

Features

- K1 IR VCSEL
- ROHS and REACH Compliant
- ESD(HBM) 8KV
- MSL 3 Qualified (J-STD 020)

Applications

- Industrial facility applications
- Consumer Mobile
- Automotive Interior & Exterior
- 3D Sensing(TOF, Structure Light)
- Bio recognition

Description

The INV-K1TMIR is a high-power IR VCSEL. It is a SMD type package which can be used in various applications.

Recommended Solder Pattern

(Suggest Stencil t=0.12 mm)

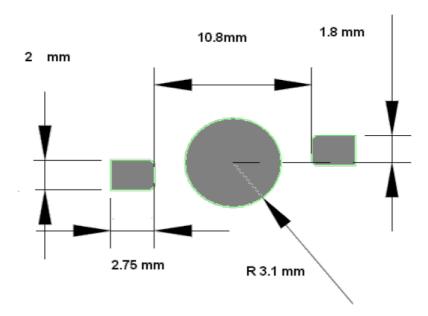


Figure 1. INV-K1TMIR Recommended Solder Pattern

Note:

- *All dimensions are in millimeters.
- *Tolerance is ±0.1mm unless other specified.

Package Dimensions in mm

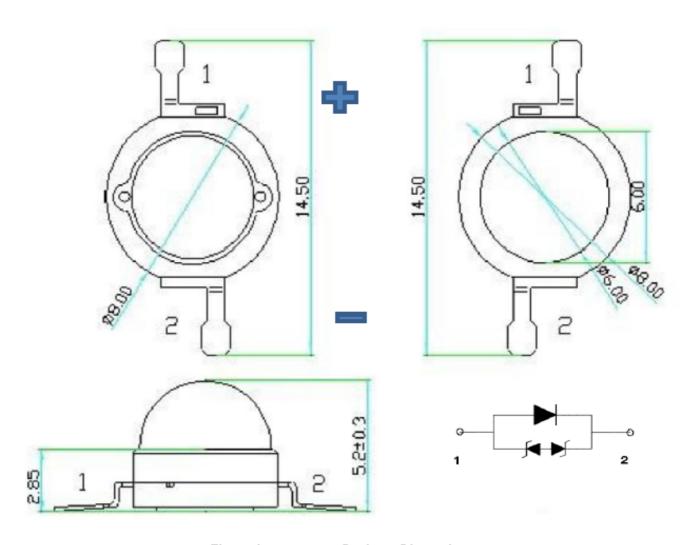


Figure 2. INV-K1TMIR Package Dimensions

*Note

All dimensions are in millimeters. Tolerance is ± 0.1 mm unless other specified.

Absolute Maximum Rating at 25°C (Note 1)

Product	Pulse Current(mA) (@1/10 duty)	V _R (V) Typ.	K (mV/°C) Temperature coefficient of voltage	Max. Tj (°C) LED junction temperature	Typ. Rjs (°C/W) Thermal resistance, junction to solder point.	Typ. ESD (V) Electrostatic discharge threshold
INV-K1TMIR	1100	5	-1.2	110	18	8000

Notes

- 1. For other ambient, limited setting of current will depend on de-rating curves.
- 2. When drive on maximum current , Tj must be kept below 110° C
- 3. Viewing angle(2 θ 1/2) \pm 10°

Electrical Characteristics $T_A = 25\%$ (Note 1)

	V₅(V)@700mA		Radiometric Power			Peak Wavelength			IR (μA)	View
Product	v⊦(v)@	(mW) @700mA			(nm) @700mA			(V _R =5V)	Angle	
riodast	min	max	min	typ	max	min	typ	max	Max	2θ1/2
INV-K1TMIR	1.8	2.8	350		450	840		860	10	25°

*Notes

- 1. Performance guaranteed only under conditions listed in above tables.
- 2. Viewing angle $(2\theta 1/2) \pm 10^{\circ}$

ESD Precaution

ATTENTION: Electrostatic Discharge (ESD) protection

The symbol above denotes that ESD precaution is needed. ESD protection for GaP and AlGaAs based chips is necessary even though they are relatively safe in the presence of low static-electric discharge. Parts built with AlInGaP, GaN, or/and InGaN based chips are STATIC SENSITIVE devices. ESD precaution must be taken during design and assembly. If manual work or processing is needed, please ensure the device is adequately protected from ESD during the process.

Please be advised that normal static precautions should be taken in the handling and assembly of this device to prevent damage or degradation which may be induced by electrostatic discharge (ESD).

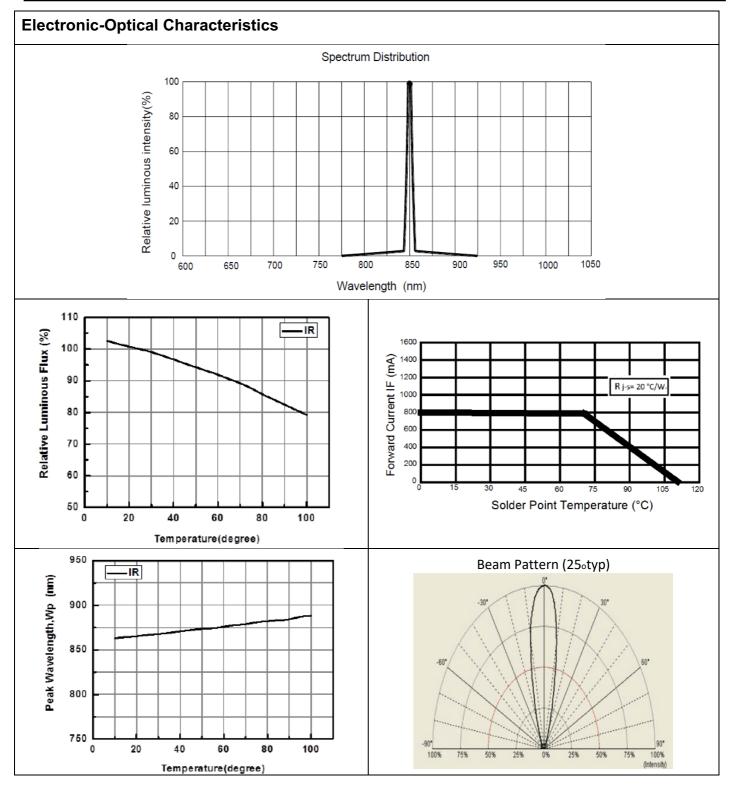
Binning Definition (Binning@700mA)

Power Bin

Bin Code	Min.	Max.	Unit
P35	350	400	
P40	400	450	mW
P45	450	500	

Wavelength Bin

Bin Code	Min.	Max.	Unit
W84	840	860	nm

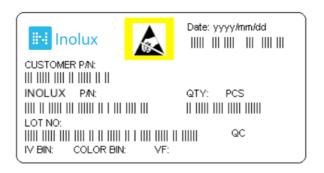

Voltage Bin

Bin Code	Min.	Max.	Unit
V1	1.8	2.2	
V2	2.2	2.6	V
V3	2.6	2.8	

*Notes:

- 1. Radiometric Power (Po) ±10%.
- 2. Wavelength (Wp) ±2.0nm
- 3. Forward voltage (V_F) ±0.12V

*Notes:

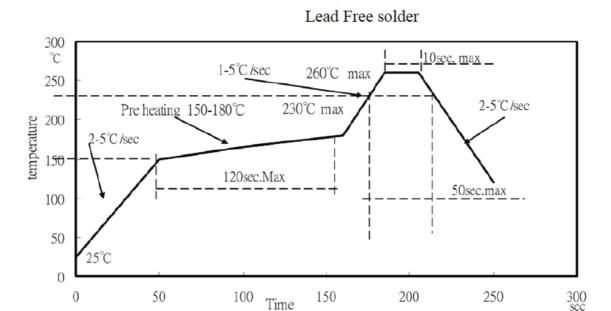

Viewing angle (2θ1/2) ± 10°

Ordering Information

Orderable	Peak	Radiometric F @700	, ,	Forward Voltage (V) @700mA		Viewing
Part Number	Wavelength (nm)	Min	Max	Min	Max	Angle
INV-K1TMIR	840-860	350	450	1.8	2.8	25°

Label Specifications

Inolux P/N:


INV	-	K1	T	М		IR	-	Х	Х	X :	Х
		Package	Orientation	Current	Lens	Color				nized p-off	
Inolux VCSEL		K1 Package	T = Top Mount	M = 700mA	(Blank) = Clear	IR = 850nm					

Lot No.:

Z	2	0	1	7	01	24	001
Internal		Year (2017	Month	Date	Serial		
Tracker		16a1 (2017	, 2010,)		IVIOIILII	Date	Serial

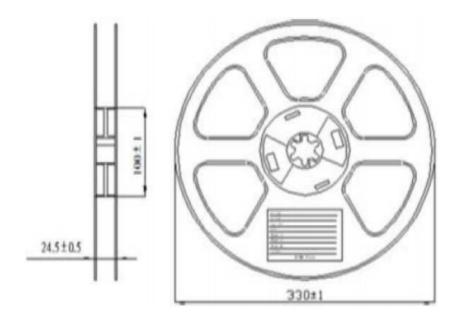
Reflow Soldering

Soldering Iron

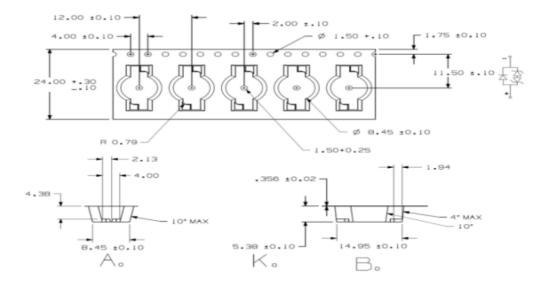
Basic Spec is \leq 4 sec. when 260°C (+10°C \rightarrow -1 second). Power dissipation of Iron should be less than 15W. Surface temperature should be under 230°C

Rework

Rework should be completed within 4 second under 245°C


Notes

- 1. Do not stress the silicone resin while it is exposed to high temperature.
- 2. The number of reflow process should not exceed 3 times.



Packing

Dimension of Reel (Unit: mm)

Dimension of Tape (Unit: mm)

Notes:

- 1. Empty component pockets are sealed with top cover tape;
- 2. The maximum number of missing SMDs is two;
- 3. The cathode is oriented towards the tape sprocket hole in accordance with ANSI/EIA RS-481 specifications;
- 4. 500pcs/Reel

Revision History

Changes since last revision	Page	Version No.	Revision Date
Initial Release		1.0	05-14-2019

DISCLAIMER

INOLUX reserves the right to make changes without further notice to any products herein to improve reliability, function or design. INOLUX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

INOLUX's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of INOLUX or INOLUX CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.