

2.495V Programmable Shunt Voltage Reference

DESCRIPTION

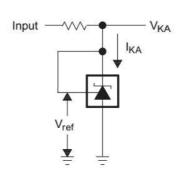
TS431 integrated circuits are three-terminal programmable These shunt regulator diodes. monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from V_{REF} to 36V with two external resistors. These devices exhibit a wide operating current range to 250mA with a typical dynamic impedance of 0.2Ω . The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.495V reference makes it convenient to obtain a stable reference from 5.0V logic supplies, and since The TS431 operates as a shunt regulator, it can be used as either a positive or negative stage reference.

FEATURES

- Programmable Output Voltage up to 36V
 - TS431A V_{REF} 2.495V ±1% tolerance
 - TS431B V_{REF} 2.495V ±0.5% tolerance
- Fast Turn-On Response
- Sink Current Capability: 120mA
- Low Dynamic Output Impedance: 0.2Ω (Typ.)
- Min. Operating Cathode Current: 0.2mA (Typ.)
- Compliant to RoHS Directive 2011/65/EU and in accordance to WEEE 2002/96/EC
- Halogen-free according to IEC 61249-2-21

APPLICATION

- SMPS
- Lighting
- Telecommunication
- Home appliance


Pin Definition:

- 1. Cathode
- 2. Reference
- 3. Anode

Notes: MSL 3 (Moisture Sensitivity Level) per J-STD-020

SIMPLIFIED SCHEMATIC

1

Version: B1608

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)				
PARAMETER	SYMBOL	LIMIT	UNIT	
Cathode Voltage	V_{KA}	36	V	
Continuous Cathode Current	I _K	120	mA	
Reference Input Current	I _{REF}	10	mA	
Power Dissipation	P _D	0.25	W	
Operating Temperature Range	T _{OPER}	-40 ~ +125	°C	
Junction Temperature	T _J	+150	°C	
Storage Temperature Range	T _{STG}	-40 ~ +150	°C	

THERMAL PERFORMANCE		70	
PARAMETER	SYMBOL	LIMIT	UNIT
Thermal Resistance - Junction to Case	R _{eJC}	110	°C/W
Thermal Resistance - Junction to Ambient	R _{eJA}	350	°C/W

Note: Consider measured with the PCB copper area of approximately 1 in² (Multi-Layer)

ELECTRICAL SPECIFICATIONS (T _A =+25°C, unless otherwise specified)							
PARAMETER	SYMBOL	COI	NDITIONS	MIN	TYP	MAX	UNIT
Deference valters	1/	V _{KA} =V _{REF} , I _K		2.470	2.405	2.520	٧
Reference voltage	V_{REF}	=10mA (Figure	TS431B	2.483	2.495	2.507	V
Deviation of reference input voltage	ΔV_{REF}	$V_{KA} = V_{REF}, I_{H}$ $T_{A} = -20 \sim 85^{\circ}$	< =10mA ^(Figure 1)		25	35	mV
Radio of change in Vref to	ΔV_{REF}	I _{KA} =10mA,	V_{KA} = 10V to V_{REF}		-1.2	-2.0	·~ \
change in cathode Voltage	/ΔV _{KA}	(Figure 2)	V _{KA} = 36V to 10V		-1.0	-2.0	mV/V
Reference Input current	IREF	R1=10kΩ, R2 I _{KA} =10mA ^{(Fi}			1.5	3.5	μA
Deviation of reference input current, over temp.	ΔI_{REF}	R1=10kΩ, R2 T _A =-20~85°C	2= ∞ , I _{KA} =10mA 2 (Figure 2)		0.4	1.2	μA
Off-state Cathode Current	I _{KA} (off)	V _{REF} =0V (Figu	^{ure 3)} , V _{KA} =36V		0.1	1.0	μΑ
Dynamic Output Impedance	Z _{KA}	f<1kHz, V _{KA}	= V _{REF} (Figure 1)		0.2	0.5	Ω
Minimum operating cathode current	I _{KA} (min)	V _{KA} = V _{REF} (Fi	igure 1)		0.2	0.5	mA

Note: The deviation parameters ΔV_{REF} and ΔI_{REF} are defined as difference between the maximum value and minimum value obtained over the full operating ambient temperature range that applied.

