MOSFET – Power, N-Channel, DPAK/IPAK 68 A, 30 V

Features

- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- Diode Exhibits High Speed, Soft Recovery
- Avalanche Energy Specified
- I_{DSS} Specified at Elevated Temperature
- DPAK Mounting Information Provided
- These Devices are Pb-Free and are RoHS Compliant

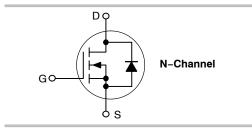
Applications

- DC-DC Converters
- Low Voltage Motor Control
- Power Management in Portable and Battery Powered Products: i.e., Computers, Printers, Cellular and Cordless Telephones, and PCMCIA Cards

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	30	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	±20	Vdc
Thermal Resistance – Junction–to–Case Total Power Dissipation @ T_C = 25°C Continuous Drain Current @ T_C = 25°C (Note 4) Continuous Drain Current @ T_C = 100°C	$\begin{array}{c} R_{\theta JC} \\ P_D \\ I_D \\ I_D \end{array}$	1.65 75 68 43	°C/W W A A
Thermal Resistance – Junction–to–Ambient (Note 2) Total Power Dissipation @ T_A = 25°C Continuous Drain Current @ T_A = 25°C Continuous Drain Current @ T_A = 100°C Pulsed Drain Current (Note 3)	R _{θJA} P _D I _D I _{DM}	67 1.87 11.3 7.1 36	°C/W W A A A
Thermal Resistance – Junction–to–Ambient (Note 1) Total Power Dissipation @ T_A = 25°C Continuous Drain Current @ T_A = 25°C Continuous Drain Current @ T_A = 100°C Pulsed Drain Current (Note 3)	R _{0JA} PD ID ID I _{DM}	120 1.04 8.4 5.3 28	°C/W W A A A
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C
Single Pulse Drain–to–Source Avalanche Energy – Starting T_J = 25°C (V_{DD} = 30 Vdc, V_{GS} = 10 Vdc, Peak I_L = 17 Apk, L = 5.0 mH, R_G = 25 Ω)	E _{AS}	722	mJ
Maximum Lead Temperature for Soldering Purposes, 1/8 in from case for 10 seconds	TL	260	°C

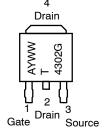
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

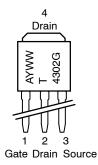

- 1. When surface mounted to an FR4 board using the minimum recommended pad size. When surface mounted to an FR4 board using 0.5 sq. in. drain pad size.
- 3. Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.
- 4. Current Limited by Internal Lead Wires.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
30 V	7.8 m Ω @ 10 V	68 A





