










CD54HC4051, CD74HC4051, CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052, CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053

SCHS122N - NOVEMBER 1997 - REVISED APRIL 2024

# CDx4HC405x, CD4HCT405x High-Speed CMOS Logic Analog **Multiplexer and Demultiplexer**

#### 1 Features

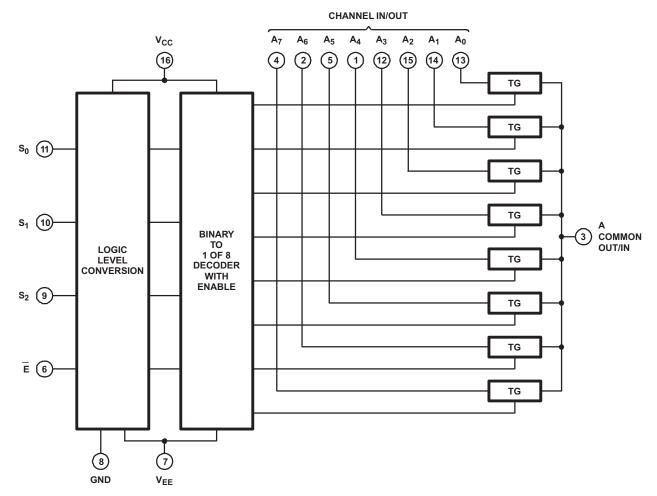
- Qualified for automotive applications
- Wide analog input voltage range: ±5V maximum
- Low ON-resistance:
  - 70 $\Omega$  typical (V<sub>CC</sub> V<sub>EE</sub> = 4.5V)
  - 40Ω typical (V<sub>CC</sub> V<sub>EE</sub> = 9V)
- Low crosstalk between switches
- Fast switching and propagation speeds
- Break-before-make switching
- Wide operating temperature range: -40°C to +125°C
- Operation control voltage: 4.5V to 5.5V
- Switch voltage: 0V to 10V
- Direct LSTTL input logic compatibility  $V_{IL} = 0.8V$  maximum,  $V_{IH} = 2V$  minimum
- CMOS input compatibility I<sub>I</sub> ≤ 1μA at V<sub>OI</sub> , V<sub>OH</sub>

## 2 Applications

- Digital radio
- Signal gating
- **Factory automation**
- **Televisions**
- **Appliances**
- Programmable logic circuits
- Sensors

## 3 Description

The CDx4HC405x and CDx4HCT405x device is a digitally controlled analog switch that uses silicon gate CMOS technology to achieve operating speeds similar to LSTTL with the low-power consumption of standard CMOS integrated circuits.


This analog multiplexer and demultiplexer controls analog voltages that may vary across the voltage supply range (for example,  $V_{CC}$  to  $V_{EE}$ ). It is a bidirectional switch that allows any analog input to be used as an output and vice versa. The switch has low ON resistance and low OFF leakages. In addition, this device has an enable control that, when high, disables all switches to their OFF state.

#### **Device Information**

| PART NUMBER | T <sub>A</sub> | PACKAGE <sup>(1)</sup> | PACKAGE SIZE(2)  |
|-------------|----------------|------------------------|------------------|
| CD54HCx405x |                | J (CDIP, 16)           | 19.56mm × 6.92mm |
|             |                | N (PDIP, 16)           | 19.30mm × 6.35mm |
| CD74HCx405x | -55°C to 125°C | D (SOIC, 16)           | 9.9mm × 3.9mm    |
| CD74HCX405X |                | NS (SOP, 16)           | 10.3mm × 5.3mm   |
|             |                | PW (TSSOP, 16)         | 5mm × 4.4mm      |

- For more information, see Section 11.
- The package size (length × width) is a nominal value and includes pins, where applicable.





**Functional Diagram of HCT4051** 



### **Table of Contents**

| 1 Features                                  | 1    | 7.2 Functional Block Diagrams                       | 24  |
|---------------------------------------------|------|-----------------------------------------------------|-----|
| 2 Applications                              |      | 7.3 Feature Description                             |     |
| 3 Description                               |      | 7.4 Device Functional Modes                         | 26  |
| 4 Pin Configuration and Functions           | 4    | 8 Application and Implementation                    | 27  |
| 5 Specifications                            | 7    | 8.1 Application Information                         | 27  |
| 5.1 Absolute Maximum Ratings                |      | 8.2 Typical Application                             |     |
| 5.2 ESD Ratings                             |      | 8.3 Power Supply Recommendations                    |     |
| 5.3 Thermal Information                     |      | 8.4 Layout                                          | 29  |
| 5.4 Recommended Operating Conditions        | 8    | 9 Device and Documentation Support                  |     |
| 5.5 Electrical Characteristics: HC Devices  | 9    | 9.1 Documentation Support                           | 30  |
| 5.6 Electrical Characteristics: HCT Devices | . 12 | 9.2 Receiving Notification of Documentation Updates | s30 |
| 5.7 Switching Characteristics, VCC = 5V     | 14   | 9.3 Support Resources                               | 30  |
| 5.8 Switching Characteristics, CL = 50pF    | 15   | 9.4 Trademarks                                      | 30  |
| 5.9 Analog Channel Specifications           | 18   | 9.5 Electrostatic Discharge Caution                 | 30  |
| 5.10 Typical Characteristics                | 20   | 9.6 Glossary                                        | 30  |
| 6 Parameter Measurement Information         | 21   | 10 Revision History                                 | 30  |
| 7 Detailed Description                      | 24   | 11 Mechanical, Packaging, and Orderable             |     |
| 7.1 Overview                                | 24   | Information                                         | 31  |

# 4 Pin Configuration and Functions

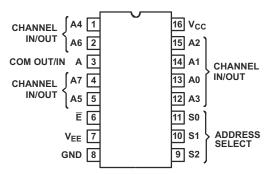



Figure 4-1. CDx4HCx4051 J, N, D, NS, PW Packages 16-Pin CDIP, PDIP, SOIC, SO, TSSOP (Top View)

Table 4-1. Pin Functions for CDxHCx4051B

| PI              | N   | TYPE(1) | DESCRIPTION                  |  |  |  |  |
|-----------------|-----|---------|------------------------------|--|--|--|--|
| NAME            | NO. | ITPE    | DESCRIPTION                  |  |  |  |  |
| CH A4<br>IN/OUT | 1   | I/O     | Channel 4 in/out             |  |  |  |  |
| CH A6<br>IN/OUT | 2   | I/O     | Channel 6 in/out             |  |  |  |  |
| COM<br>OUT/IN   | 3   | I/O     | Common out/in                |  |  |  |  |
| CH A7<br>IN/OUT | 4   | I/O     | Channel 7 in/out             |  |  |  |  |
| CH A5<br>IN/OUT | 5   | I/O     | Channel 5 in/out             |  |  |  |  |
| !E              | 6   | 1       | Enable Channels (Active Low) |  |  |  |  |
| V <sub>EE</sub> | 7   | _       | Negative power input         |  |  |  |  |
| GND             | 8   | _       | Ground                       |  |  |  |  |
| S2              | 9   | I       | Channel select 2             |  |  |  |  |
| S1              | 10  | 1       | Channel select 1             |  |  |  |  |
| S0              | 11  | I       | Channel select 0             |  |  |  |  |
| CH A3<br>IN/OUT | 12  | I/O     | Channel 3 in/out             |  |  |  |  |
| CH A0<br>IN/OUT | 13  | I/O     | Channel 0 in/out             |  |  |  |  |
| CH A1<br>IN/OUT | 14  | I/O     | Channel 1 in/out             |  |  |  |  |
| CH A2<br>IN/OUT | 15  | I/O     | Channel 2 in/out             |  |  |  |  |
| V <sub>CC</sub> | 16  | _       | Positive power input         |  |  |  |  |

<sup>(1)</sup> I = input, O = output

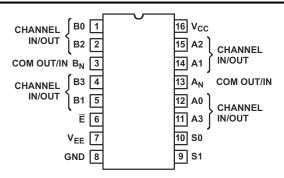



Figure 4-2. CDx4HCx4052 J, N, D, NS, PW Packages 16-Pin CDIP, PDIP, SOIC, SO, TSSOP (Top View)

### Table 4-2. Pin Functions for CDx4HCx4052B

| PIN             |     | TYPE(1) | DESCRIPTION                  |
|-----------------|-----|---------|------------------------------|
| NAME            | NO. | ITPE    | DESCRIPTION                  |
| CH B0<br>IN/OUT | 1   | I/O     | Channel B0 in/out            |
| CH B2<br>IN/OUT | 2   | I/O     | Channel B2 in/out            |
| COM B<br>OUT/IN | 3   | I/O     | B common out/in              |
| CH B3<br>IN/OUT | 4   | I/O     | Channel B3 in/out            |
| CH B1<br>IN/OUT | 5   | I/O     | Channel B1 in/out            |
| !E              | 6   | ı       | Enable channels (Active Low) |
| V <sub>EE</sub> | 7   | _       | Negative power input         |
| GND             | 8   | _       | Ground                       |
| S1              | 9   | ı       | Channel select 1             |
| S0              | 10  | ı       | Channel select 0             |
| CH A3<br>IN/OUT | 11  | I/O     | Channel A3 in/out            |
| CH A0<br>IN/OUT | 12  | I/O     | Channel A0 in/out            |
| COM A<br>IN/OUT | 13  | I/O     | A common out/in              |
| CH A1<br>IN/OUT | 14  | I/O     | Channel A1 in/out            |
| CH A2<br>IN/OUT | 15  | I/O     | Channel A2 in/out            |
| V <sub>CC</sub> | 16  | _       | Positive power input         |

<sup>(1)</sup> I = input, O = output



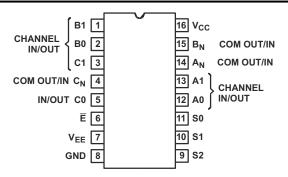



Figure 4-3. CDx4HCx4053 J, N, D, NS, PW Packages 16-Pin CDIP, PDIP, SOIC, SO, TSSOP (Top View)

Table 4-3. Pin Functions CDx4HCx4053B

| PIN TVDE(1)     |     | TYPE(1) | DESCRIPTION                  |  |  |  |  |
|-----------------|-----|---------|------------------------------|--|--|--|--|
| NAME            | NO. | 1 TPE(" | DESCRIPTION                  |  |  |  |  |
| B1IN/OUT        | 1   | I/O     | B channel Y in/out           |  |  |  |  |
| B0 IN/OUT       | 2   | I/O     | B channel X in/out           |  |  |  |  |
| C1 IN/OUT       | 3   | I/O     | C channel Y in/out           |  |  |  |  |
| COM C<br>OUT/IN | 4   | I/O     | C common out/in              |  |  |  |  |
| C0 IN/OUT       | 5   | I/O     | C channel X in/out           |  |  |  |  |
| !E              | 6   | I       | Enable channels (Active Low) |  |  |  |  |
| V <sub>EE</sub> | 7   | _       | Negative power input         |  |  |  |  |
| GND             | 8   | _       | Ground                       |  |  |  |  |
| S2              | 9   | I       | Channel select 2             |  |  |  |  |
| S1              | 10  | I       | Channel select 1             |  |  |  |  |
| S0              | 11  | I       | Channel select 0             |  |  |  |  |
| A0 IN/OUT       | 12  | I/O     | A channel X in/out           |  |  |  |  |
| A1 IN/OUT       | 13  | I/O     | A channel Y in/out           |  |  |  |  |
| COM A<br>OUT/IN | 14  | I/O     | A common out/in              |  |  |  |  |
| COM B<br>OUT/IN | 15  | I/O     | B common out/in              |  |  |  |  |
| V <sub>CC</sub> | 16  | _       | Positive power input         |  |  |  |  |

<sup>(1)</sup> I = input, O = output



## **5 Specifications**

### 5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

|                                     |                                         | ·                                                                                  | MIN  | MAX  | UNIT |
|-------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|------|------|------|
| V <sub>CC</sub> – V <sub>EE</sub>   |                                         |                                                                                    | -0.5 | 10.5 | V    |
| V <sub>CC</sub>                     | DC Supply voltage                       |                                                                                    | -0.5 | 7    | V    |
| V <sub>EE</sub>                     |                                         |                                                                                    | 0.5  | -7   | V    |
| I <sub>IK</sub>                     | DC input diode current                  | $V_{I} < -0.5V \text{ or } V_{I} > V_{CC} + 0.5V$                                  | -20  | 20   | mA   |
|                                     | DC switch diode current                 | V <sub>I</sub> < V <sub>EE</sub> – 0.5V or V <sub>I</sub> > V <sub>CC</sub> + 0.5V | -20  | 20   | mA   |
| I <sub>OK</sub>                     | DC switch current <sup>(2)</sup>        | $V_1 < V_{EE} - 0.5V$ or $V_1 > V_{CC} + 0.5V$                                     | -25  | 25   | mA   |
| I <sub>cc</sub>                     | DC V <sub>CC</sub> or ground current    |                                                                                    | -50  | 50   | mA   |
| I <sub>EE</sub>                     | DC V <sub>EE</sub> current              |                                                                                    | -20  |      | mA   |
| V <sub>SEL</sub> or V <sub>EN</sub> | Logic control input pin voltage (E      | N, Ax, SELx)                                                                       | -0.5 | 30   | V    |
| T <sub>JMAX</sub>                   | Maximum junction temperature            |                                                                                    |      | 150  | °C   |
| T <sub>LMAX</sub>                   | Maximum lead temperature Soldering 10 s |                                                                                    |      | 300  | °C   |
| T <sub>stg</sub>                    | Storage temperature                     | •                                                                                  | -65  | 150  | °C   |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability

## 5.2 ESD Ratings

|                           | •                                                                               |                                                                                          |       |      |
|---------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------|------|
|                           |                                                                                 |                                                                                          | VALUE | UNIT |
| V Flashradakia dia da ama | Human body model (HBM), per ANSI/ESDA/<br>JEDEC JS-001, all pins <sup>(1)</sup> | ±500                                                                                     | V     |      |
| V <sub>(ESD)</sub>        | Electrostatic discharge                                                         | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins <sup>(2)</sup> | ±200  | V    |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

<sup>(2)</sup> All voltages are with respect to ground, unless otherwise specified.

<sup>(2)</sup> JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



#### **5.3 Thermal Information**

| THERMAL METRIC <sup>(1)</sup> |                                              | N (PDIP) | NS (SO) | PW (TSSOP) | UNIT |
|-------------------------------|----------------------------------------------|----------|---------|------------|------|
|                               |                                              | 16 PINS  | 16 PINS | 16 PINS    |      |
| $R_{\theta JA}$               | Junction-to-ambient thermal resistance       | 77.3     | 99.3    | 116.5      | °C/W |
| R <sub>0JC(top)</sub>         | Junction-to-case (top) thermal resistance    | 56.2     | 59.6    | 51.9       | °C/W |
| $R_{\theta JB}$               | Junction-to-board thermal resistance         | 52.6     | 65.7    | 73.9       | °C/W |
| $\Psi_{JT}$                   | Junction-to-top characterization parameter   | 33.7     | 21.5    | 4.7        | °C/W |
| $\Psi_{JB}$                   | Junction-to-board characterization parameter | 52.1     | 65.1    | 73.2       | °C/W |

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

### 5.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

|                                   |                                                                                       |                                                 | MIN             | NOM MAX         | UNIT |
|-----------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------|-----------------|-----------------|------|
| V                                 | Supply voltage range (T <sub>A</sub> = full package temperature                       | CD54 and 74HC types                             | 2               | 6               | V    |
| V <sub>CC</sub>                   | range) <sup>(2)</sup>                                                                 | CD54 and 74HCT types                            | 4.5             | 5.5             |      |
| V <sub>CC</sub> – V <sub>EE</sub> | Supply voltage range (T <sub>A</sub> = full package temperature range)                | CD54 and 74HC                                   |                 | 10              | V    |
| V <sub>EE</sub>                   | Supply voltage range (T <sub>A</sub> = full package temperature range) <sup>(3)</sup> | CD54 and 74HC<br>types, CD54 and<br>74HCT types | 0               | -6              | V    |
| VI                                | DC input control voltage                                                              |                                                 | 0               | V <sub>CC</sub> | V    |
| V <sub>IS</sub>                   | Analog switch I/O voltage                                                             |                                                 | V <sub>EE</sub> | V <sub>CC</sub> | V    |
| T <sub>A</sub>                    | Ambient temperature                                                                   |                                                 | -55             | 125             | °C   |
|                                   |                                                                                       | 2V                                              | 0               | 1000            |      |
| t <sub>r</sub> , t <sub>f</sub>   | Input rise and fall times                                                             | 4.5V                                            | 0               | 500             | ns   |
|                                   |                                                                                       | 6V                                              | 0               | 400             |      |

<sup>(1)</sup> For maximum reliability, nominal operating conditions must be selected so that operation is always within the ranges specified in the *Recommended Operating Conditions* table.

<sup>(2)</sup> All voltages referenced to GND unless otherwise specified.

<sup>(3)</sup> In certain applications, the external load resistor current may include both V<sub>CC</sub> and signal line components. To avoid drawing V<sub>CC</sub> current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.6V (calculated from r<sub>ON</sub> values shown in *Electrical Characteristics HC* and *Electrical Characteristics HCT* tables). No V<sub>CC</sub> current will flow through R<sub>L</sub> if the switch current flows into terminal 3 on the HC and HCT40511; terminals 3 and 13 on the HC and HCT4052; terminals 4, 14, and 15 on the HC and HCT4053.



# 5.5 Electrical Characteristics: HC Devices

Over operating free-air temperature range,  $V_{SUPPLY} = \pm 5V$ , and  $R_L = 100\Omega$ , (unless otherwise noted)

| PARAMETER                                 |                     |                    | ST CONDITION        |                     | inorwide rieted)   |      | TYP I | MAX  | UNIT |
|-------------------------------------------|---------------------|--------------------|---------------------|---------------------|--------------------|------|-------|------|------|
| CD74HC405x                                |                     |                    |                     |                     |                    |      |       |      |      |
|                                           | V <sub>IS</sub> (V) | V <sub>I</sub> (V) | V <sub>EE</sub> (V) | V <sub>CC</sub> (V) | TA                 |      |       |      |      |
|                                           |                     |                    |                     |                     | 25°C               | 1.5  |       |      |      |
|                                           |                     |                    |                     | 2                   | –40°C to<br>+85°C  | 1.5  |       |      |      |
|                                           |                     |                    |                     |                     | –55°C to<br>+125°C | 1.5  |       |      |      |
|                                           |                     |                    |                     |                     | 25°C               | 3.15 |       |      |      |
| Input High Voltage, V <sub>IH</sub> , Min |                     |                    |                     | 4.5                 | –40°C to<br>+85°C  | 3.15 |       |      | V    |
|                                           |                     |                    |                     |                     | –55°C to<br>+125°C | 3.15 |       |      |      |
|                                           |                     |                    |                     |                     | 25°C               | 4.2  |       |      |      |
|                                           |                     |                    |                     | 6                   | -40°C to<br>+85°C  | 4.2  |       |      |      |
|                                           |                     |                    |                     |                     | –55°C to<br>+125°C | 4.2  |       |      |      |
|                                           |                     |                    |                     |                     | 25°C               |      |       | 0.5  |      |
|                                           |                     |                    |                     | 2                   | –40°C to<br>+85°C  |      |       | 0.5  |      |
|                                           |                     |                    |                     |                     | –55°C to<br>+125°C |      |       | 0.5  |      |
|                                           |                     |                    |                     |                     | 25°C               |      |       | 1.35 |      |
| Input Low Voltage, V <sub>IL</sub> , Max  |                     |                    |                     | 4.5                 | –40°C to<br>+85°C  |      |       | 1.35 | V    |
|                                           |                     |                    |                     |                     | –55°C to<br>+125°C |      |       | 1.35 |      |
|                                           |                     |                    |                     |                     | 25°C               |      |       | 1.8  |      |
|                                           |                     |                    |                     | 6                   | –40°C to<br>+85°C  |      |       | 1.8  |      |
|                                           |                     |                    |                     |                     | –55°C to<br>+125°C |      |       | 1.8  |      |

## 5.5 Electrical Characteristics: HC Devices (continued)

Over operating free-air temperature range,  $V_{SUPPLY} = \pm 5V$ , and  $R_L = 100\Omega$ , (unless otherwise noted)

| PARAMETER                |                      |                                    |   | CONDITIONS | 3   | <u> </u>           | MIN . | TYP | MAX | UNIT |
|--------------------------|----------------------|------------------------------------|---|------------|-----|--------------------|-------|-----|-----|------|
|                          |                      |                                    |   |            |     | 25°C               |       | 70  | 160 |      |
|                          |                      |                                    |   | 0          | 4.5 | –40°C to<br>+85°C  |       |     | 200 |      |
|                          |                      |                                    |   |            |     | –55°C to<br>+125°C |       |     | 240 |      |
|                          |                      |                                    |   |            |     | 25°C               |       | 60  | 140 |      |
|                          |                      | V <sub>CC</sub> or V <sub>EE</sub> |   | 0          | 6   | –40°C to<br>+85°C  |       |     | 175 | Ω    |
|                          |                      |                                    |   |            |     | –55°C to<br>+125°C |       |     | 210 |      |
|                          |                      |                                    |   |            |     | 25°C               |       | 40  | 120 |      |
|                          |                      |                                    |   | -4.5       | 4.5 | –40°C to<br>+85°C  |       |     | 150 |      |
| r <sub>ON</sub>          |                      |                                    | _ |            |     | –55°C to<br>+125°C |       |     | 180 |      |
| ON resistance            | I <sub>O</sub> = 1mA |                                    |   |            |     | 25°C               |       | 90  | 180 |      |
|                          |                      | V <sub>CC</sub> to V <sub>EE</sub> |   | 0          | 4.5 | -40°C to<br>+85°C  |       |     | 225 |      |
|                          |                      |                                    |   |            |     | –55°C to<br>+125°C |       |     | 270 |      |
|                          |                      |                                    |   |            |     | 25°C               |       | 80  | 160 | -    |
|                          |                      |                                    |   | 0          | 6   | –40°C to<br>+85°C  |       |     | 200 | Ω    |
|                          |                      |                                    |   |            |     | –55°C to<br>+125°C |       |     | 240 |      |
|                          |                      |                                    |   |            |     | 25°C               |       | 45  | 130 |      |
|                          |                      |                                    |   | -4.5       | 4.5 | –40°C to<br>+85°C  |       |     | 162 |      |
|                          |                      |                                    |   |            |     | –55°C to<br>+125°C |       |     | 195 |      |
| $\Delta r_{ON}$          |                      |                                    |   | 0          | 4.5 | 25°C               |       | 10  |     |      |
| Maximum ON resistance    |                      |                                    |   | 0          | 6   | 25°C               |       | 8.5 |     | Ω    |
| between any two channels |                      |                                    |   | -4.5       | 4.5 | 25°C               |       | 5   |     |      |



# **5.5 Electrical Characteristics: HC Devices (continued)**

Over operating free-air temperature range,  $V_{SUPPLY} = \pm 5V$ , and  $R_L = 100\Omega$ , (unless otherwise noted)

| PARAMETER                                     |                                     |                                                               |                                    | CONDITIONS | • | orrico riotou)    | MIN TYP MAX       | UNIT |
|-----------------------------------------------|-------------------------------------|---------------------------------------------------------------|------------------------------------|------------|---|-------------------|-------------------|------|
|                                               |                                     |                                                               |                                    |            |   | 25°C              | ±0.1              |      |
|                                               | 1 and 2                             |                                                               |                                    | 0          | 6 | –55°C to 85°C     | ±1                |      |
|                                               | channels                            |                                                               |                                    | O          |   | –55°C to<br>125°C | ±1                |      |
|                                               |                                     |                                                               |                                    |            |   | 25°C              | ±0.1              |      |
|                                               | 4053                                |                                                               |                                    | -5         | 5 | –55°C to 85°C     | ±1                |      |
|                                               | .000                                | For switch<br>OFF: When                                       |                                    |            |   | –55°C to<br>125°C | ±1                |      |
|                                               |                                     | $V_{IS} = V_{CC}$                                             |                                    |            |   | 25°C              | ±0.1              |      |
|                                               | 4                                   | V <sub>OS</sub> = V <sub>EE</sub> ;<br>When V <sub>IS</sub> = |                                    | 0          | 6 | –55°C to 85°C     | ±1                |      |
| I <sub>IZ</sub>                               | channels                            | V <sub>EE</sub> , V <sub>OS</sub> = V <sub>CC</sub> , For     | \/ or\/                            |            |   | –55°C to<br>125°C | ±1                |      |
| Switch ON/OFF leakage current                 |                                     | switch ON:                                                    | V <sub>IL</sub> or V <sub>IH</sub> |            |   | 25°C              | ±0.2              | μA   |
|                                               | 4052                                | applicable                                                    |                                    | -5         | 5 | –55°C to 85°C     | ±2                |      |
|                                               | combinati<br>s of V <sub>IS</sub> a | combination<br>s of V <sub>IS</sub> and                       |                                    |            |   | –55°C to<br>125°C | ±2                |      |
|                                               |                                     | V <sub>OS</sub> voltage levels                                |                                    | 0          | 6 | 25°C              | ±0.2              | 4    |
|                                               | 8                                   |                                                               |                                    |            |   | –55°C to 85°C     | ±2                |      |
|                                               | channels                            |                                                               |                                    |            |   |                   | –55°C to<br>125°C | ±2   |
|                                               |                                     |                                                               |                                    |            |   | 25°C              | ±0.4              | -    |
|                                               | 4051                                |                                                               |                                    | -5         | 5 | –55°C to 85°C     | ±4                |      |
|                                               | 4031                                |                                                               |                                    |            |   | –55°C to<br>125°C | ±4                |      |
|                                               |                                     |                                                               |                                    |            |   | 25°C              | ±0.1              |      |
| I <sub>IL</sub>                               |                                     |                                                               | V <sub>CC</sub> or                 | 0          | 6 | –55°C to 85°C     | ±1                | μΑ   |
| Control input leakage current                 |                                     |                                                               | GND                                |            |   | –55°C to<br>125°C | ±1                |      |
|                                               |                                     |                                                               |                                    |            |   | 25°C              | 12                |      |
| Quiescent Device Current, I <sub>CC</sub> Max |                                     | When V <sub>IS</sub> = V <sub>EE</sub> , V <sub>OS</sub> =    |                                    | 0          | 6 | –55°C to 85°C     | 80                |      |
|                                               | I <sub>O</sub> = 0                  | V <sub>CC</sub>                                               | V <sub>CC</sub> or                 |            |   | –55°C to<br>125°C | 160               |      |
|                                               |                                     |                                                               | GND                                |            |   | 25°C              | 32                | μA   |
|                                               |                                     | When $V_{IS} = V_{CC}$ , $V_{OS} = V_{CC}$                    |                                    | -5         | 5 | –55°C to 85°C     | 160               |      |
|                                               |                                     | V <sub>EE</sub>                                               |                                    |            |   | –55°C to<br>125°C | 320               |      |

### 5.6 Electrical Characteristics: HCT Devices

Over operating free-air temperature range,  $V_{SUPPLY} = \pm 5V$ , and  $R_L = 100\Omega$ , (unless otherwise noted)<sup>(1)</sup>

| PARAMETER                                      |                                    | TEST CONDITIONS                       |                                    |                     |                     |                    |   | TYP | MAX | UNIT |
|------------------------------------------------|------------------------------------|---------------------------------------|------------------------------------|---------------------|---------------------|--------------------|---|-----|-----|------|
| CD74HCT405x                                    | <u>'</u>                           |                                       |                                    |                     |                     |                    |   |     |     |      |
|                                                |                                    | V <sub>IS</sub> (V)                   | V <sub>I</sub> (V)                 | V <sub>EE</sub> (V) | V <sub>CC</sub> (V) | T <sub>A</sub>     |   |     |     |      |
|                                                |                                    |                                       |                                    | '                   |                     | 25°C               | 2 |     |     |      |
| Input High Voltage, V <sub>IH</sub> , Min      |                                    |                                       |                                    |                     | 4.5 to 5.5          | -40°C to<br>+85°C  | 2 |     |     | V    |
|                                                |                                    |                                       |                                    |                     |                     | –55°C to<br>+125°C | 2 |     |     | -    |
|                                                |                                    |                                       |                                    |                     |                     | 25°C               |   |     | 0.8 |      |
| Input Low Voltage, V <sub>IL</sub> , Max       |                                    |                                       |                                    |                     | 4.5 to 5.5          | -40°C to<br>+85°C  |   |     | 0.8 | V    |
|                                                |                                    |                                       |                                    |                     |                     | –55°C to<br>+125°C |   |     | 0.8 | -    |
|                                                |                                    |                                       |                                    |                     |                     | 25°C               |   | 70  | 160 |      |
|                                                | V <sub>CC</sub> or V <sub>EE</sub> |                                       | 0                                  | 4.5                 | -40°C to<br>+85°C   |                    |   | 200 |     |      |
|                                                |                                    | \\                                    |                                    |                     |                     | –55°C to<br>+125°C |   |     | 240 |      |
|                                                |                                    | ACC OL AEE                            |                                    |                     |                     | 25°C               |   | 40  | 120 | 1    |
|                                                |                                    |                                       |                                    | -4.5                | 4.5                 | -40°C to<br>+85°C  |   |     | 150 | Ω    |
| ron                                            |                                    |                                       | V <sub>IL</sub> or V <sub>IH</sub> |                     |                     | –55°C to<br>+125°C |   |     | 180 |      |
| ON resistance                                  | I <sub>O</sub> = 1mA               |                                       |                                    |                     |                     | 25°C               |   | 90  | 180 |      |
|                                                |                                    |                                       |                                    | 0                   | 4.5                 | -40°C to<br>+85°C  |   |     | 225 |      |
|                                                |                                    | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                                    |                     |                     | –55°C to<br>+125°C |   |     | 270 |      |
|                                                |                                    | V <sub>CC</sub> to V <sub>EE</sub>    |                                    |                     |                     | 25°C               |   | 45  | 130 |      |
|                                                |                                    |                                       |                                    | -4.5                | 4.5                 | -40°C to<br>+85°C  |   |     | 162 | Ω    |
|                                                |                                    |                                       |                                    |                     |                     | –55°C to<br>+125°C |   |     | 195 |      |
| Δr <sub>ON</sub>                               |                                    |                                       |                                    | 0                   | 4.5                 | 25°C               |   | 10  |     |      |
| Maximum ON resistance between any two channels |                                    |                                       |                                    | -4.5                | 4.5                 | 25°C               |   | 5   |     | Ω    |



### 5.6 Electrical Characteristics: HCT Devices (continued)

Over operating free-air temperature range,  $V_{SUPPLY} = \pm 5V$ , and  $R_{I} = 100\Omega$ , (unless otherwise noted)<sup>(1)</sup>

| PARAMETER                                                             |                    |                                                               | TEST                               | CONDITION | S          |                   | MIN TYP MAX | UNIT |
|-----------------------------------------------------------------------|--------------------|---------------------------------------------------------------|------------------------------------|-----------|------------|-------------------|-------------|------|
|                                                                       |                    |                                                               |                                    |           |            | 25°C              | ±0.1        |      |
|                                                                       | 1 and 2            |                                                               |                                    | 0         | 6          | –55°C to 85°C     | ±1          |      |
|                                                                       | channels           |                                                               |                                    |           |            | –55°C to<br>125°C | ±1          |      |
|                                                                       |                    | 1                                                             |                                    |           |            | 25°C              | ±0.1        |      |
|                                                                       | 4053               |                                                               |                                    | -5        | 5          | –55°C to 85°C     | ±1          |      |
|                                                                       | 1000               | For switch<br>OFF: When                                       |                                    |           |            | –55°C to<br>125°C | ±1          |      |
|                                                                       |                    | $V_{IS} = V_{CC}$                                             |                                    |           |            | 25°C              | ±0.1        |      |
|                                                                       | 4                  | V <sub>OS</sub> = V <sub>EE</sub> ;<br>When V <sub>IS</sub> = |                                    | 0         | 6          | –55°C to 85°C     | ±1          |      |
| I <sub>IZ</sub>                                                       | channels           | V <sub>EE</sub> , V <sub>OS</sub> = V <sub>CC</sub> , For     | \/ or\/                            |           |            | –55°C to<br>125°C | ±1          |      |
| Switch ON/OFF leakage curren                                          |                    | switch ON:                                                    | V <sub>IL</sub> or V <sub>IH</sub> |           |            | 25°C              | ±0.2        | μA   |
|                                                                       | 4052               | applicable                                                    |                                    | -5        | 5          | –55°C to 85°C     | ±2          | 2    |
|                                                                       | 4052               | combination<br>s of V <sub>IS</sub> and                       |                                    |           |            | –55°C to<br>125°C | ±2          | ?    |
|                                                                       |                    | V <sub>OS</sub> voltage levels                                |                                    |           |            | 25°C              | ±0.2        | 2    |
|                                                                       | 8 channels 4051    |                                                               |                                    | 0         | 6          | –55°C to 85°C     | ±2          | 2    |
|                                                                       |                    | _                                                             |                                    |           |            | –55°C to<br>125°C | ±2          |      |
|                                                                       |                    |                                                               |                                    |           |            | 25°C              | ±0.4        | 1    |
|                                                                       |                    |                                                               |                                    | -5        | 5          | –55°C to 85°C     | ±4          |      |
|                                                                       |                    |                                                               |                                    |           |            | –55°C to<br>125°C | ±4          | 1    |
|                                                                       |                    |                                                               |                                    |           |            | 25°C              | ±0.1        |      |
| I <sub>IL</sub>                                                       |                    |                                                               | See <sup>(1)</sup>                 | 0         | 5.5        | –55°C to 85°C     | ±1          | μA   |
| Control input leakage current                                         |                    |                                                               |                                    |           |            | –55°C to<br>125°C | ±1          |      |
|                                                                       |                    |                                                               |                                    |           |            | 25°C              | 12          | 2    |
|                                                                       |                    | When $V_{IS} = V_{EE}$ , $V_{OS} = V_{CS}$                    |                                    | 0         | 5.5        | –55°C to 85°C     | 80          | )    |
| Quiescent Device Current, I <sub>CC</sub>                             | 0                  | V <sub>CC</sub>                                               | V <sub>CC</sub> or                 |           |            | –55°C to<br>125°C | 160         |      |
| Max                                                                   | I <sub>O</sub> = 0 |                                                               | GND                                |           |            | 25°C              | 32          | μA   |
|                                                                       |                    | When $V_{IS} = V_{CC}$ , $V_{OS} = V_{CC}$                    |                                    | -4.5      | 5.5        | –55°C to 85°C     | 160         | )    |
|                                                                       | V <sub>E</sub>     | V <sub>EE</sub>                                               |                                    | 1.0       | 0.0        | –55°C to<br>125°C | 320         | )    |
|                                                                       |                    |                                                               |                                    |           |            | 25°C              | 100 360     | )    |
| ΔI <sub>CC</sub> Additional quiescent device current per input pin: 1 |                    | ΔΙCC                                                          | V <sub>CC</sub> - 2.1              |           | 4.5 to 5.5 | –55°C to 85°C     | 450         | μΑ   |
| unit load <sup>(2)</sup>                                              |                    |                                                               |                                    |           | 13 0.0     | –55°C to<br>125°C | 490         |      |

<sup>(1)</sup> Any voltage between V<sub>CC</sub> and GND.

<sup>(2)</sup> For dual-supply systems, theoretical worse-case ( $V_1 = 2.4V$ ,  $V_{CC} = 5.5V$ ) specification is 1.8mA.



## 5.7 Switching Characteristics, VCC = 5V

 $V_{CC}$  = 5V,  $T_A$  = 25°C, input  $t_r$ , $t_f$  = 6 ns

|                                             | Parameter                                                    | Test Co         | nditions    | C <sub>L</sub> (pF) | MIN NOM | MAX | UNIT |
|---------------------------------------------|--------------------------------------------------------------|-----------------|-------------|---------------------|---------|-----|------|
|                                             |                                                              |                 | CDx4HC4051  |                     | 4       |     |      |
|                                             |                                                              |                 | CDx4HCT4051 |                     | 4       |     |      |
|                                             |                                                              | Switch IN to    | CDx4HC4052  | 15                  | 4       |     |      |
| t <sub>PHL</sub> , t <sub>PLH</sub>         |                                                              | OUT             | CDx4HCT4052 | 15                  | 4       |     |      |
|                                             |                                                              |                 | CDx4HC4053  |                     | 4       |     |      |
|                                             |                                                              |                 | CDx4HCT4053 |                     | 4       |     |      |
|                                             |                                                              |                 | CDx4HC4051  |                     | 27      |     |      |
|                                             |                                                              |                 | CDx4HCT4051 |                     | 35      |     |      |
| t t                                         | Supply voltage range (T <sub>A</sub> = full package          | Switch turn-off | CDx4HC4052  | 15                  | 33      |     | ne   |
| t <sub>PHZ</sub> , t <sub>PLZ</sub>         | temperature range)                                           | (S or E)        | CDx4HCT4052 | 15                  | 33      |     | ns   |
|                                             |                                                              |                 | CDx4HC4053  |                     | 30      |     |      |
|                                             |                                                              |                 | CDx4HCT4053 |                     | 35      |     |      |
|                                             |                                                              |                 | CDx4HC4051  |                     | 19      |     |      |
|                                             |                                                              |                 | CDx4HCT4051 |                     | 23      |     |      |
|                                             |                                                              | Switch turn-on  | CDx4HC4052  | 15                  | 27      |     |      |
| t <sub>PZH</sub> , t <sub>PZL</sub>         |                                                              | (S or E)        | CDx4HCT4052 | 15                  | 29      |     |      |
|                                             |                                                              |                 | CDx4HC4053  |                     | 18      |     |      |
|                                             |                                                              |                 | CDx4HCT4053 |                     | 28      |     |      |
|                                             |                                                              |                 | CDx4HC4051  |                     | 50      |     |      |
|                                             |                                                              |                 | CDx4HCT4051 |                     | 52      |     |      |
| C Dawe                                      | C <sub>PD</sub> Power dissipation capacitance <sup>(1)</sup> |                 | CDx4HC4052  |                     | 74      |     | "F   |
| C <sub>PD</sub> Fower dissipation capacitar | uissipation capacitance                                      |                 | CDx4HCT4052 |                     | 76      |     | pF   |
|                                             |                                                              |                 | CDx4HC4053  |                     | 38      |     | 1    |
|                                             |                                                              |                 | CDx4HCT4053 |                     | 42      |     |      |

<sup>(1)</sup>  $C_{PD}$  is used to determine the dynamic power consumption, per package.  $P_D = C_{PD} \, v_{CC} \, ^2 \, f_i + \Sigma \, (C_L + C_S) \, V_{CC} \, ^2 \, f_0$ ,  $f_O = 0$  output frequency,  $f_I = 0$  input frequency,  $C_L = 0$  output load capacitance,  $C_S = 0$  switch capacitance,  $V_{CC} = 0$  supply voltage



# 5.8 Switching Characteristics, CL = 50pF

 $C_L$  = 50pF, input  $t_r$ ,  $t_f$  = 6 ns

| Parameter                                                      |      | V <sub>EE</sub> (V) | V <sub>CC</sub> (V) | Test Co                             | nditions | MIN | NOM | MAX | UNIT |  |
|----------------------------------------------------------------|------|---------------------|---------------------|-------------------------------------|----------|-----|-----|-----|------|--|
|                                                                |      |                     |                     | T <sub>A</sub> = 25°C               | HC       |     |     | 60  |      |  |
|                                                                |      | 0                   | 2                   | T <sub>A</sub> = -40°C to<br>+85°C  | нс       |     |     | 75  |      |  |
|                                                                |      |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | нс       |     |     | 90  |      |  |
|                                                                |      |                     |                     | T <sub>A</sub> = 25°C               | НС, НСТ  |     |     | 12  |      |  |
|                                                                |      | 0                   | 4.5                 | T <sub>A</sub> = -40°C to<br>+85°C  | нс, нст  |     |     | 15  |      |  |
| t <sub>PHL</sub> , t <sub>PLH</sub>                            |      |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | нс, нст  |     |     | 18  | ns   |  |
| Propagation delay, switch in to                                | out  |                     |                     | T <sub>A</sub> = 25°C               | HC       |     |     | 10  | 115  |  |
|                                                                |      | 0                   | 6                   | T <sub>A</sub> = -40°C to<br>+85°C  | нс       |     |     | 13  |      |  |
|                                                                |      |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | нс       |     |     | 15  |      |  |
|                                                                |      | -4.5                |                     | T <sub>A</sub> = 25°C               | HC, HCT  |     |     | 8   |      |  |
|                                                                |      |                     | 4.5                 | $T_A = -40^{\circ}C$ to +85°C       | нс, нст  |     |     | 10  |      |  |
|                                                                |      |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | нс, нст  |     | 12  |     |      |  |
|                                                                |      |                     |                     | T <sub>A</sub> = 25°C               | HC       | 250 |     |     |      |  |
|                                                                |      | 0                   | 2                   | T <sub>A</sub> = -40°C to<br>+85°C  | нс       |     |     | 340 |      |  |
|                                                                |      |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | нс       |     |     | 400 | 1    |  |
|                                                                |      |                     |                     | T <sub>A</sub> = 25°C               | HC, HCT  |     |     | 50  |      |  |
|                                                                |      | 0                   | 4.5                 | T <sub>A</sub> = -40°C to<br>+85°C  | нс, нст  |     |     | 56  |      |  |
| t <sub>PHZ</sub> , t <sub>PLZ</sub><br>Maximum switch turn OFF | 4054 |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | нс, нст  |     |     | 68  |      |  |
| delay from S or E to switch                                    | 4051 |                     |                     | T <sub>A</sub> = 25°C               | HC       |     |     | 44  | ns   |  |
| output                                                         |      | 0                   | 6                   | T <sub>A</sub> = -40°C to<br>+85°C  | нс       |     |     | 50  |      |  |
|                                                                |      |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | НС       |     |     | 57  |      |  |
|                                                                |      |                     |                     | T <sub>A</sub> = 25°C               | HC, HCT  |     |     | 44  |      |  |
|                                                                |      | -4.5                | 4.5                 | T <sub>A</sub> = -40°C to<br>+85°C  | нс, нст  |     |     | 50  |      |  |
|                                                                |      |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | нс, нст  |     |     | 55  |      |  |



# 5.8 Switching Characteristics, CL = 50pF (continued)

 $C_L = 50pF$ , input  $t_r$ ,  $t_f = 6$  ns

| Parameter                                                   |       | V <sub>EE</sub> (V) | V <sub>CC</sub> (V) | Test Co                             | nditions | MIN NOM | MAX | UNIT |
|-------------------------------------------------------------|-------|---------------------|---------------------|-------------------------------------|----------|---------|-----|------|
|                                                             |       |                     |                     | T <sub>A</sub> = 25°C               | HC       |         | 250 |      |
|                                                             |       | 0                   | 2                   | $T_A = -40$ °C to $+85$ °C          | нс       |         | 340 |      |
|                                                             |       |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | нс       |         | 400 |      |
|                                                             |       |                     |                     | T <sub>A</sub> = 25°C               | HC, HCT  |         | 50  |      |
|                                                             |       | 0                   | 4.5                 | T <sub>A</sub> = -40°C to<br>+85°C  | нс, нст  |         | 63  |      |
| t <sub>PHZ</sub> , t <sub>PLZ</sub> Maximum switch turn OFF |       |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | нс, нст  |         | 75  |      |
|                                                             | 4052  |                     |                     | T <sub>A</sub> = 25°C               | HC       |         | 45  | ns   |
| delay from S or E to switch output                          | 1.00- | 0                   | 6                   | T <sub>A</sub> = -40°C to<br>+85°C  | нс       |         | 54  |      |
|                                                             |       |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | нс       |         | 65  |      |
|                                                             |       |                     |                     | T <sub>A</sub> = 25°C               | HC       |         | 45  |      |
|                                                             |       |                     |                     | 1 <sub>A</sub> - 23 C               | HCT      |         | 45  |      |
|                                                             |       | -4.5                | 4.5                 | $T_A = -40$ °C to                   | HC       |         | 48  |      |
|                                                             | 4.5   | 7.5                 | 4.5                 | +85°C                               | HCT      |         | 50  |      |
|                                                             |       |                     |                     | $T_A = -55^{\circ}C$ to             | HC       |         | 57  |      |
|                                                             |       |                     |                     | +125°C                              | HCT      |         | 57  |      |
|                                                             |       |                     |                     | T <sub>A</sub> = 25°C               | HC       |         | 250 |      |
|                                                             | 0     | 0                   | 2                   | $T_A = -40$ °C to +85°C             | нс       |         | 340 |      |
|                                                             |       |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | нс       |         | 400 |      |
|                                                             |       |                     |                     | T <sub>A</sub> = 25°C               | HC       |         | 45  |      |
|                                                             |       |                     |                     | 1 <sub>A</sub> - 23 C               | HCT      |         | 50  |      |
|                                                             |       | 0                   | 4.5                 | $T_A = -40$ °C to                   | HC       |         | 53  |      |
|                                                             |       | ľ                   | 7.0                 | +85°C                               | HCT      |         | 53  |      |
| $t_{PHZ}$ , $t_{PLZ}$                                       |       |                     |                     | $T_A = -55^{\circ}C$ to             | HC       |         | 63  |      |
| Maximum switch turn OFF                                     | 4053  |                     |                     | +125°C                              | HCT      |         | 66  | ns   |
| delay from S or E to switch                                 | 7000  |                     |                     | T <sub>A</sub> = 25°C               | HC       |         | 45  | 113  |
| output                                                      |       | 0                   | 6                   | $T_A = -40$ °C to +85°C             | нс       |         | 50  |      |
|                                                             |       |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | нс       |         | 55  |      |
|                                                             |       |                     |                     | T <sub>A</sub> = 25°C               | HC       |         | 45  |      |
|                                                             |       |                     |                     | 1A - 23 C                           | HCT      |         | 45  |      |
|                                                             |       | _4.5                | 4.5                 | $T_A = -40$ °C to                   | HC       |         | 50  |      |
|                                                             |       | -4.5 4.8            | 7.0                 | . A                                 | HCT      |         | 50  |      |
|                                                             |       |                     |                     | $T_A = -55^{\circ}C$ to             | HC       |         | 55  |      |
|                                                             |       |                     |                     | +125°C                              | HCT      |         | 55  |      |



# 5.8 Switching Characteristics, CL = 50pF (continued)

 $C_1 = 50pF$ , input  $t_r$ ,  $t_f = 6$  ns

| Parameter                                               |      | V <sub>EE</sub> (V) | V <sub>CC</sub> (V) | Test Co                             | nditions | MIN | NOM | MAX | UNI |
|---------------------------------------------------------|------|---------------------|---------------------|-------------------------------------|----------|-----|-----|-----|-----|
|                                                         |      |                     |                     | T <sub>A</sub> = 25°C               | HC       |     |     | 325 |     |
|                                                         |      | 0                   | 2                   | $T_A = -40$ °C to +85°C             | НС       |     |     | 405 |     |
|                                                         |      |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | НС       |     |     | 490 |     |
|                                                         |      |                     |                     | T - 25°C                            | HC       |     |     | 45  |     |
|                                                         |      |                     |                     | T <sub>A</sub> = 25°C               | HCT      |     |     | 55  |     |
|                                                         |      |                     | 4 5                 | $T_A = -40$ °C to                   | HC       |     |     | 56  |     |
|                                                         |      | 0                   | 4.5                 | +85°C                               | HCT      |     |     | 69  |     |
|                                                         |      |                     |                     | $T_A = -55^{\circ}C$ to             | НС       |     |     | 68  |     |
| t <sub>PZL</sub> , t <sub>PZH</sub> Maximum switch turn | 1051 |                     |                     | +125°C                              | HCT      |     |     | 83  |     |
| ON delay from S or E to switch output                   | 4051 |                     |                     | T <sub>A</sub> = 25°C               | HC       |     |     | 38  | ns  |
| •                                                       |      | 0                   | 6                   | $T_A = -40$ °C to +85°C             | НС       |     |     | 48  |     |
|                                                         |      |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | НС       |     |     | 57  |     |
|                                                         |      |                     |                     |                                     | НС       |     |     | 36  |     |
|                                                         |      |                     |                     | $T_A = 25^{\circ}C$                 | НСТ      |     |     | 48  |     |
|                                                         | -4.5 |                     |                     | $T_A = -40$ °C to                   | НС       |     |     | 40  |     |
|                                                         |      | -4.5                | 4.5 +85°C           | НСТ                                 |          |     | 55  |     |     |
|                                                         |      |                     |                     | T <sub>A</sub> = -55°C to           | НС       |     |     | 48  |     |
|                                                         |      |                     |                     | +125°C                              | HCT      |     |     | 60  |     |
|                                                         | O    |                     | 2                   | T <sub>A</sub> = 25°C               | НС       |     |     | 325 |     |
|                                                         |      | 0                   |                     | T <sub>A</sub> = -40°C to<br>+85°C  | НС       |     |     | 405 |     |
|                                                         |      |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | НС       |     |     | 490 |     |
|                                                         |      |                     |                     | T 0500                              | НС       |     |     | 65  | 1   |
|                                                         |      |                     |                     | $T_A = 25^{\circ}C$                 | HCT      |     |     | 70  |     |
|                                                         |      |                     | 4.5                 | $T_A = -40$ °C to                   | НС       |     |     | 81  |     |
|                                                         |      | 0                   | 4.5                 | +85°C                               | HCT      |     |     | 68  |     |
|                                                         |      |                     |                     | $T_A = -55^{\circ}C$ to             | НС       |     |     | 98  |     |
| t <sub>PZL</sub> , t <sub>PZH</sub> Maximum switch turn | 10-0 |                     |                     | +125°C                              | HCT      |     |     | 105 |     |
| ON delay from S or E to switch output                   | 4052 |                     |                     | T <sub>A</sub> = 25°C               | НС       |     |     | 55  | ns  |
| Suput                                                   |      | 0                   | 6                   | $T_A = -40^{\circ}C$ to +85°C       | НС       |     |     | 69  |     |
|                                                         |      |                     |                     | T <sub>A</sub> = -55°C to<br>+125°C | НС       |     |     | 83  | -   |
|                                                         |      |                     |                     |                                     | НС       |     |     | 46  |     |
|                                                         |      |                     |                     | T <sub>A</sub> = 25°C               | HCT      |     |     | 48  | -   |
|                                                         |      |                     |                     | $T_A = -40$ °C to                   | HC       |     |     | 58  |     |
|                                                         | -4.5 | 4.5                 | +85°C               | HCT                                 |          |     | 60  | -   |     |
|                                                         |      |                     |                     | $T_A = -55^{\circ}C$ to             | HC       |     |     | 69  |     |
|                                                         |      |                     |                     | +125°C                              | HCT      |     |     | 72  |     |

# 5.8 Switching Characteristics, CL = 50pF (continued)

 $C_L = 50pF$ , input  $t_r$ ,  $t_f = 6$  ns

| Parameter                                                                                 |      | V <sub>EE</sub> (V) | V <sub>CC</sub> (V)                | Test Co                             | nditions | MIN N | ЮМ | MAX | UNIT |
|-------------------------------------------------------------------------------------------|------|---------------------|------------------------------------|-------------------------------------|----------|-------|----|-----|------|
|                                                                                           |      |                     |                                    | T <sub>A</sub> = 25°C               | HC       |       |    | 325 |      |
|                                                                                           |      | 0                   | 2                                  | T <sub>A</sub> = -40°C to<br>+85°C  | НС       |       |    | 405 |      |
|                                                                                           |      |                     |                                    | T <sub>A</sub> = -55°C to<br>+125°C | НС       |       |    | 490 |      |
|                                                                                           |      |                     |                                    | T <sub>A</sub> = 25°C               | HC       |       |    | 44  |      |
|                                                                                           |      |                     |                                    | 1 <sub>A</sub> - 25 C               | HCT      |       |    | 48  |      |
|                                                                                           |      | 0                   | 4.5                                | $T_A = -40$ °C to                   | HC       |       |    | 55  |      |
|                                                                                           |      | 0                   | 4.5                                | +85°C                               | HCT      |       |    | 60  |      |
|                                                                                           |      |                     |                                    | $T_A = -55^{\circ}C$ to             | HC       |       |    | 66  |      |
| t <sub>PZL</sub> , t <sub>PZH</sub> Maximum switch turn<br>ON delay from S or E to switch | 4053 |                     |                                    | +125°C                              | HCT      |       |    | 72  | ne   |
| output                                                                                    | 0    |                     |                                    | T <sub>A</sub> = 25°C               | HC       |       |    | 37  | ns   |
|                                                                                           |      | 6                   | T <sub>A</sub> = -40°C to<br>+85°C | нс                                  |          |       | 47 |     |      |
|                                                                                           |      |                     |                                    | T <sub>A</sub> = -55°C to<br>+125°C | нс       |       | ·  | 56  |      |
|                                                                                           |      |                     |                                    | T = 25°C                            | НС       |       |    | 40  |      |
|                                                                                           |      |                     |                                    | T <sub>A</sub> = 25°C               | HCT      |       |    | 48  |      |
|                                                                                           |      | -4.5                | 4.5                                | $T_A = -40$ °C to                   | HC       |       |    | 45  |      |
|                                                                                           |      | -4.5                | 4.5                                | +85°C                               | HCT      |       |    | 55  |      |
|                                                                                           |      |                     |                                    | $T_A = -55^{\circ}C$ to             | НС       |       |    | 47  |      |
|                                                                                           |      |                     |                                    | +125°C                              | HCT      |       |    | 60  |      |
|                                                                                           |      |                     |                                    | T <sub>A</sub> = 25°C               | HC, HCT  |       |    | 10  |      |
| C <sub>I</sub> Input (control) capacitance                                                |      |                     |                                    | T <sub>A</sub> = -40°C to<br>+85°C  | нс, нст  |       |    | 10  | pF   |
|                                                                                           |      |                     |                                    | T <sub>A</sub> = -55°C to<br>+125°C | нс, нст  |       |    | 10  |      |

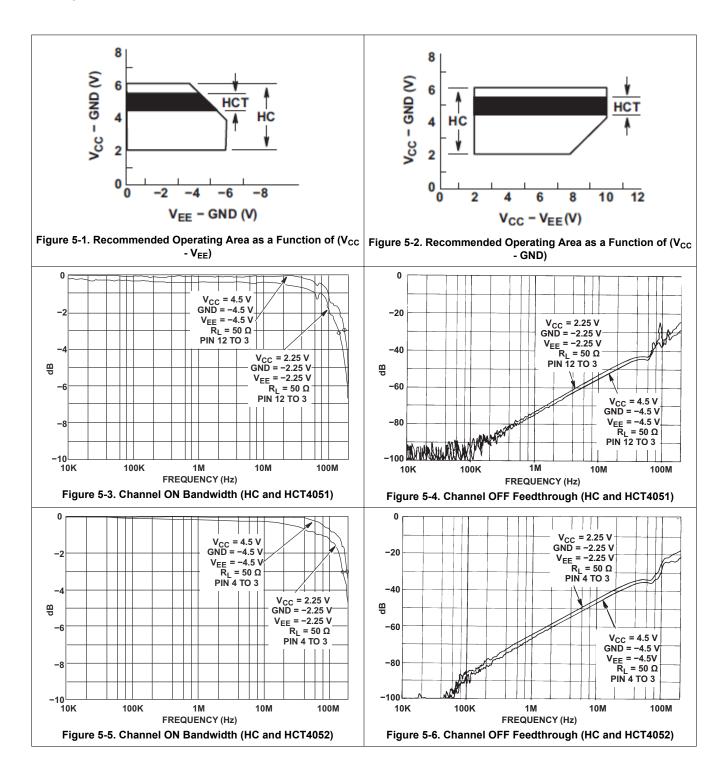
# **5.9 Analog Channel Specifications**

Typical values at T<sub>A</sub> = 25°C

| Parameter                                  | Test Conditions                            | HC, HCT<br>TYPES | V <sub>EE</sub> (V) | V <sub>CC</sub> (V) | MIN NOM MAX | UNIT   |
|--------------------------------------------|--------------------------------------------|------------------|---------------------|---------------------|-------------|--------|
| C <sub>I</sub><br>Switch input capacitance |                                            | All              |                     |                     | 5           | pF     |
| _                                          |                                            | 4051             |                     |                     | 25          |        |
| C <sub>COM</sub> Common output capacitance |                                            | 4052             |                     |                     | 12          | pF     |
| ommon output capacitance                   |                                            | 4053             |                     |                     | 8           |        |
|                                            |                                            | 4051             | -2.25               | 2.25                | 145         |        |
|                                            | See note <sup>(1)</sup> and <sup>(2)</sup> | 4052             | -2.25               | 2.25                | 165         |        |
| $f_{MAX}$                                  |                                            | 4053             | -2.25               | 2.25                | 200         | NAL I- |
| Minimum switch frequency response at –3 dB | See note(*) and (=)                        | 4051             | -4.5                | 4.5                 | 180         | MHz    |
|                                            |                                            | 4052             | -4.5                | 4.5                 | 185         |        |
|                                            |                                            | 4053             | -4.5                | 4.5                 | 200         |        |
| THD                                        |                                            | All              | -2.25               | 2.25                | 0.03<br>5   | - %    |
| Sine-wave distortion                       |                                            | All              | -4.5                | 4.5                 | 0.01<br>8   | 70     |

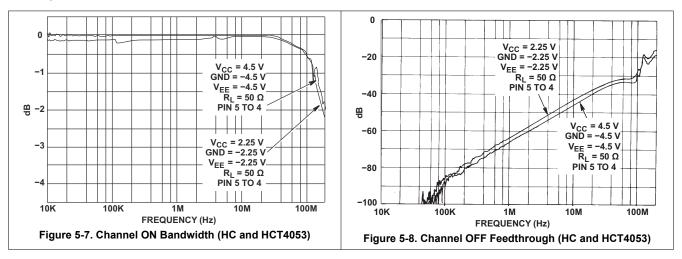


# **5.9 Analog Channel Specifications (continued)**

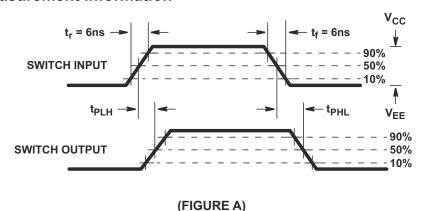

Typical values at T<sub>A</sub> = 25°C

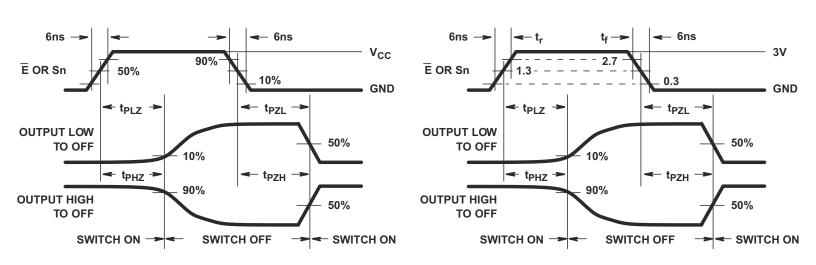
| Parameter                     | Test Conditions                            | HC, HCT<br>TYPES | V <sub>EE</sub> (V) | V <sub>CC</sub> (V) | MIN NOM MAX | UNIT |
|-------------------------------|--------------------------------------------|------------------|---------------------|---------------------|-------------|------|
|                               |                                            | 4051             | -2.25               | 2.25                | -73         |      |
|                               | See note <sup>(2)</sup> and <sup>(3)</sup> | 4052             | -2.25               | 2.25                | -65         |      |
| Switch OFF signal foodthrough |                                            | 4053             | -2.25               | 2.25                | -64         | 40   |
| Switch OFF signal feedthrough |                                            | 4051             | -4.5                | 4.5                 | -75         | dB   |
|                               |                                            | 4052             | -4.5                | 4.5                 | -67         |      |
|                               |                                            | 4053             | -4.5                | 4.5                 | -66         |      |

- (1) Adjust input voltage to obtain 0 dBm at  $V_{OS}$  for  $f_{IN}$  = 1 MHz.
- (2)  $V_{is}$  is centered at  $(V_{CC} V_{EE}) / 2$ .
- (3) Adjust input for 0 dBm.




### **5.10 Typical Characteristics**




### 5.10 Typical Characteristics (continued)



#### **6 Parameter Measurement Information**





(FIGURE B) HC TYPES (FIGURE C) HCT TYPES

Figure 6-1. Switch Propagation Delay, Turn-On, Turn-Off Times

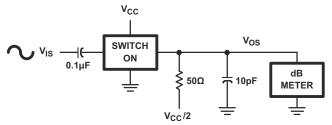
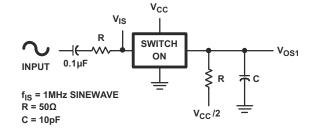




Figure 6-2. Frequency Response Test Circuit



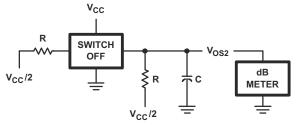



Figure 6-3. Crosstalk Between Two Switches Test Circuit

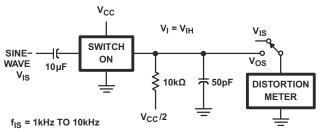



Figure 6-4. 1/4 Sine-Wave Distortion Test Circuit

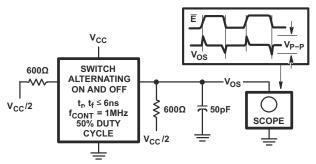



Figure 6-5. Control to Switch Feedthrough Noise Test Circuit

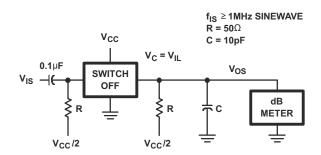



Figure 6-6. Switch OFF Signal Feedthrough

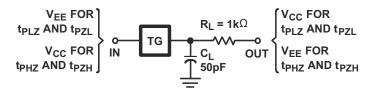



Figure 6-7. Switch ON/OFF Propagation Delay Test Circuit

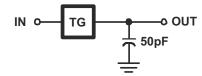
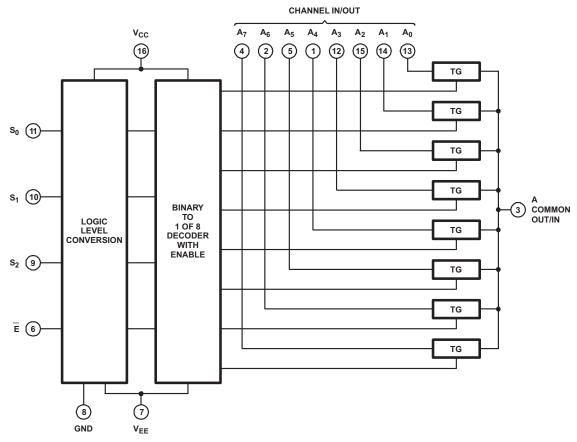



Figure 6-8. Switch In to Switch Out Propagation Delay Test Circuit

## 7 Detailed Description

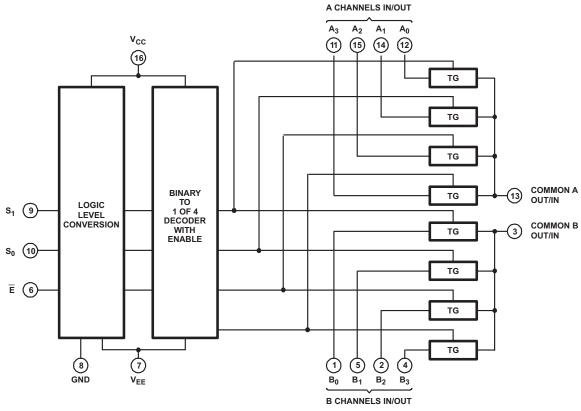
### 7.1 Overview


The CDx4HCx4051 devices are a single 8-channel multiplexer having three binary control inputs,  $S_0$ ,  $S_1$ , and  $S_2$  and an  $\overline{\text{ENABLE}}$  input. The three binary signals select 1 of 8 channels to be turned on, and connect one of the 8 inputs to the output.

The CDx4HCx4052 devices are a differential 4-channel multiplexer having two binary control inputs,  $S_0$  and  $S_1$ , and an  $\overline{\text{ENABLE}}$  input. The two binary input signals select 1 of 4 pairs of channels to be turned on and connect the analog inputs to the outputs.

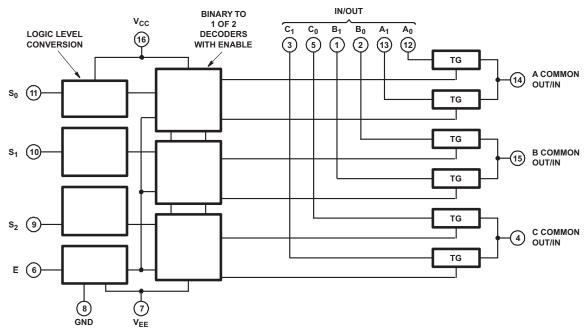
The CDx4HCx4053 devices are a triple 2-channel multiplexer having three separate digital control inputs,  $S_0$ ,  $S_1$ , and  $S_2$  and an  $\overline{\text{ENABLE}}$  input. Each control input selects one of a pair of channels that are connected in a single-pole, double-throw configuration.

When these devices are used as demultiplexers, the CHANNEL IN/OUT terminals are the outputs and the COMMON OUT/IN terminals are the inputs.


### 7.2 Functional Block Diagrams



All inputs are protected by standard CMOS protection network.


Figure 7-1. CDx4HCx4051 Functional Block Diagram





All inputs are protected by standard CMOS protection network.

Figure 7-2. CDx4HCx4052 Functional Block Diagram



All inputs are protected by standard CMOS protection network.

Figure 7-3. CDx4HCx4053 Functional Block Diagram

### 7.3 Feature Description

The CDx4HCx405x line of multiplexers and demultiplexers can accept a wide range of analog signal levels from -5 to +5V. They have low ON resistance, typically  $70\Omega$  for  $V_{CC} - V_{EE} = 4.5V$  and  $40\Omega$  for  $V_{C} - V_{EE} = 4.5V$ , which allows for very little signal loss through the switch.

Binary address decoding on chip makes channel selection easy. When channels are changed, a break-before-make system eliminates channel overlap.

#### 7.4 Device Functional Modes

Table 7-1. CD54HC4051, CD74HC4051, CD54HCT4051, CD74HCT4051 Function Table (1)

|        | INPUT          | STATES         |                | ON      |
|--------|----------------|----------------|----------------|---------|
| ENABLE | S <sub>2</sub> | S <sub>1</sub> | S <sub>0</sub> | CHANNEL |
| L      | L              | L              | L              | A0      |
| L      | L              | L              | Н              | A1      |
| L      | L              | Н              | L              | A2      |
| L      | L              | Н              | Н              | A3      |
| L      | Н              | L              | L              | A4      |
| L      | Н              | L              | Н              | A5      |
| L      | Н              | Н              | L              | A6      |
| L      | Н              | Н              | Н              | A7      |
| Н      | X              | Х              | X              | None    |

(1) X = Don't care

Table 7-2. CD54HC4052, CD74HC4052, CD54HCT4052, CD74HCT4052 Function Table (1)

|        | INPUT STATES   |          |        |  |  |  |
|--------|----------------|----------|--------|--|--|--|
| ENABLE | S <sub>1</sub> | CHANNELS |        |  |  |  |
| L      | L              | L        | A0, B0 |  |  |  |
| L      | L              | Н        | A1, B1 |  |  |  |
| L      | Н              | L        | A2, B2 |  |  |  |
| L      | Н              | Н        | A3, B3 |  |  |  |
| Н      | X              | X        | None   |  |  |  |

(1) X = Don't care

Table 7-3. CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053 Function Table (1)

|        | INPUT          | STATES         |                | ON         |
|--------|----------------|----------------|----------------|------------|
| ENABLE | S <sub>2</sub> | S <sub>1</sub> | S <sub>0</sub> | CHANNELS   |
| L      | L              | L              | L              | C0, B0, A0 |
| L      | L              | L              | Н              | C0, B0, A1 |
| L      | L              | Н              | L              | C0, B1, A0 |
| L      | L              | Н              | Н              | C0, B1, A1 |
| L      | Н              | L              | L              | C1, B0, A0 |
| L      | Н              | L              | Н              | C1, B0, A1 |
| L      | Н              | Н              | L              | C1, B1, A0 |
| L      | Н              | Н              | Н              | C1, B1, A1 |
| Н      | Х              | X              | X              | None       |

(1) X = Don't care



## 8 Application and Implementation

#### Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

### 8.1 Application Information

The CDx4HCx405x line of multiplexers and demultiplexers can be used for a wide variety of applications.

### 8.2 Typical Application

One application of the CD74HC4051 device is used in conjunction with a microcontroller to poll a keypad. Figure 8-1 shows the basic schematic for such a polling system. The microcontroller uses the channel-select pins to cycle through the different channels while reading the input to see if a user is pressing any of the keys. This is a very robust setup that allows for simultaneous key presses with very little power consumption. It also uses very few pins on the microcontroller. The down side of polling is that the microcontroller must frequently scan the keys for a press.

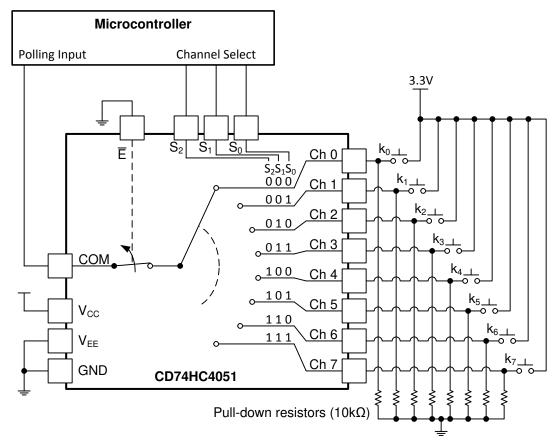



Figure 8-1. CD74HC4051 Being Used to Help Read Button Presses on a Keypad

### 8.2.1 Design Requirements

These devices use CMOS technology and have balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions must be considered to prevent ringing.

See Table 8-1 for the input loading details.

**Table 8-1. HCT Input Loading Table** 

| TYPE       | INPUT | UNIT LOADS(1) |  |  |
|------------|-------|---------------|--|--|
| 4051, 4053 | All   | 0.5           |  |  |
| 4052       | All   | 0.4           |  |  |

(1) Unit load is ΔI<sub>CC</sub> limit specified in Section 5, for example, 360mA MAX at 25°C.

#### 8.2.2 Detailed Design Procedure

- 1. Recommended input conditions:
  - For switch time specifications, see propagation delay times in Section 5.5.
  - Inputs must not be pushed more than 0.5V above V<sub>DD</sub> or below V<sub>EE</sub>.
  - For input voltage level specifications for control inputs, see V<sub>IH</sub> and V<sub>IL</sub> in Section 5.5.
- 2. Recommended output conditions:
  - Outputs must not be pulled above V<sub>DD</sub> or below V<sub>EE</sub>.
- 3. Input and output current consideration:
  - The CDx4HCx405x series of parts do not have internal current-drive circuitry, and thus cannot sink or source current. Any current will be passed through the device.

#### 8.2.3 Application Curve

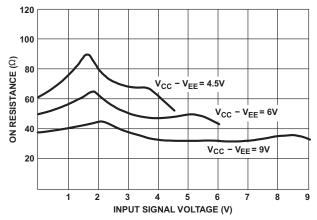



Figure 8-2. Typical ON Resistance vs Input Signal Voltage

#### 8.3 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the Section 5.5.

Each  $V_{CC}$  terminal must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a  $0.1\mu F$  bypass capacitor is recommended. If there are multiple pins labeled  $V_{CC}$ , then a  $0.01\mu F$  or  $0.022\mu F$  capacitor is recommended for each  $V_{CC}$  because the  $V_{CC}$  pins will be tied together internally. For devices with dual-supply pins operating at different voltages, for example  $V_{CC}$  and  $V_{DD}$ , a  $0.1\mu F$  bypass capacitor is recommended for each supply pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. A  $0.1\mu F$  and a  $1\mu F$  capacitor are commonly used in parallel. For best results, the bypass capacitor or capacitors must be installed as close as possible to the power terminal.



### 8.4 Layout

#### 8.4.1 Layout Guidelines

Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the change in width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This change in width upsets the transmission line characteristics, especially the distributed capacitance and self-inductance of the trace, thus resulting in the reflection. Not all PCB traces can be straight, so they will have to turn corners. Figure 8-3 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

#### 8.4.2 Layout Example

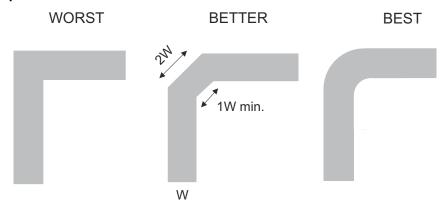



Figure 8-3. Trace Example

# 9 Device and Documentation Support

### 9.1 Documentation Support

#### 9.1.1 Related Documentation

For related documentation, see the following:

Texas Instruments, Implications of Slow or Floating CMOS Inputs

### 9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

### 9.3 Support Resources

TI E2E<sup>™</sup> support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

#### 9.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

### 9.5 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

### 9.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

### 10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| Changes from Revision M (May 2019) to Revision N (April 2024)                                                                                        | Page                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Changed thermal metrics                                                                                                                              | 8                        |
| Changed HC ICC at 25°C single/dual supply                                                                                                            |                          |
| Changed HCT ICC at 25°C single/dual supply                                                                                                           |                          |
| Changed: tPHZ/tPLZ typicals Switch turn-off (S or E)                                                                                                 |                          |
| · Changed tPHZ/tPLZ maximum switch turn OFF delay from S or E to switch outp                                                                         | ut for 4051/4052/4053 15 |
| · Changed tPZL/tPZH maximum switch turn ON delay from S or E to switch outpu                                                                         | t for 4051/405315        |
| Changes from Revision L (February 2017) to Revision M (May 2019)                                                                                     | Page                     |
| Changes from Revision L (February 2017) to Revision M (May 2019)  • Changed Feature From: 7Ω Typical To: 70Ω Typical                                 | <b>Page</b><br>1         |
| Changed Feature From: 7Ω Typical To: 70Ω Typical                                                                                                     | 1                        |
| <ul> <li>Changed Feature From: 7Ω Typical To: 70Ω Typical</li> <li>Changes from Revision K (September 2015) to Revision L (February 2017)</li> </ul> | Page                     |
| Changed Feature From: 7Ω Typical To: 70Ω Typical                                                                                                     | Page7                    |



Changes from Revision J (February 2011) to Revision K (September 2015)

Page

- Added Military Disclaimer to Features list.
   Removed Ordering Information table.

# 11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com

14-Dec-2024

# **PACKAGING INFORMATION**

| Orderable Device | Status (1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan (2)        | Lead finish/<br>Ball material | MSL Peak Temp      | Op Temp (°C) | <b>Device Marking</b> (4/5)           | Sample |
|------------------|------------|--------------|--------------------|------|----------------|---------------------|-------------------------------|--------------------|--------------|---------------------------------------|--------|
| 5962-8775401EA   | ACTIVE     | CDIP         | J                  | 16   | 25             | Non-RoHS<br>& Green | SNPB                          | N / A for Pkg Type | -55 to 125   | 5962-8775401EA<br>CD54HC4053F3A       | Sample |
| 5962-8855601EA   | ACTIVE     | CDIP         | J                  | 16   | 25             | Non-RoHS<br>& Green | SNPB                          | N / A for Pkg Type | -55 to 125   | 5962-8855601EA<br>CD54HC4052F3A       | Sample |
| 5962-9065401MEA  | ACTIVE     | CDIP         | J                  | 16   | 25             | Non-RoHS<br>& Green | SNPB                          | N / A for Pkg Type | -55 to 125   | 5962-9065401ME<br>A<br>CD54HCT4051F3A | Sample |
| CD54HC4051F      | ACTIVE     | CDIP         | J                  | 16   | 25             | Non-RoHS<br>& Green | SNPB                          | N / A for Pkg Type | -55 to 125   | CD54HC4051F                           | Sample |
| CD54HC4051F3A    | ACTIVE     | CDIP         | J                  | 16   | 25             | Non-RoHS<br>& Green | SNPB                          | N / A for Pkg Type | -55 to 125   | CD54HC4051F3A                         | Sample |
| CD54HC4052F      | ACTIVE     | CDIP         | J                  | 16   | 25             | Non-RoHS<br>& Green | SNPB                          | N / A for Pkg Type | -55 to 125   | CD54HC4052F                           | Sample |
| CD54HC4052F3A    | ACTIVE     | CDIP         | J                  | 16   | 25             | Non-RoHS<br>& Green | SNPB                          | N / A for Pkg Type | -55 to 125   | 5962-8855601EA<br>CD54HC4052F3A       | Sampl  |
| CD54HC4053F      | ACTIVE     | CDIP         | J                  | 16   | 25             | Non-RoHS<br>& Green | SNPB                          | N / A for Pkg Type | -55 to 125   | CD54HC4053F                           | Sampl  |
| CD54HC4053F3A    | ACTIVE     | CDIP         | J                  | 16   | 25             | Non-RoHS<br>& Green | SNPB                          | N / A for Pkg Type | -55 to 125   | 5962-8775401EA<br>CD54HC4053F3A       | Sampl  |
| CD54HCT4051F3A   | ACTIVE     | CDIP         | J                  | 16   | 25             | Non-RoHS<br>& Green | SNPB                          | N / A for Pkg Type | -55 to 125   | 5962-9065401ME<br>A<br>CD54HCT4051F3A | Sampl  |
| CD74HC4051E      | ACTIVE     | PDIP         | N                  | 16   | 25             | RoHS & Green        | NIPDAU                        | N / A for Pkg Type | -55 to 125   | CD74HC4051E                           | Samp   |
| CD74HC4051EE4    | ACTIVE     | PDIP         | N                  | 16   | 25             | RoHS & Green        | NIPDAU                        | N / A for Pkg Type | -55 to 125   | CD74HC4051E                           | Samp   |
| CD74HC4051M      | OBSOLETI   | E SOIC       | D                  | 16   |                | TBD                 | Call TI                       | Call TI            | -55 to 125   | HC4051M                               |        |
| CD74HC4051M96    | ACTIVE     | SOIC         | D                  | 16   | 2500           | RoHS & Green        | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HC4051M                               | Samp   |
| CD74HC4051M96G3  | OBSOLETI   | E SOIC       | D                  | 16   |                | TBD                 | Call TI                       | Call TI            | -55 to 125   | HC4051M                               |        |
| CD74HC4051M96G4  | OBSOLETI   | E SOIC       | D                  | 16   |                | TBD                 | Call TI                       | Call TI            | -55 to 125   | HC4051M                               |        |
| CD74HC4051MT     | OBSOLETI   | E SOIC       | D                  | 16   |                | TBD                 | Call TI                       | Call TI            | -55 to 125   | HC4051M                               |        |
| CD74HC4051NSR    | ACTIVE     | SOP          | NS                 | 16   | 2000           | RoHS & Green        | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HC4051M                               | Samp   |