ORDERING INFORMATION

PART NO.	PACKAGE	PACKING
TS431ARIX-Z RFG	SOT-23	3,000pcs / 7" Reel
TS431BRIX-Z RFG	SOT-23	3,000pcs / 7" Reel

CHARACTERISTICS CURVES

(T_C = 25°C unless otherwise noted)

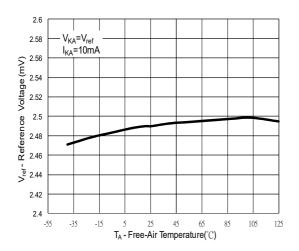


Figure 1. V_{REF} vs. Ambient Temperature

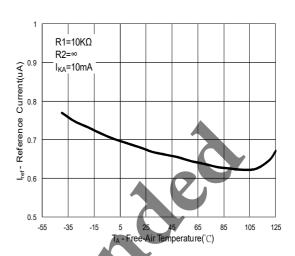


Figure 2. IREF vs. Ambient Temperature

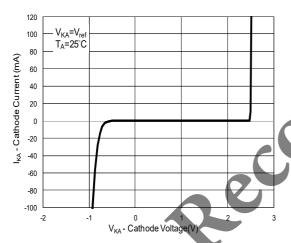


Figure 3. Cathode Current vs. Cathode Voltage

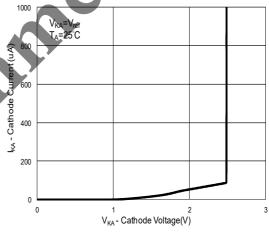


Figure 4. Cathode Current vs. Cathode Voltage

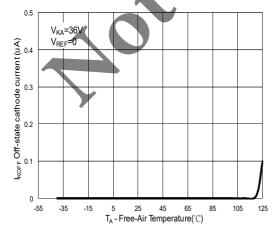
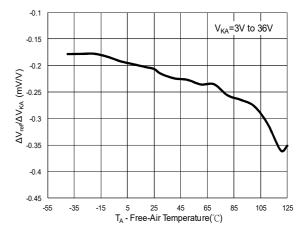
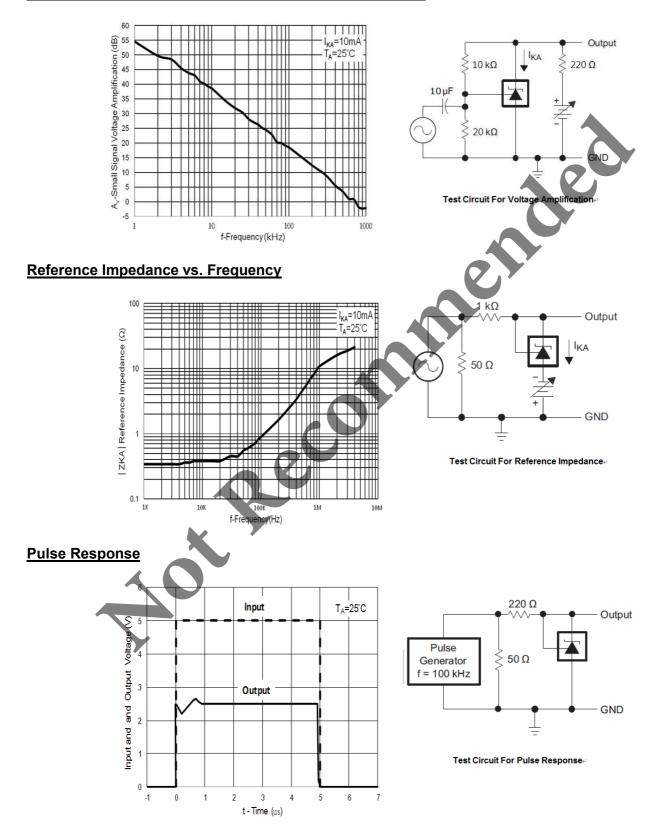


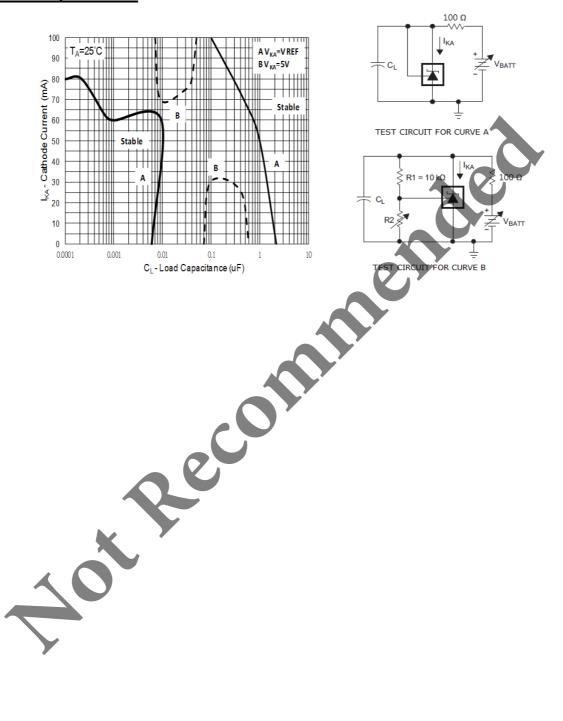
Figure 5. Off-State Cathode current vs. Ambient Temperature



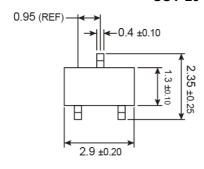

Figure 6. Ration of delta reference voltage to delta cathode voltage vs. Ambient Temperature

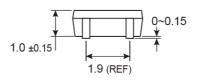
3 Version: B1608

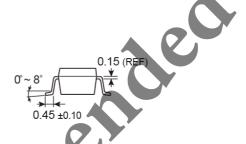
TYPICAL PERFORMANCE CHARACTERISTICS


Small-Signal Voltage Gain and Phase Shift vs. Frequency

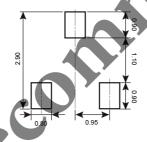
TYPICAL PERFORMANCE CHARACTERISTICS

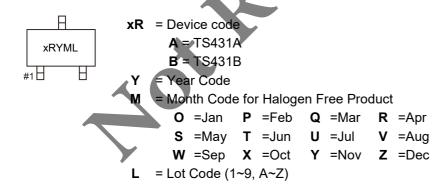

Stability Boundary Condition

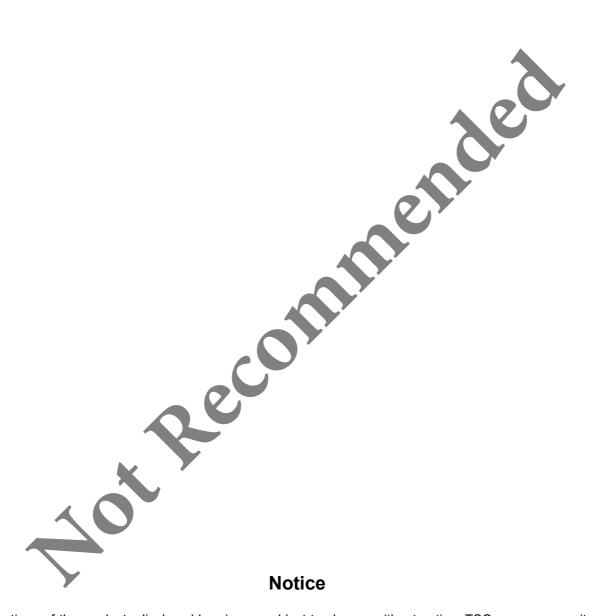




PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)


SOT-23




SUGGESTED PAD LAYOUT (Unit: Millimeters)

MARKING DIAGRAM

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.