IPAK CASE 369D (Straight Lead) STYLE 2

MARKING DIAGRAMS **& PIN ASSIGNMENTS**

= Assembly Location* = Year

WW = Work Week T4302 = Device Code = Pb-Free Package G

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Cha	racteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 250 μA)	V _{(BR)DSS}	30	_	-	Vdc	
Positive Temperature Coefficient		-	25	-	mV/°C	
Zero Gate Voltage Drain Current		I _{DSS}				μAdc
$(V_{GS} = 0 \text{ Vdc}, V_{DS} = 30 \text{ Vdc}, T_{J} $ $(V_{GS} = 0 \text{ Vdc}, V_{DS} = 30 \text{ Vdc}, T_{J} $			_	_	1.0 10	
Gate-Body Leakage Current (V _{GS}		l	_	 	±100	nAdc
ON CHARACTERISTICS	= ±20 vac, v _{DS} = 0 vac)	I _{GSS}			±100	HAGC
Gate Threshold Voltage		Vacau				Vdc
$(V_{DS} = V_{GS}, I_D = 250 \mu\text{Adc})$		V _{GS(th)}	1.0	1.9	3.0	Vuc
Negative Temperature Coefficient			-	-3.8	-	
Static Drain-Source On-State Res	sistance	R _{DS(on)}				Ω
$(V_{GS} = 10 \text{ Vdc}, I_D = 20 \text{ Adc})$			_	0.0078	0.010	
$(V_{GS} = 10 \text{ Vdc}, I_D = 10 \text{ Adc})$ $(V_{GS} = 4.5 \text{ Vdc}, I_D = 5.0 \text{ Adc})$			_	0.0078 0.010	0.010 0.013	
Forward Transconductance (V _{DS} =	= 15 Vdc, I _D = 10 Adc)	gFS	_	20	-	Mhos
DYNAMIC CHARACTERISTICS	י טיי	1 3	1	<u>,</u>	I	1
Input Capacitance		C _{iss}	_	2050	2400	pF
Output Capacitance	$(V_{DS} = 24 \text{ Vdc}, V_{GS} = 0 \text{ Vdc},$	C _{oss}	_	640	800	1
Reverse Transfer Capacitance	f = 1.0 MHz)	C _{rss}	_	225	310	
SWITCHING CHARACTERISTICS	(Note 6)	,		1	I.	
Turn-On Delay Time		t _{d(on)}	_	11	20	ns
Rise Time	(V _{DD} = 25 Vdc, I _D = 1.0 Adc,	t _r	-	15	25	1
Turn-Off Delay Time	V_{GS} = 10 Vdc, R_{G} = 6.0 Ω)	t _{d(off)}	-	85	130	1
Fall Time		t _f	-	55	90	1
Turn-On Delay Time		t _{d(on)}	-	11	20	ns
Rise Time	$(V_{DD} = 25 \text{ Vdc}, I_D = 1.0 \text{ Adc},$	t _r	-	13	20	1
Turn-Off Delay Time	V_{GS} = 10 Vdc, R_G = 2.5 Ω)	t _{d(off)}	-	55	90]
Fall Time		t _f	-	40	75	1
Turn-On Delay Time		t _{d(on)}	-	15	-	ns
Rise Time	$(V_{DD} = 24 \text{ Vdc}, I_D = 20 \text{ Adc},$	t _r	-	25	-]
Turn-Off Delay Time	V_{GS} = 10 Vdc, R_{G} = 2.5 Ω)	t _{d(off)}	-	40	-]
Fall Time		t _f	-	58	-	1
Gate Charge		Q _T	-	55	80	nC
	$(V_{DS} = 24 \text{ Vdc}, I_D = 2.0 \text{ Adc},$	Q _{gs} (Q1)	-	5.5	-	1
	V _{GS} = 10 Vdc)		-	15	-	1
BODY-DRAIN DIODE RATINGS (N	ote 5)	Q _{gd} (Q2)			•	
Diode Forward On-Voltage		V _{SD}				Vdc
$(I_S = 2.3 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$		_	0.75	1.0		
$(I_S = 20 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 2.3 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$			_	0.90 0.65	_	
Reverse Recovery Time		†	 _	39	65	ns
1.5. Cloo 1.6. Covery Tillio	$(I_S = 2.3 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$	t _{rr}		20	-	- 113
	dI _S /dt = 100 A/μs)		_	19	_	1
Reverse Recovery Stored Charge		t _b	- -	0.043		μC
neverse necovery stored charge	Q _{rr}		0.043		μΟ	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Indicates Pulse Test: Pulse Width = 300 μsec max, Duty Cycle ≤ 2%.

^{6.} Switching characteristics are independent of operating junction temperature.

TYPICAL CHARACTERISTICS

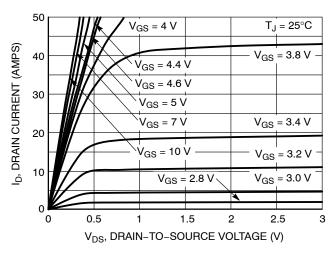
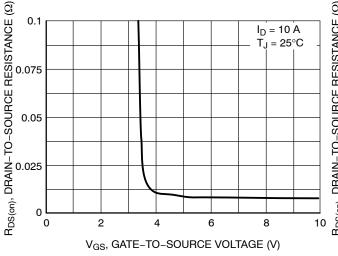



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

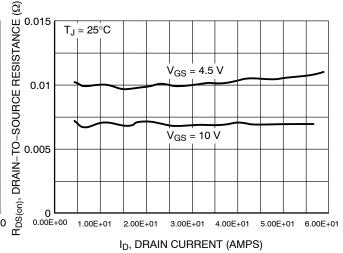
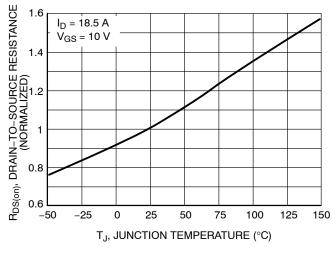



Figure 3. On-Resistance vs. Gate-To-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

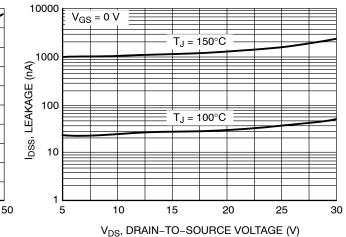


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-To-Source Leakage
Current vs. Voltage

TYPICAL CHARACTERISTICS

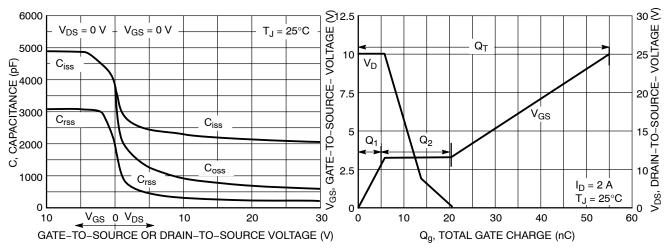


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

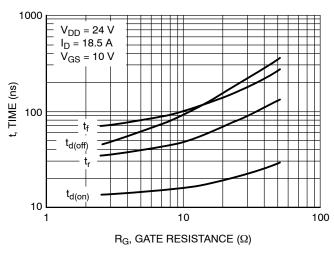


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

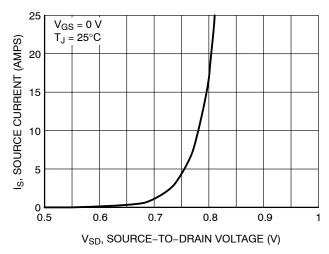
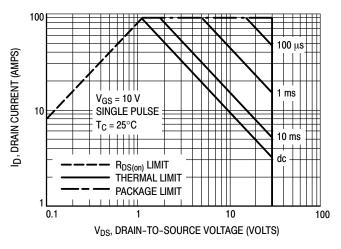



Figure 10. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

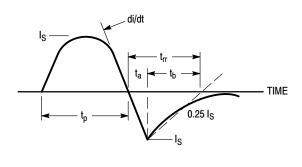


Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Diode Reverse Recovery Waveform

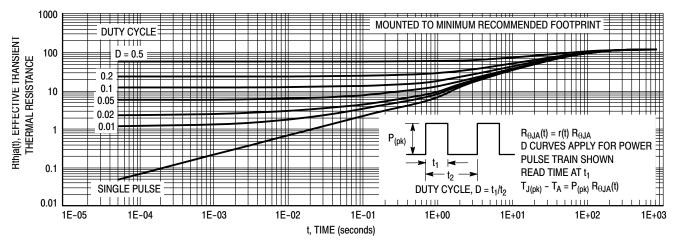
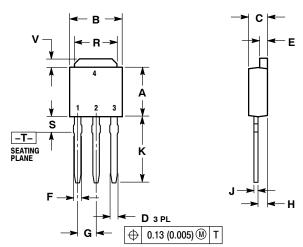


Figure 13. Thermal Response - Various Duty Cycles

ORDERING INFORMATION

Device	Package Type	Package	Shipping [†]
NTD4302G	DPAK	369C (Pb-Free)	75 Units / Rail
NTD4302-1G	IPAK	369D (Pb-Free)	75 Units / Rail
NTD4302T4G	DPAK	369C (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



DPAK INSERTION MOUNT

CASE 369 ISSUE O

DATE 02 JAN 2000

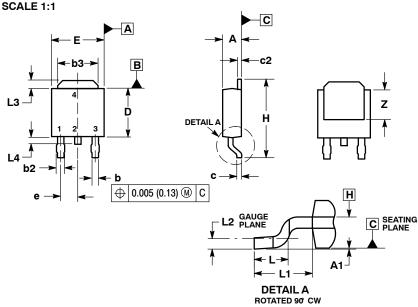
- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.090	BSC	2.29	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.175	0.215	4.45	5.46
S	0.050	0.090	1.27	2.28
٧	0.030	0.050	0.77	1.27

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		STYLE 5:		STYLE 6:	
PIN 1.	BASE	PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	GATE	PIN 1.	MT1
2.	COLLECTOR	2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE	2.	MT2
3.	EMITTER	3.	SOURCE	3.	ANODE	3.	GATE	3.	CATHODE	3.	GATE
4.	COLLECTOR	4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE	4.	MT2

DOCUMENT NUMBER:	98ASB42319B	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK INSERTION MOUNT		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


DPAK (SINGLE GUAGE) CASE 369AA **ISSUE B**

DATE 03 JUN 2010

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108	REF	2.74	REF
L2	0.020 BSC		0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

STYLE 1: PIN 1. BASE

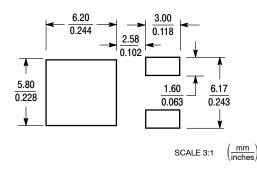
STYLE 5:

2. COLLECTOR 3. EMITTER 4. COLLECTOR

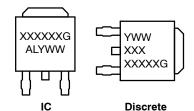
STYLE 2: PIN 1. GATE

2. DRAIN 3. SOURCE 4. DRAIN

STYLE 3: PIN 1. ANODE


2. CATHODE 3. ANODE CATHODE

STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE


STYLE 6: PIN 1. MT1 2. MT2 3. GATE STYLE 7: PIN 1. GATE 2. COLLECTOR 3. EMITTER COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code Α = Assembly Location L = Wafer Lot ٧ = Year = Work Week WW = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part

DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1		

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales