Or after the end-of-comment field character ‘*’
e Or after a valid Label

One instruction per source file line or per include line is allowed. Below is an example:

stf low ErrorFlag;

5.2 Inserting a Comment Field

The source code file supports the addition of comments. The comment fields are identified with:
» Two "*' characters, one placed before and the other after the comment text

* One *' symbol placed before comment text. In this case, all characters up to the end of the line are
considered as part of the comment.

The comment field syntax is as follows:

Comment
*Comment

Below are some examples:
Comments
*Comments

Put the channel in error stat SWinterruptRoutine: stf low ErrorFlag;
SWinterruptRoutine: stf low ErrorFlag; *Put the channel in error stat

MC33816ASM_APPSPUG User’s Guide Rev. 1.0 1/2014

Freescale Semiconductor, Inc. 9

Downloaded from AFFOW.Com.

http://www.arrow.com

V¥ ¢

4\ Assembler Language

5.3 Defining a Constant

The software designer can use a constant value label, instead of using a number as an instruction parameter
(define). This constant definition helps to make the source code more readable. The define function is used
for a constant value definition that is used locally in the source code. The constant definitions must terminate in
the character ';'. The define syntax is as follows:

#define SymbolName SymbolValue;

The constant definitions are placed:
» At the beginning of the line
» Or after the final comment field character '*'

The constant definition must be placed in an instruction line. No other item, such as an instruction, label or
include statement, is allowed in a constant definition line. All define statements must be unique, that is not
already used as the SymbolName of a line label, and cannot have the same name as an instruction or a
parameter. The define name (SymbolIName) cannot start with a number but can contain one or several
numbers. It must not include spaces. The Define arguments SymboIName and SymbolValue are mandatory.
See the example below:

#define ErrorFlag 10;

5.4 Including a Data RAM Address Definition File

The assembler has the ability to manage a nested file structure. The sub files called in the main source file are
known as definition files. These definition files are commonly used for variable definition dedicated to device
Data RAM. However any instruction or label can be used in definition files.

All the include statements must terminate with the character ';'. A valid file name must be placed between
two apostrophe characters (“ text?).

The include declaration must be placed:
e At the beginning of the line
» Or after the end comment character '*'

The include syntax is as follows:
#include “Filename.def”;

Use of nested include is not permitted.

Note that *.de¥F or any other extension can be used as a definition file extension, with the exception of
assembler’s input file extensions (*.dfi, *. bink, *.xml) or output file extensions. (*.cip, *.hex, *_bin,
*_asm, *_log, *.reg, *.cip.bin, *_cip.hex).

See the example below:

#include “Sourcel.def”; *include variable to the source.dfi defined in the
*definition file

MC33816ASM_APPSPUG User’s Guide Rev. 1.0 1/2014

10 Freescale Semiconductor, Inc.

Downloaded from AFFOW.Com.

http://www.arrow.com

Specific Assembler Language
‘ l p guag

5.5 Using a Line label

The assembler can manage line labels. This kind of label is used to replace a line number called as an
instruction parameter. The assembler immediately replaces the label with the corresponding line number at the
time of the source code assembly.

The label syntax is as follows:
LabeIName:

The label refers to a line code where the label is set. For example, if the label Init is located on line 7 any
instruction using this label refers to line 7.

Labels must be placed at the beginning of the line or after the final character of a comment field. These labels
end with the symbol ':". All labels must be followed by an instruction. They must be unique, must not already
have been used as a SymbolIName in a Define statement, and cannot be an instruction or parameter name.
The LabelName can contain numbers, but cannot fit the number format and must not include spaces. An
example follows:

SWinterruptRoutine:

5.6 Numbering Convention
A parameter can either be a parameter name associated with a value defined in the syntax file or it can be a
numeric value. When a numeric value is used, the parameter is decimal. Three formats are possible:
» By default, the value is decimal (no suffix)
* A'h' specifies that the value is hexadecimal
» A'b' suffix specifies that the value is binary

An example follows:

Idirl 10 _rst; * number 10
Idirl 10h _rst; * number 16
Idirl 10b _rst; * number 2

MC33816ASM_APPSPUG User’s Guide Rev. 1.0 1/2014
Freescale Semiconductor, Inc. 11

Downloaded from AFFOW.Com.

http://www.arrow.com

V¥ ¢

4\ Assembler Language

5.7 Conditional Assembly

The assembler includes a basic IF function (conditional assembly). This function is 'static' so the IF function
branch is considered at the time of assembly. The IF function syntax is as follows:

#1F Condition
Instructionsl
#ELSEIF
Instructions?2
#ENDIF

The conditional assembly considers a branch only if its parameter is defined (whatever its value may be). Using
an ELSE branch is optional. All the instructions placed before the #1F label and after the #ENDIF label are
excluded from the conditional code block and are assembled. Only one level of condition assembly is supported,
so an IF function cannot be nested within another 1F function. Consider the example below:

#define DDI 1; *define optional in this case.

#1F DDI

Jjmpr DDI_Init; *DDI constant is defined so this condition is met
*In this case the program counter jumps to the DDI_Init label line

#ELSE

Jmpr GDI_Init; *GDI constant is not defined so this condition is never met
#ENDIF

MC33816ASM_APPSPUG User’s Guide Rev. 1.0 1/2014

12 Freescale Semiconductor, Inc.

Downloaded from AFFOW.Com.

http://www.arrow.com

6 References

References

Following are URLs where you can obtain information on related Freescale products and application solutions:

Document Number and
Description

URL

MC33816 Data Sheet

http://cache.freescale.com/files/analog/doc/data_sheet/MC33816.pdf

Freescale.com
Support Pages

URL

MC33816
Product Summary Page

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC33816

KIT33816AEEVM
Tool Summary Page

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=KIT33816 AEEVM

Analog Home Page

http://www.freescale.com/analog

Automotive Home Page

http://www.freescale.com/automotive

MC33816ASM_APPSPUG User’s Guide Rev. 1.0 1/2014

Freescale Semiconductor, Inc.

Downloaded from AFFOW.Com.

13

http://cache.freescale.com/files/analog/doc/data_sheet/MC33816.pdf

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC33816
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=KIT33816AEEVM
http://freescale.com/analog

www.freescale.com/automotive
http://www.arrow.com

} { History
7 Revision History
Revision Date Description of Changes
1.0 1/2014 « Initial Release

MC33816ASM_APPSPUG User’s Guide Rev. 1.0 1/2014

14

Downloaded from AFFOW.Com.

Freescale Semiconductor, Inc.

http://www.arrow.com

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Downloaded from AFFOW.Com.

Information in this document is provided solely to enable system and software implementers to use Freescale products.
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based
on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no
warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others.
Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
SMARTMOS is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their
respective owners.

© 2014 Freescale Semiconductor, Inc.

Document Number: MC33816ASM_APPSPUG
Rev. 1.0
1/2014

<.

> freescale"

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.arrow.com

	MC33816 Assembler User Guide
	An Introduction to Programming the MC33816 Device
	1 Introduction
	2 Jump Start
	3 Contents of MC33816 Assembler Download
	4 System Functionality
	4.1 Prerequisites
	4.2 Installation
	4.2.1 Directories

	4.3 Assembler Program
	4.3.1 Help Menu

	4.4 Input Files
	4.4.1 Input Files Extension
	4.4.2 Syntax File
	4.4.3 Cipher Key File
	4.4.4 Source Files Link Option

	4.5 Output Files
	4.5.1 Extension

	5 Specific Assembler Language
	5.1 Writing an Instruction
	5.2 Inserting a Comment Field
	5.3 Defining a Constant
	5.4 Including a Data RAM Address Definition File
	5.5 Using a Line label
	5.6 Numbering Convention
	5.7 Conditional Assembly

	6 References
	7 Revision History