www.ti.com 14-Dec-2024

| Orderable Device | Status (1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|-------------------------|---------|
| CD74HC4051NSRE4  | ACTIVE     | SOP          | NS                 | 16   | 2000           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HC4051M                 | Samples |
| CD74HC4051PWR    | ACTIVE     | TSSOP        | PW                 | 16   | 2000           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HJ4051                  | Samples |
| CD74HC4051PWRG4  | OBSOLETE   | TSSOP        | PW                 | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HJ4051                  |         |
| CD74HC4051PWT    | OBSOLETE   | TSSOP        | PW                 | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HJ4051                  |         |
| CD74HC4052E      | NRND       | PDIP         | N                  | 16   | 25             | RoHS & Green | NIPDAU                        | N / A for Pkg Type | -55 to 125   | CD74HC4052E             |         |
| CD74HC4052M      | OBSOLETE   | SOIC         | D                  | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HC4052M                 |         |
| CD74HC4052M96    | ACTIVE     | SOIC         | D                  | 16   | 2500           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HC4052M                 | Samples |
| CD74HC4052M96G4  | OBSOLETE   | SOIC         | D                  | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HC4052M                 |         |
| CD74HC4052MT     | OBSOLETE   | SOIC         | D                  | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HC4052M                 |         |
| CD74HC4052NSR    | ACTIVE     | SOP          | NS                 | 16   | 2000           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HC4052M                 | Samples |
| CD74HC4052PW     | OBSOLETE   | TSSOP        | PW                 | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HJ4052                  |         |
| CD74HC4052PWR    | ACTIVE     | TSSOP        | PW                 | 16   | 2000           | RoHS & Green | NIPDAU   SN                   | Level-1-260C-UNLIM | -55 to 125   | HJ4052                  | Samples |
| CD74HC4052PWRG4  | OBSOLETE   | TSSOP        | PW                 | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HJ4052                  |         |
| CD74HC4052PWT    | OBSOLETE   | TSSOP        | PW                 | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HJ4052                  |         |
| CD74HC4053E      | NRND       | PDIP         | N                  | 16   | 25             | RoHS & Green | NIPDAU                        | N / A for Pkg Type | -55 to 125   | CD74HC4053E             |         |
| CD74HC4053M      | OBSOLETE   | SOIC         | D                  | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HC4053M                 |         |
| CD74HC4053M96    | ACTIVE     | SOIC         | D                  | 16   | 2500           | RoHS & Green | NIPDAU   SN                   | Level-1-260C-UNLIM | -55 to 125   | HC4053M                 | Samples |
| CD74HC4053M96G3  | OBSOLETE   | SOIC         | D                  | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HC4053M                 |         |
| CD74HC4053M96G4  | OBSOLETE   | SOIC         | D                  | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HC4053M                 |         |
| CD74HC4053MT     | OBSOLETE   | SOIC         | D                  | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HC4053M                 |         |
| CD74HC4053NSR    | NRND       | SOP          | NS                 | 16   | 2000           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HC4053M                 |         |
| CD74HC4053PW     | OBSOLETE   | TSSOP        | PW                 | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HJ4053                  |         |
| CD74HC4053PWR    | ACTIVE     | TSSOP        | PW                 | 16   | 2000           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HJ4053                  | Samples |
| CD74HC4053PWRG4  | OBSOLETE   | TSSOP        | PW                 | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HJ4053                  |         |
| CD74HC4053PWT    | OBSOLETE   | TSSOP        | PW                 | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HJ4053                  |         |
| CD74HCT4051E     | NRND       | PDIP         | N                  | 16   | 25             | RoHS & Green | NIPDAU                        | N / A for Pkg Type | -55 to 125   | CD74HCT4051E            |         |
| CD74HCT4051M     | OBSOLETE   | SOIC         | D                  | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HCT4051M                |         |

14-Dec-2024



www.ti.com

| Orderable Device | Status (1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|-------------------------|---------|
| CD74HCT4051M96   | ACTIVE     | SOIC         | D                  | 16   | 2500           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HCT4051M                | Samples |
| CD74HCT4051M96E4 | ACTIVE     | SOIC         | D                  | 16   | 2500           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HCT4051M                | Samples |
| CD74HCT4051M96G4 | ACTIVE     | SOIC         | D                  | 16   | 2500           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HCT4051M                | Samples |
| CD74HCT4051MT    | OBSOLETE   | SOIC         | D                  | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HCT4051M                |         |
| CD74HCT4052E     | NRND       | PDIP         | N                  | 16   | 25             | RoHS & Green | NIPDAU                        | N / A for Pkg Type | -55 to 125   | CD74HCT4052E            |         |
| CD74HCT4052EE4   | NRND       | PDIP         | N                  | 16   | 25             | RoHS & Green | NIPDAU                        | N / A for Pkg Type | -55 to 125   | CD74HCT4052E            |         |
| CD74HCT4052M     | OBSOLETE   | SOIC         | D                  | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HCT4052M                |         |
| CD74HCT4052M96   | ACTIVE     | SOIC         | D                  | 16   | 2500           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HCT4052M                | Samples |
| CD74HCT4052M96G4 | ACTIVE     | SOIC         | D                  | 16   | 2500           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HCT4052M                | Samples |
| CD74HCT4052MT    | OBSOLETE   | SOIC         | D                  | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HCT4052M                |         |
| CD74HCT4053E     | NRND       | PDIP         | N                  | 16   | 25             | RoHS & Green | NIPDAU                        | N / A for Pkg Type | -55 to 125   | CD74HCT4053E            |         |
| CD74HCT4053M     | OBSOLETE   | SOIC         | D                  | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HCT4053M                |         |
| CD74HCT4053M96   | ACTIVE     | SOIC         | D                  | 16   | 2500           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HCT4053M                | Samples |
| CD74HCT4053M96E4 | ACTIVE     | SOIC         | D                  | 16   | 2500           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HCT4053M                | Samples |
| CD74HCT4053M96G4 | ACTIVE     | SOIC         | D                  | 16   | 2500           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HCT4053M                | Samples |
| CD74HCT4053MT    | OBSOLETE   | SOIC         | D                  | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HCT4053M                |         |
| CD74HCT4053PWR   | ACTIVE     | TSSOP        | PW                 | 16   | 2000           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | HK4053                  | Samples |
| CD74HCT4053PWT   | OBSOLETE   | TSSOP        | PW                 | 16   |                | TBD          | Call TI                       | Call TI            | -55 to 125   | HK4053                  |         |

<sup>(1)</sup> The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".



www.ti.com 14-Dec-2024

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF CD54HC4051, CD54HC4052, CD54HC4053, CD54HC4051, CD74HC4051, CD74HC4052, CD74HC4053, CD74HC4051:

- Catalog: CD74HC4051, CD74HC4052, CD74HC4053, CD74HCT4051
- Automotive: CD74HC4051-Q1, CD74HCT4051-Q1, CD74HC4051-Q1, CD74HCT4051-Q1
- Enhanced Product: CD74HC4051-EP, CD74HC4051-EP
- Military: CD54HC4051, CD54HC4052, CD54HC4053, CD54HCT4051

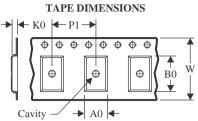
NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications



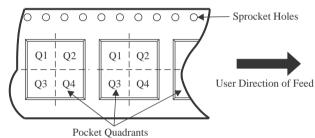


www.ti.com 14-Dec-2024


• Military - QML certified for Military and Defense Applications



www.ti.com 7-Dec-2024


### TAPE AND REEL INFORMATION





| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

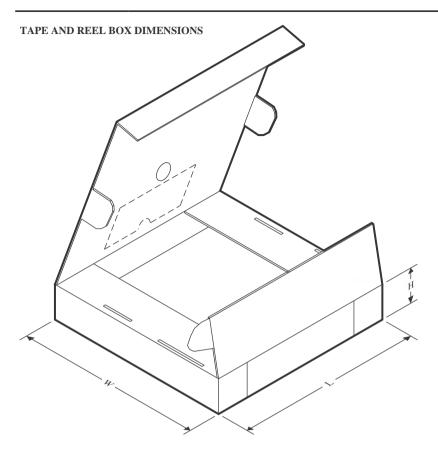
### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



#### \*All dimensions are nominal

| Device        | Package<br>Type | Package<br>Drawing | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|---------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| CD74HC4051M96 | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4051M96 | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4051NSR | SOP             | NS                 | 16   | 2000 | 330.0                    | 16.4                     | 8.2        | 10.5       | 2.5        | 12.0       | 16.0      | Q1               |
| CD74HC4051NSR | SOP             | NS                 | 16   | 2000 | 330.0                    | 16.4                     | 8.2        | 10.5       | 2.5        | 12.0       | 16.0      | Q1               |
| CD74HC4051PWR | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC4051PWR | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC4052M96 | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4052M96 | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4052NSR | SOP             | NS                 | 16   | 2000 | 330.0                    | 16.4                     | 8.2        | 10.5       | 2.5        | 12.0       | 16.0      | Q1               |
| CD74HC4052NSR | SOP             | NS                 | 16   | 2000 | 330.0                    | 16.4                     | 8.2        | 10.5       | 2.5        | 12.0       | 16.0      | Q1               |
| CD74HC4052PWR | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC4052PWR | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC4053M96 | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4053M96 | SOIC            | D                  | 16   | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC4053NSR | SOP             | NS                 | 16   | 2000 | 330.0                    | 16.4                     | 8.2        | 10.5       | 2.5        | 12.0       | 16.0      | Q1               |
| CD74HC4053PWR | TSSOP           | PW                 | 16   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |




# **PACKAGE MATERIALS INFORMATION**

www.ti.com 7-Dec-2024

| Device         | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| CD74HC4053PWR  | TSSOP           | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HCT4051M96 | SOIC            | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HCT4051M96 | SOIC            | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HCT4052M96 | SOIC            | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HCT4052M96 | SOIC            | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HCT4053M96 | SOIC            | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HCT4053M96 | SOIC            | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HCT4053PWR | TSSOP           | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HCT4053PWR | TSSOP           | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |



www.ti.com 7-Dec-2024

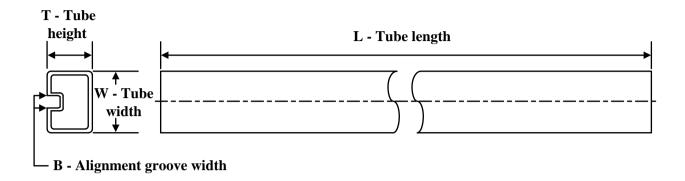


\*All dimensions are nominal

| Device         | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| CD74HC4051M96  | SOIC         | D               | 16   | 2500 | 353.0       | 353.0      | 32.0        |
| CD74HC4051M96  | SOIC         | D               | 16   | 2500 | 340.5       | 336.1      | 32.0        |
| CD74HC4051NSR  | SOP          | NS              | 16   | 2000 | 353.0       | 353.0      | 32.0        |
| CD74HC4051NSR  | SOP          | NS              | 16   | 2000 | 367.0       | 367.0      | 38.0        |
| CD74HC4051PWR  | TSSOP        | PW              | 16   | 2000 | 356.0       | 356.0      | 35.0        |
| CD74HC4051PWR  | TSSOP        | PW              | 16   | 2000 | 353.0       | 353.0      | 32.0        |
| CD74HC4052M96  | SOIC         | D               | 16   | 2500 | 340.5       | 336.1      | 32.0        |
| CD74HC4052M96  | SOIC         | D               | 16   | 2500 | 353.0       | 353.0      | 32.0        |
| CD74HC4052NSR  | SOP          | NS              | 16   | 2000 | 353.0       | 353.0      | 32.0        |
| CD74HC4052NSR  | SOP          | NS              | 16   | 2000 | 356.0       | 356.0      | 35.0        |
| CD74HC4052PWR  | TSSOP        | PW              | 16   | 2000 | 356.0       | 356.0      | 35.0        |
| CD74HC4052PWR  | TSSOP        | PW              | 16   | 2000 | 353.0       | 353.0      | 32.0        |
| CD74HC4053M96  | SOIC         | D               | 16   | 2500 | 340.5       | 336.1      | 32.0        |
| CD74HC4053M96  | SOIC         | D               | 16   | 2500 | 353.0       | 353.0      | 32.0        |
| CD74HC4053NSR  | SOP          | NS              | 16   | 2000 | 356.0       | 356.0      | 35.0        |
| CD74HC4053PWR  | TSSOP        | PW              | 16   | 2000 | 353.0       | 353.0      | 32.0        |
| CD74HC4053PWR  | TSSOP        | PW              | 16   | 2000 | 356.0       | 356.0      | 35.0        |
| CD74HCT4051M96 | SOIC         | D               | 16   | 2500 | 340.5       | 336.1      | 32.0        |



# **PACKAGE MATERIALS INFORMATION**

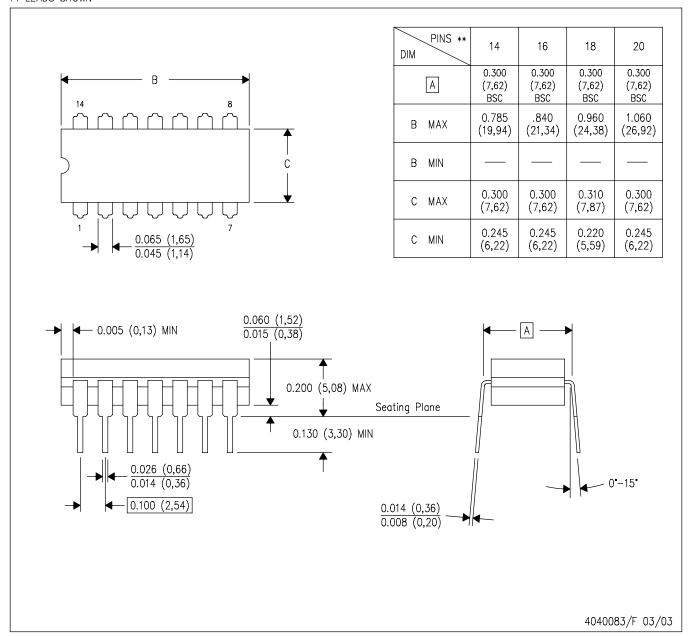

www.ti.com 7-Dec-2024

| Device         | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| CD74HCT4051M96 | SOIC         | D               | 16   | 2500 | 353.0       | 353.0      | 32.0        |
| CD74HCT4052M96 | SOIC         | D               | 16   | 2500 | 340.5       | 336.1      | 32.0        |
| CD74HCT4052M96 | SOIC         | D               | 16   | 2500 | 353.0       | 353.0      | 32.0        |
| CD74HCT4053M96 | SOIC         | D               | 16   | 2500 | 353.0       | 353.0      | 32.0        |
| CD74HCT4053M96 | SOIC         | D               | 16   | 2500 | 340.5       | 336.1      | 32.0        |
| CD74HCT4053PWR | TSSOP        | PW              | 16   | 2000 | 353.0       | 353.0      | 32.0        |
| CD74HCT4053PWR | TSSOP        | PW              | 16   | 2000 | 356.0       | 356.0      | 35.0        |



www.ti.com 7-Dec-2024

### **TUBE**




\*All dimensions are nominal

| Device         | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) |
|----------------|--------------|--------------|------|-----|--------|--------|--------|--------|
| CD74HC4051E    | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| CD74HC4051EE4  | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| CD74HC4052E    | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| CD74HC4052E    | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| CD74HC4053E    | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| CD74HC4053E    | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| CD74HCT4051E   | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| CD74HCT4051E   | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| CD74HCT4052E   | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| CD74HCT4052E   | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| CD74HCT4052EE4 | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| CD74HCT4052EE4 | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| CD74HCT4053E   | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| CD74HCT4053E   | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |

## J (R-GDIP-T\*\*)

14 LEADS SHOWN

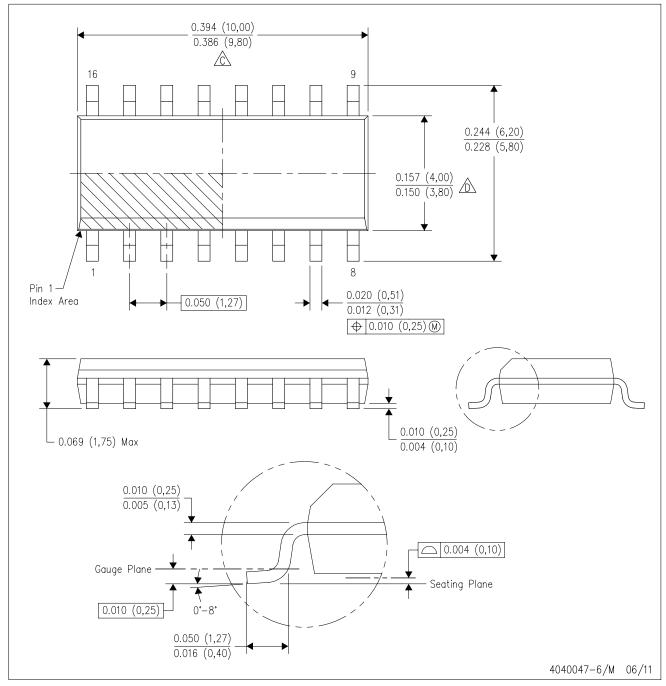


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

# N (R-PDIP-T\*\*)

## PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

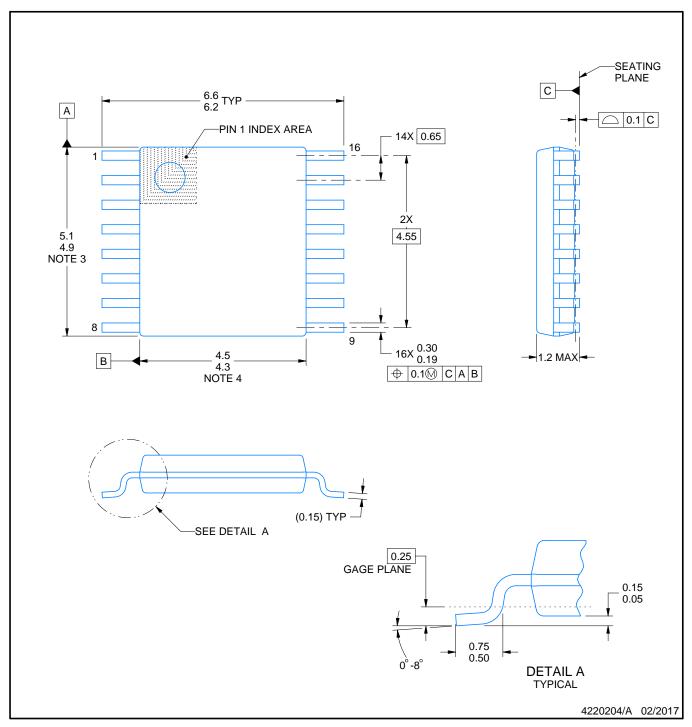



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.



# D (R-PDS0-G16)

### PLASTIC SMALL OUTLINE



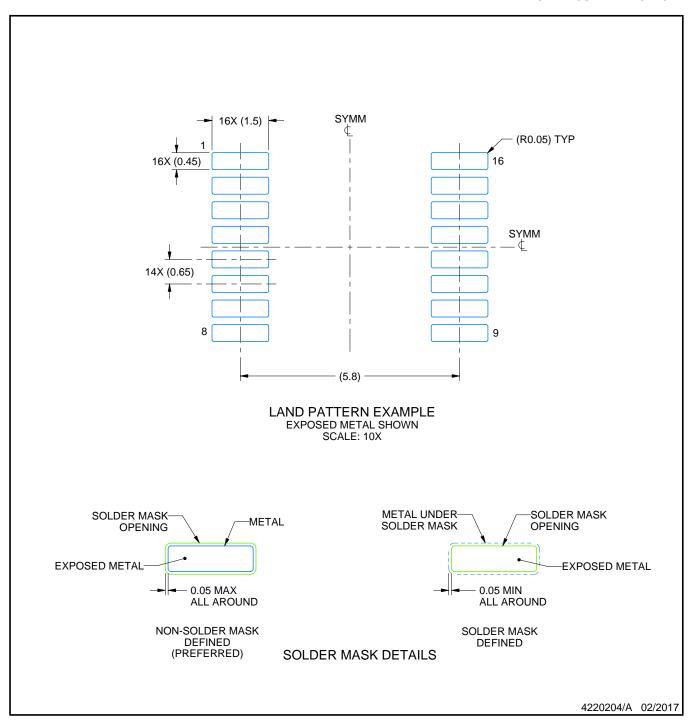

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.





SMALL OUTLINE PACKAGE



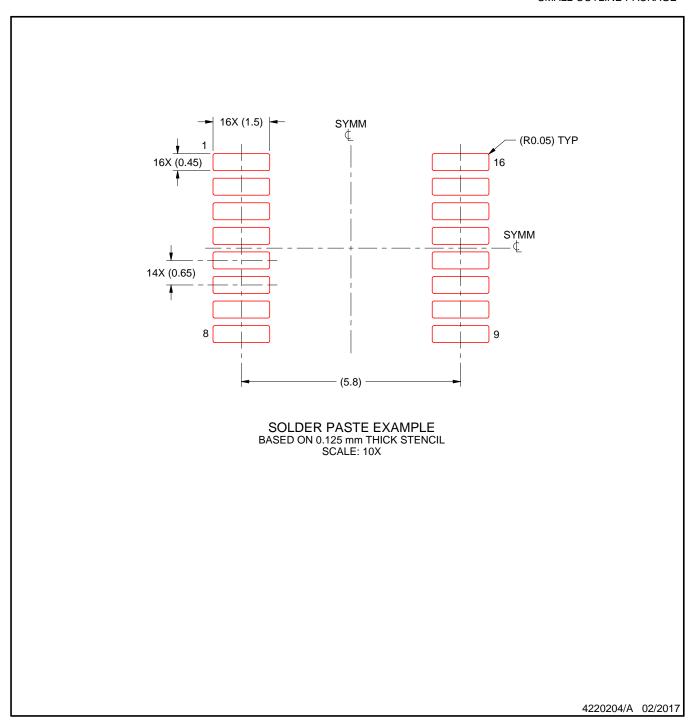

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

  2. This drawing is subject to change without notice.

  3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



SMALL OUTLINE PACKAGE




NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

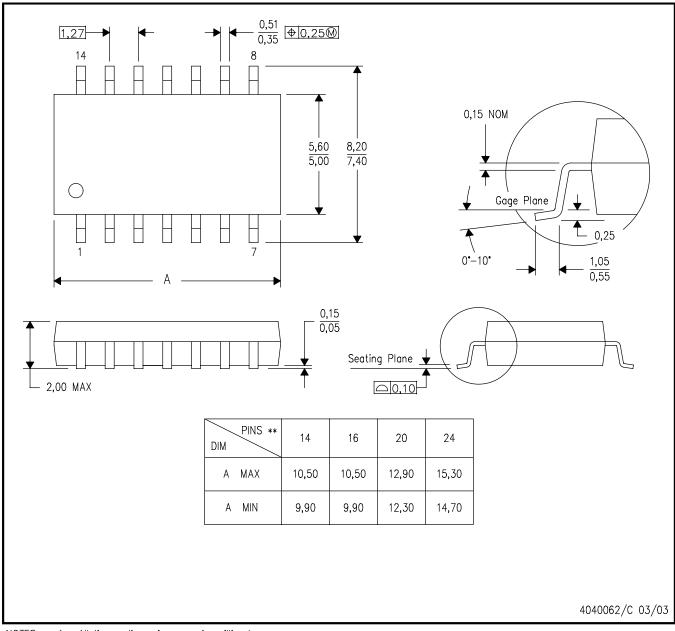
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

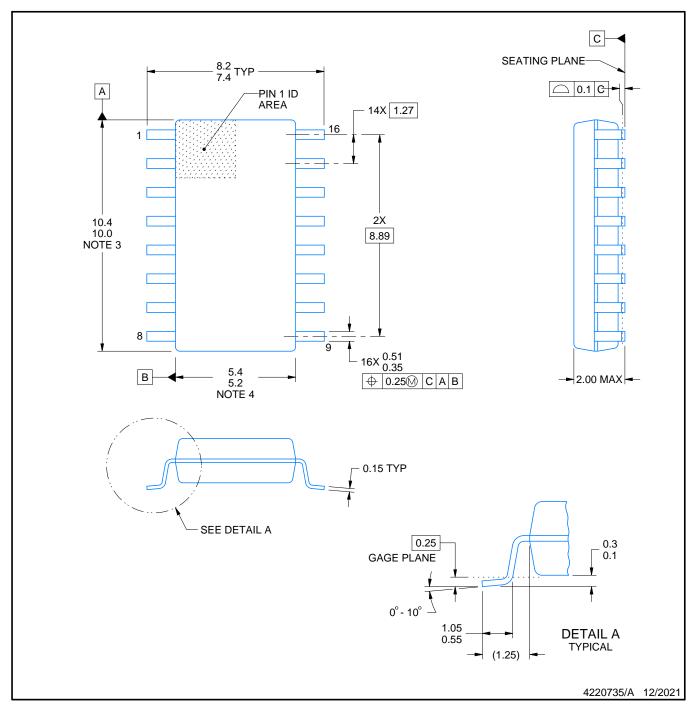



### **MECHANICAL DATA**

## NS (R-PDSO-G\*\*)

## 14-PINS SHOWN

### PLASTIC SMALL-OUTLINE PACKAGE



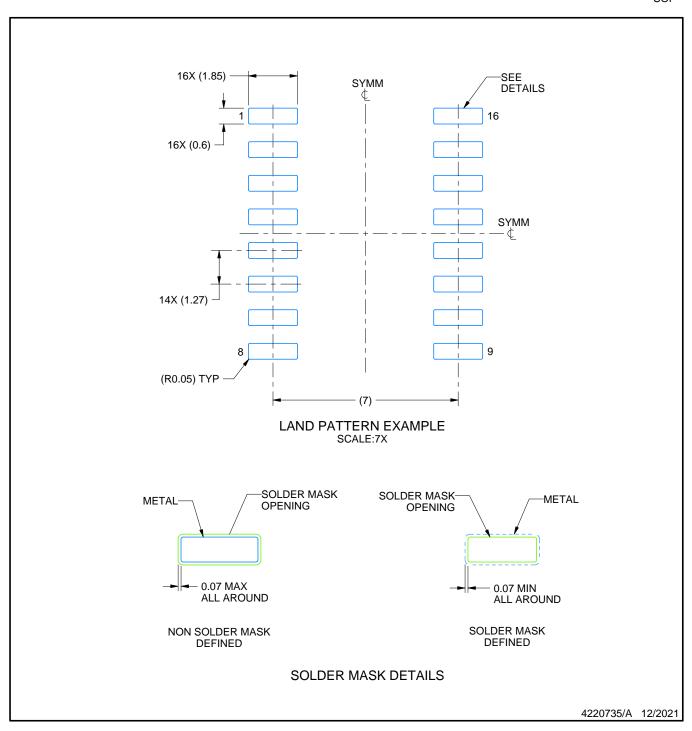

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.





SOP



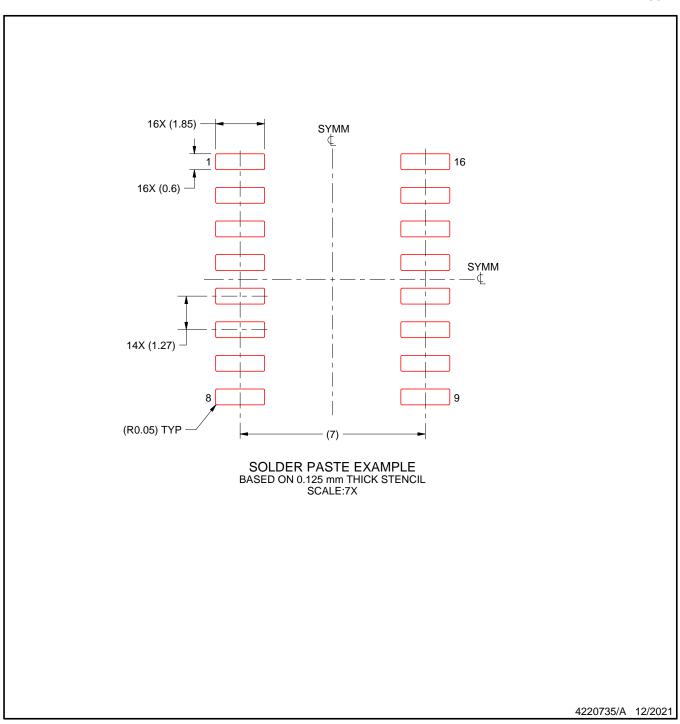

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

  2. This drawing is subject to change without notice.

  3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.



SOF




NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOF



#### NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.



#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated