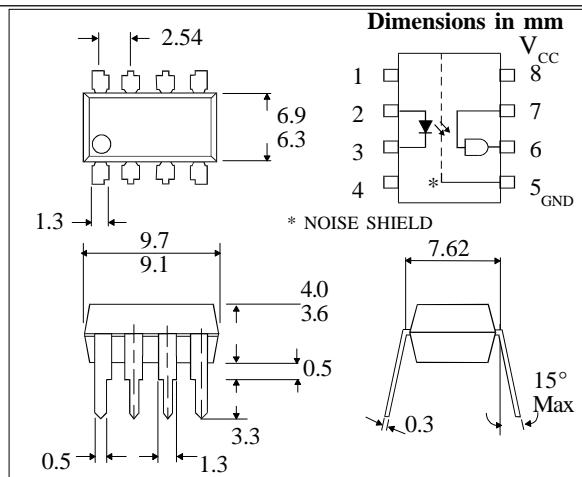
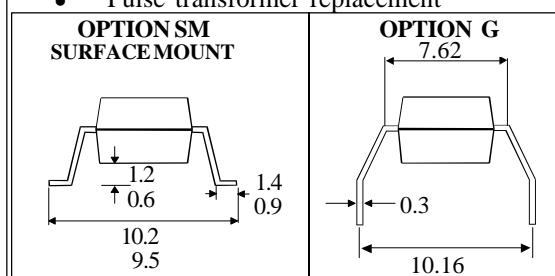


HIGH CMR, VERY HIGH SPEED OPTICALLY COUPLED ISOLATOR LOGIC GATE OUTPUT

APPROVALS

- UL recognised, File No. E91231

DESCRIPTION



The ICPL2611 optocoupler consists of a GaAsP light emitting diode and a high gain integrated photo detector to provide 2500Volts _{RMS} electrical isolation between input and output. An enable input allows the detector to be strobed. The output of the detector I.C. is an open collector Schottky clamped transistor. The ICPL2611 has an internal shield which provides a common mode transient immunity specification of 10000V/ μ s typical. This unique design provides maximum ac and dc circuit isolation while achieving TTL compatibility. The coupled parameters are guaranteed over the temperature range of -40°C to +85°C, such that a maximum input signal of 5mA will provide a minimum output sink current of 13mA(equivalent to fan-out of eight gates)

FEATURES

- High speed - 10MBit/s
- High Common Mode Transient Immunity 10kV/ μ s typical
- Logic gate output
- ICPL2611 has improved noise shield for superior common mode rejection
- Options :-
10mm lead spread - add G after part no.
Surface mount - add SM after part no.
Tape&reel - add SMT&R after part no.

Tapeworms and APPLICATIONS

- Line receiver, data transmission
- Computer-peripheral interface
- Data multiplexing
- Pulse transformer replacement

TRUTH TABLE

INPUT	ENABLE	OUTPUT
H	H	L
L	H	H
H	L	H
L	L	H

A $0.1\mu\text{F}$ bypass capacitor must be connected between pins 8 and 5 (See note 1)

ABSOLUTE MAXIMUM RATINGS

(25°C unless otherwise specified)

Storage Temperature -55°C to +125°C

Operating Temperature -40°C to +85°C

Lead Soldering Temperature

INPUT DIODE

Average Forward Current _____ 50mA
Reverse Voltage _____ 5V

DETECTOR

Enable Input Voltage (V_E) _____ 5.5V
 (not to exceed V_{CC} by more than 500mV)
 Supply Voltage(V_{CC}) _____ 7V
 (1 minute maximum)
 Output Current (I_O) _____ 50mA
 Output Voltage (V_O) _____ 7V
 Collector Output Power Dissipation _____ 85mW

ISOCOM COMPONENTS LTD
Unit 25B, Park View Road West,
Park View Industrial Estate, Brenda Road
Hartlepool, TS25 1YD England Tel: (01429) 863609
Fax: (01429) 863581 e-mail sales@isocom.co.uk
<http://www.isocom.com>

ISOCOM INC
1024 S. Greenville Ave, Suite 240,
Allen, TX 75002 USA
Tel: (214)495-0755 Fax: (214)495-0901
e-mail info@isocom.com
<http://www.isocom.com>

ELECTRICAL CHARACTERISTICS ($T_A = 0^\circ\text{C}$ to 70°C Unless otherwise noted)

PARAMETER	SYM	DEVICE	MIN	TYP*	MAX	UNITS	TEST CONDITION
High Level Output Current	I_{OH}				100	μA	$V_{CC}=5.5\text{V}, V_O=5.5\text{V}$ $I_F=250\mu\text{A}, V_E=2\text{V}$
Low Level Output Voltage	V_{OL}			0.35	0.6	V	$V_{CC}=5.5\text{V}, I_F=5\text{mA}$ $V_E=2\text{V}$ I_{OL} (sinking) = 13mA
Input Threshold Current	I_{FT}			3	5	mA	$V_{CC}=5.5\text{V}, V_O=0.6\text{V}$ $V_E=2\text{V}, I_{OL}=13\text{mA}$
High Level Supply Current	I_{CCH}			7	10	mA	$V_{CC}=5.5\text{V}, I_F=0\text{mA}$ $V_E=0.5\text{V}$
Low Level Supply Current	I_{CCL}			9	13	mA	$V_{CC}=5.5\text{V}, I_F=10\text{mA}$ $V_E=0.5\text{V}$
High Level Enable Current	I_{EH}			-0.6	-1.6	mA	$V_{CC}=5.5\text{V}, V_E=2\text{V}$
Low Level Enable Current	I_{EL}			-0.8	-1.6	mA	$V_{CC}=5.5\text{V}, V_E=0.5\text{V}$
High Level Enable Voltage (note 10)	V_{EH}		2			V	$V_{CC}=5.5\text{V}, I_F=10\text{mA}$
Low Level Enable Voltage	V_{EL}				0.8	V	$V_{CC}=5.5\text{V}, I_F=10\text{mA}$
Input Forward Voltage	V_F				1.75	V	$I_F=10\text{mA}, T_A=25^\circ\text{C}$
Input Reverse Breakdown Voltage	V_{BR}		5			V	$I_R=10\mu\text{A}, T_A=25^\circ\text{C}$
Input Capacitance	C_{IN}			60		pF	$V_F=0, f=1\text{MHz}$
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_F}{\Delta T_A}$			-1.4		mV/°C	$I_F=10\text{mA}$
Input-output Isolation Voltage (note 3)	V_{ISO}		2500			V_{RMS}	R.H.equal to or less than 50%, t=1min, $T_A=25^\circ\text{C}$
Input-output Insulation Leakage Current (note 3)	I_{I-O}				1	μA	R.H.=45% $t=5\text{s}, T_A=25^\circ\text{C}$ $V_{I-O}=3000\text{V dc}$
Resistance (Input to Output) (note 3)	R_{I-O}			10^{12}		Ω	$V_{I-O}=500\text{V dc}$
Capacitance (Input to Output) (note 3)	C_{I-O}			0.6		pF	$f = 1\text{MHz}$

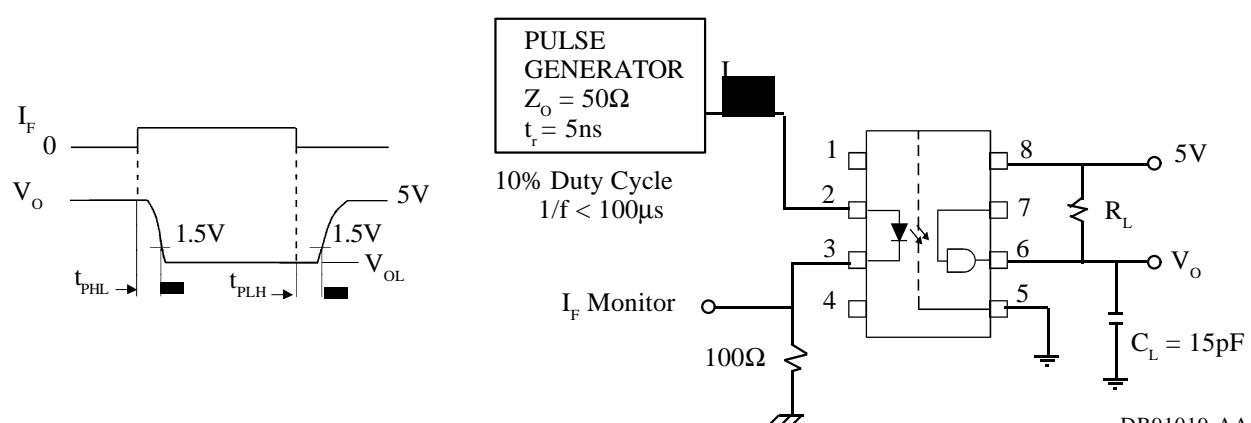
* All typicals at $T_A = 25^\circ\text{C}$

RECOMMENDED OPERATING CONDITIONS

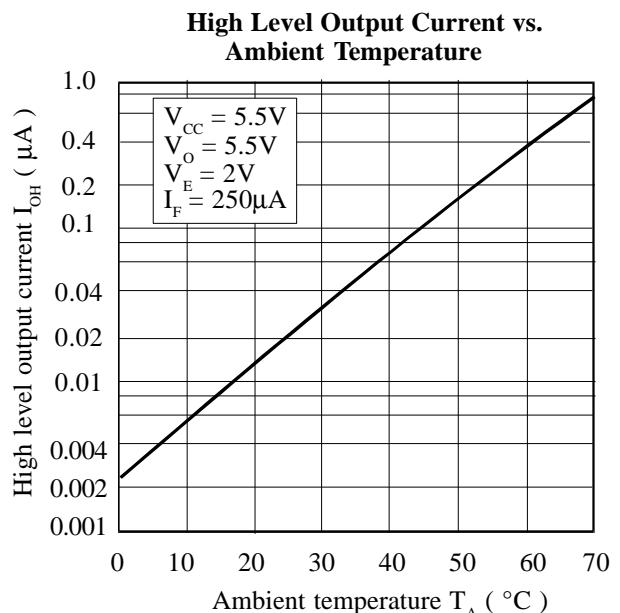
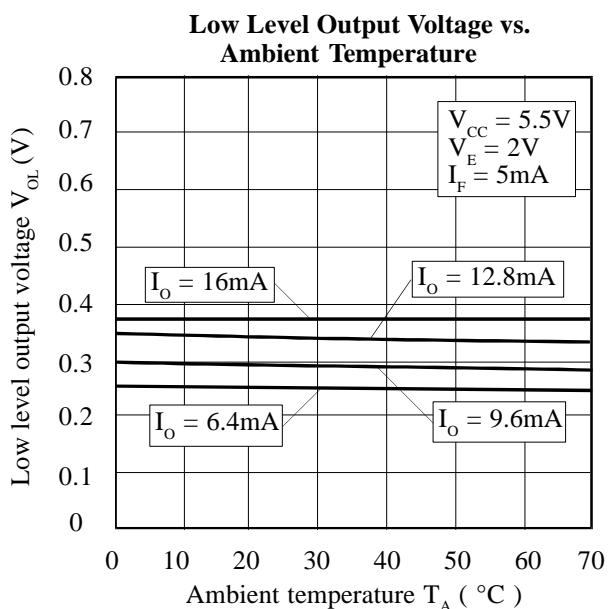
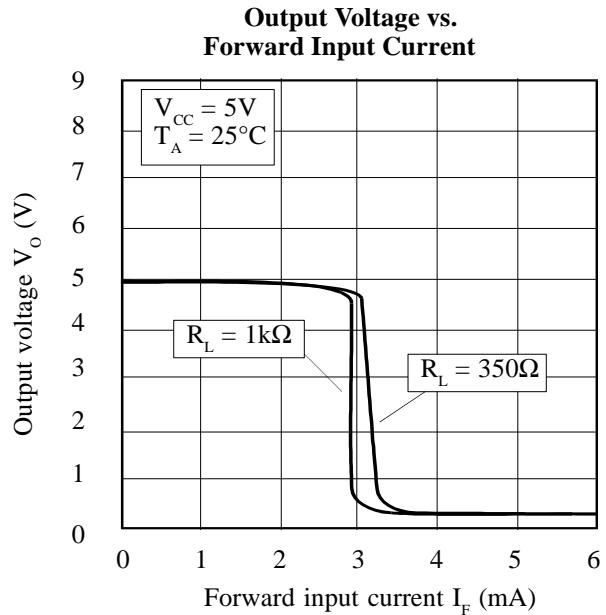
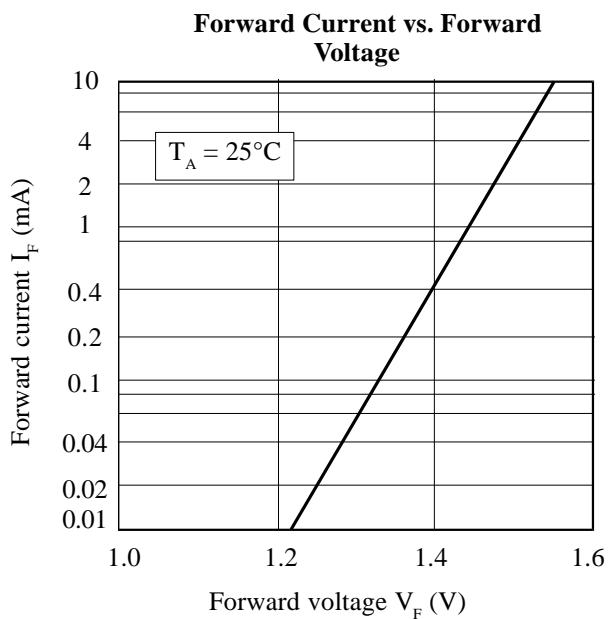
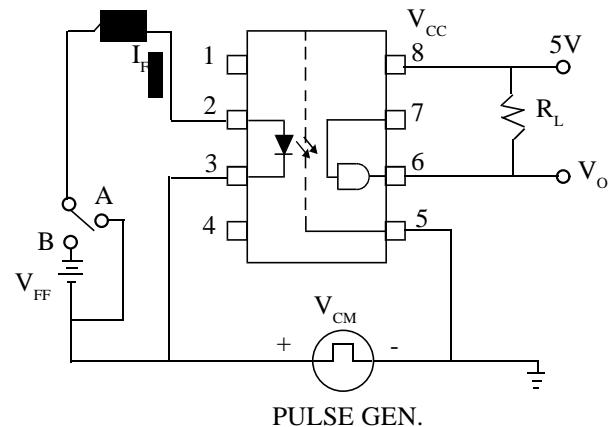
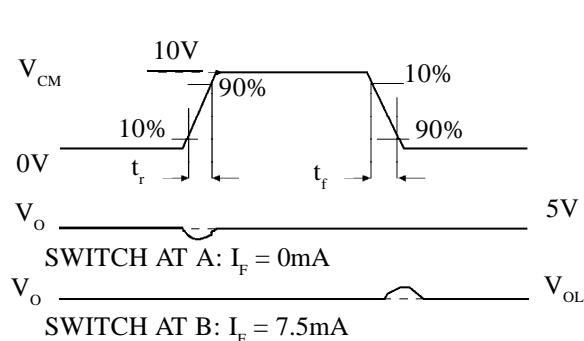
PARAMETER	SYMBOL	MIN	MAX	UNITS
Input Current, Low Level	I_{FL}	0	250	μA
Input Current, High Level	I_{FH}	6.3*	15	mA
Supply Voltage, Output	V_{CC}	4.5	5.5	V
Enable Voltage, Low Level	V_{EL}	0	0.8	V
Enable Voltage, High Level	V_{EH}	2.0	V_{CC}	V
Fan Out (TTL Load)	N		8	
Operating Temperature	T_A	-40	85	°C

*6.3mA is a guard banded value which allows for at least 20% CTR degradation.

Initial input current threshold value is 5.0mA or less


SWITCHING SPECIFICATIONS AT $T_A = 25^\circ\text{C}$ ($V_{CC} = 5\text{V}$, $I_F = 7.5\text{mA}$ Unless otherwise noted)

PARAMETER	SYM	DEVICE	MIN	TYP	MAX	UNITS	TEST CONDITION
Propagation Delay Time to Logic Low at Output (fig 1) (note4)	t_{PHL}		25	45	75	ns	$R_L = 350\Omega$, $C_L = 15\text{pF}$
Propagation Delay Time to Logic High at Output (fig 1) (note5)	t_{PLH}		20	45	75	ns	$R_L = 350\Omega$, $C_L = 15\text{pF}$
Propagation Delay Time of Enable from V_{EH} to V_{EL} (note6)	t_{EHL}			20		ns	$R_L = 350\Omega$, $C_L = 15\text{pF}$ $V_{EL} = 0\text{V}$, $V_{EH} = 3.5\text{V}$
Propagation Delay Time of Enable from V_{EL} to V_{EH} (note7)	t_{ELH}			20		ns	$R_L = 350\Omega$, $C_L = 15\text{pF}$ $V_{EL} = 0\text{V}$, $V_{EH} = 3.5\text{V}$
Common Mode Transient Immunity at Logic High Level Output (fig 2) (note8)	CM_H			10000		V/ μ s	$I_F = 0\text{mA}$, $V_{CM} = 50\text{V}_{PP}$ $R_L = 350\Omega$, $V_{OH} = 2\text{Vmin.}$
Common Mode Transient Immunity at Logic Low Level Output (fig 2) (note9)	CM_L			10000		V/ μ s	$V_{CM} = 50\text{V}_{PP}$ $R_L = 350\Omega$, $V_{OL} = 0.8\text{Vmax.}$







NOTES:-

- 1 Bypassing of the power supply line is required, with a $0.01\mu\text{F}$ ceramic disc capacitor adjacent to each isolator. The power supply bus for the isolator(s) should be separate from the bus for any active loads. Otherwise a larger value of bypass capacitor (up to $0.1\mu\text{F}$) may be needed to suppress regenerative feedback via the power supply.
- 2 Peaking circuits may produce transient input currents up to 50mA , 50ns maximum pulse width, provided average current does not exceed 20mA .
- 3 Device considered a two terminal device; pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
- 4 The t_{PHL} propagation delay is measured from the 3.75 mA level Low to High transition of the input current pulse to the 1.5V level on the High to Low transition of the output voltage pulse.
- 5 The t_{PLH} propagation delay is measured from the 3.75mA level High to Low transition of the input current pulse to the 1.5V level on the Low to High transition of the output voltage pulse.
- 6 The t_{EHL} enable input propagation delay is measured from the 1.5V level on the Low to High transition of the enable input voltage pulse to the 1.5V level on the High to Low of the output voltage pulse.
- 7 The t_{ELH} enable input propagation delay is measured from the 1.5V level on the High to Low transition of the enable input voltage pulse to the 1.5V level on the Low to High of the output voltage pulse.
- 8 CM_H is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (ie $V_{out} > 2.0\text{V}$).
- 9 CM_L is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (ie $V_{out} < 0.8\text{V}$).
- 10 No external pull up is required for a high logic state on the enable input.

FIG.1 SWITCHING TEST CIRCUIT

FIG. 2 TEST CIRCUIT FOR TRANSIENT IMMUNITY AND TYPICAL WAVEFORMS

