

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.

74LVX161284 Low Voltage IEEE 161284 Translating Transceiver

General Description

FAIRCHILD

SEMICONDUCTOR TM

The LVX161284 contains eight bidirectional data buffers and eleven control/status buffers to implement a full IEEE 1284 compliant interface. The device supports the IEEE 1284 standard and is intended to be used in an Extended Capabilities Port mode (ECP). The pinout allows for easy connection from the Peripheral (A-side) to the Host (cable side).

Outputs on the cable side can be configured to be either open drain or high drive (± 14 mA) and are connected to a separate power supply pin (V_{CC}-cable) to allow these outputs to be driven by a higher supply voltage than the Aside. The pull-up and pull-down series termination resistance of these outputs on the cable side is optimized to drive an external cable. In addition, all inputs (except HLH) and outputs on the cable side contain internal pull-up resistors connected to the V_{CC} -cable supply to provide proper termination and pull-ups for open drain mode.

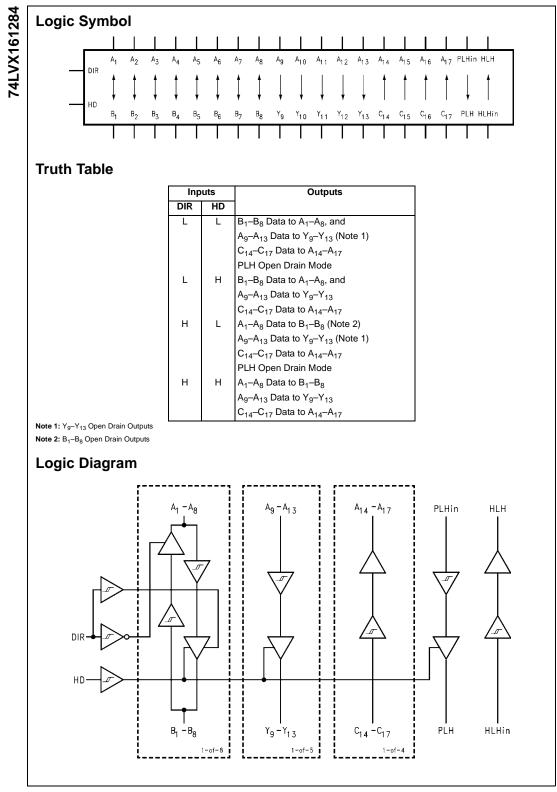
Outputs on the Peripheral side are standard low-drive CMOS outputs designed to interface with 3V logic. The DIR input controls data flow on the A1-A8/B1-B8 transceiver pins.

Features

- Supports IEEE 1284 Level 1 and Level 2 signaling standards for bidirectional parallel communications between personal computers and printing peripherals
- Translation capability allows outputs on the cable side to interface with 5V signals
- All inputs have hysteresis to provide noise margin
- B and Y output resistance optimized to drive external cable
- B and Y outputs in high impedance mode during power down
- Inputs and outputs on cable side have internal pull-up resistors
- Flow-through pin configuration allows easy interface between the "Peripheral and Host"
- Replaces the function of two (2) 74ACT1284 devices

Ordering Code

Order Number	Package Number	Package Description
74LVX161284MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LVX161284MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide


Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code

Connection Diagram DIR HD 48 Α9 Y9 Y10 A₁₀ 46 A11 - A12 -45 44 Y₁₁ Y12 - ¹¹² - Y₁₃ - V_{CC}...cable - B₁ - B₂ - GND 43 A13 V_{CC} A1 A2 42 41 40 GND 39 38 37 A3 A4 A5 A6 11 12 13 14 83 84 B5 B6 GND B7 36 35 GND A7 A8 15 16 17 18 19 34 33 32 31 30 Β, cable V_{CC} PLH C14 C15 C16 C17 PLHin 29 28 A₁₄ A₁₅ 20 21 A16 A17 22 27 23 26 HLE 24 25 HLHin

Pin Descriptions

Pin Names	Description	
HD	High Drive Enable Input (Active HIGH)	
DIR	Direction Control Input	
A ₁ -A ₈	Inputs or Outputs	
B ₁ –B ₈	Inputs or Outputs	
A ₉ -A ₁₃	Inputs	
Y ₉ -Y ₁₃	Outputs	
A ₁₄ –A ₁₇ C ₁₄ –C ₁₇	Outputs	
C ₁₄ –C ₁₇	Inputs	
PLHIN	Peripheral Logic HIGH Input	
PLH	Peripheral Logic HIGH Output	
HLH _{IN}	Host Logic HIGH Input	
HLH	Host Logic HIGH Output	

© 2005 Fairchild Semiconductor Corporation DS500202

Absolute Maximum Rati	ngs(Note 3)	Recommended Operating	g
Supply Voltage		Conditions	
V _{CC}	-0.5V to +4.6V	Supply Voltage	
V _{CC—Cable}	-0.5V to +7.0V	V _{cc}	3.0V to 3.6V
$V_{CC-Cable}$ Must Be $\geq V_{CC}$		V _{CC} —Cable	3.0V to 5.5V
Input Voltage (V _I)—(Note 4)		DC Input Voltage (VI)	0V to V _{CC}
A ₁ –A ₁₃ , PLH _{IN} , DIR, HD	–0.5V to V_{CC} + 0.5V	Open Drain Voltage (V _O)	0V to 5.5V
B ₁ –B ₈ , C ₁₄ –C ₁₇ , HLH _{IN}	-0.5V to +5.5V (DC)	Operating Temperature (T _A)	-40°C to +85°C
B ₁ –B ₈ , C ₁₄ –C ₁₇ , HLH _{IN}	-2.0V to +7.0V*		
	*40 ns Transient		
Output Voltage (V _O)			
A ₁ -A ₈ , A ₁₄ -A ₁₇ , HLH	-0.5V to V _{CC} +0.5V		
B ₁ –B ₈ , Y ₉ –Y ₁₃ , PLH	-0.5V to +5.5V (DC)		
B ₁ –B ₈ , Y ₉ –Y ₁₃ , PLH	-2.0V to +7.0V*		
	*40 ns Transient		
DC Output Current (I _O)			
A ₁ –A ₈ , HLH	±25 mA		
$B_1 - B_8, Y_9 - Y_{13}$	±50 mA		
PLH (Output LOW)	84 mA		
PLH (Output HIGH)	–50 mA		
Input Diode Current (I _{IK})—(Note 4) DIR, HD, A_9 – A_{13} , PLH, HLH, C_{14} – C_{17}	–20 mA		
Output Diode Current (I _{OK})			
A ₁ –A ₈ , A ₁₄ –A ₁₇ , HLH	±50 mA		
B ₁ –B ₈ , Y ₉ –Y ₁₃ , PLH	–50 mA	Note 3: Absolute maximum ratings are values bey	ond which the device
DC Continuous V _{CC} or Ground		may be damaged or have its useful life impaired. Fai	
Current	±200 mA	mend operation outside the databook specifications.	t to protect inpute
Storage Temperature	-65°C to +150°C	Note 4: Either voltage limit or current limit is sufficien	it to protect inputs.
ESD (HBM) Last Passing Voltage	2000V		

DC Electrical Characteristics

					$\mathbf{T}_{\mathbf{A}} = 0^{\circ}\mathbf{C}$	$T_A = -40^{\circ}C$		
Symbol	Parameter		V _{CC} (V)	V _{CC—Cable} (V)	to +70°C	to +85°C	Units	Conditions
			. ,	()	Guarante	Guaranteed Limits		
V _{IK}	Input Clamp		3.0	3.0	-1.2	-1.2	V	I _i = -18 mA
	Diode Voltage							
V _{IH}	Minimum	A _n , B _n , PLH _{IN} , DIR, HD	3.0-3.6	3.0-5.5	2.0	2.0		
	HIGH Level	C _n	3.0–3.6	3.0-5.5	2.3	2.3	V	
	Input Voltage	HLH _{IN}	3.0-3.6	3.0-5.5	2.6	2.6		
V _{IL}	Maximum	A _n , B _n , PLH _{IN} , DIR, HD	3.0-3.6	3.0-5.5	0.8	0.8		
	LOW Level	C _n	3.0-3.6	3.0-5.5	0.8	0.8	V	
	Input Voltage	HLH _{IN}	3.0-3.6	3.0-5.5	1.6	1.6		
ΔV_T	Minimum Input	A _n , B _n , PLH _{IN} , DIR, HD	3.3	5.0	0.4	0.4		V _T ⁺ -V _T
	Hysteresis	C _n	3.3	5.0	0.8	0.8	V	$V_T^+ - V_T^-$
		HLH _{IN}	3.3	5.0	0.2	0.2		$V_{T}^{+} - V_{T}^{-}$
V _{OH}	Minimum HIGH	A _n , HLH	3.0	3.0	2.8	2.8		I _{OH} = -50 μA
	Level Output		3.0	3.0	2.4	2.4		$I_{OH} = -4 \text{ mA}$
	Voltage	B _n , Y _n	3.0	3.0	2.0	2.0	V	$I_{OH} = -14 \text{ mA}$
		B _n , Y _n	3.0	4.5	2.23	2.23		$I_{OH} = -14 \text{ mA}$
		PLH	3.15	3.15	3.1	3.1	1	I _{OH} = -500 μA

R _D N III R _P N III R _P N III III R _P N C	Pa Maximum LOW Level Output Voltage Maximum Output Impedance Minimum Output Impedance Maximum Pull-Up Resistance Minimum Pull-Up Resistance Maximum Input	A _n , HLH B _n , Y _n B _n , Y _n PLH PLH B ₁ -B ₈ , Y ₉ -Y ₁₃ B ₁ -B ₈ , Y ₉ -Y ₁₃ B ₁ -B ₈ , Y ₉ -Y ₁₃ C ₁₄ -C ₁₇ B ₁ -B ₈ , Y ₉ -Y ₁₃ C ₁₄ -C ₁₇	V _{CC} (V) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.3 3.3 3.3	V _{CC-Cable} (V) 3.0 3.0 4.5 3.0 4.5 3.0 4.5 3.3 5.0 3.3 5.0 3.3 5.0 3.3 5.0 3.3	$\begin{array}{c} {\bf T}_{\rm A}=0^{\circ}{\bf C}\\ {\bf to}+70^{\circ}{\bf C}\\ \hline \\ {\bf Guarante}\\ 0.2\\ 0.4\\ 0.8\\ 0.77\\ 0.85\\ 0.8\\ \hline \\ 0.8\\ 0.8\\ 0.8\\ \hline \\ 0.8\\ 0.5\\ \hline \\ 3.5\\ 1650\\ 1650\\ 1150\\ \end{array}$	T _A = −40°C to +85°C ceed Limits 0.2 0.4 0.8 0.77 0.95 0.9 60 55 30 35 1650 1150	Units V Ω Ω	$I_{OL} = 4 \text{ mA}$ $I_{OL} = 14 \text{ m/}$ $I_{OL} = 14 \text{ m/}$ $I_{OL} = 84 \text{ m/}$ $I_{OL} = 84 \text{ m/}$ (Note 5)(Note 5)(Note 5)
R _D N II R _P N II II R _P N II II II II II II II II II II II II II	Level Output Voltage Maximum Output Impedance Minimum Output Impedance Maximum Pull-Up Resistance Minimum Pull-Up Resistance		3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.3 3.3 3.3	3.0 3.0 3.0 4.5 3.0 4.5 3.3 5.0 3.3 5.0 3.3 5.0	0.2 0.4 0.8 0.77 0.85 0.8 60 55 30 35 1650 1650	0.2 0.4 0.8 0.77 0.95 0.9 60 55 30 35 1650 1650	Ω	$\begin{split} I_{OL} &= 50 \ \mu A \\ I_{OL} &= 4 \ m A \\ I_{OL} &= 14 \ m A \\ I_{OL} &= 14 \ m A \\ I_{OL} &= 14 \ m A \\ I_{OL} &= 84 \ m A \\ I_{OL} &= 84 \ m A \\ I_{OL} &= 84 \ m A \\ (Note 5)(Note 5)(No$
R _D N II R _P N II II R _P N II II II II II II II II II II II II II	Level Output Voltage Maximum Output Impedance Minimum Output Impedance Maximum Pull-Up Resistance Minimum Pull-Up Resistance		3.0 3.0 3.0 3.0 3.0 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	3.0 3.0 4.5 3.0 4.5 3.3 5.0 3.3 5.0 3.3 5.0	0.4 0.8 0.77 0.85 0.8 60 55 30 35 1650 1650	0.4 0.8 0.77 0.95 0.9 60 55 30 35 1650 1650	Ω	$I_{OL} = 4 \text{ mA}$ $I_{OL} = 14 \text{ mA}$ $I_{OL} = 14 \text{ mA}$ $I_{OL} = 14 \text{ mA}$ $I_{OL} = 84 \text{ mA}$ $I_{OL} = 84 \text{ mA}$ (Note 5)(Note 5)(N
R _D N II R _P N F N I _{II} I _{II} N C	Voltage Maximum Output Impedance Minimum Output Impedance Maximum Pull-Up Resistance Minimum Pull-Up Resistance	$\begin{array}{c} B_n, Y_n \\ \hline PLH \\ \hline PLH \\ B_1 - B_8, Y_9 - Y_{13} \\ \hline B_1 - B_8, Y_9 - Y_{13} \\ \hline B_1 - B_8, Y_9 - Y_{13} \\ \hline C_{14} - C_{17} \\ \hline B_1 - B_8, Y_9 - Y_{13} \end{array}$	3.0 3.0 3.0 3.3 3.3 3.3 3.3 3.3 3.3 3.3	3.0 4.5 3.0 4.5 3.3 5.0 3.3 5.0 3.3 5.0	0.8 0.77 0.85 0.8 60 55 30 35 1650 1650	0.8 0.77 0.95 0.9 60 55 30 35 1650 1650	Ω	$I_{OL} = 14 \text{ m/s}$ $I_{OL} = 14 \text{ m/s}$ $I_{OL} = 84 \text{ m/s}$ $I_{OL} = 84 \text{ m/s}$ (Note 5)(Note 5)
R _D N II N R _P N F N I _I I _I N C	Maximum Output Impedance Minimum Output Impedance Maximum Pull-Up Resistance Minimum Pull-Up Resistance	$\begin{array}{c} B_n, Y_n \\ \hline PLH \\ \hline PLH \\ B_1 - B_8, Y_9 - Y_{13} \\ \hline B_1 - B_8, Y_9 - Y_{13} \\ \hline B_1 - B_8, Y_9 - Y_{13} \\ \hline C_{14} - C_{17} \\ \hline B_1 - B_8, Y_9 - Y_{13} \end{array}$	3.0 3.0 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	4.5 3.0 4.5 3.3 5.0 3.3 5.0 3.3 5.0 3.3 5.0	0.77 0.85 0.8 60 55 30 35 1650 1650	0.77 0.95 0.9 60 55 30 35 1650 1650	Ω	$I_{OL} = 14 \text{ mA}$ $I_{OL} = 84 \text{ mA}$ $I_{OL} = 84 \text{ mA}$ (Note 5)(Note 5)
н П П П П П П П П П П П П П П П П П П П	Impedance Minimum Output Impedance Maximum Pull-Up Resistance Minimum Pull-Up Resistance	$\begin{array}{c} PLH \\ \hline PLH \\ B_1-B_8, Y_{9}-Y_{13} \\ \hline B_1-B_8, Y_{9}-Y_{13} \\ \hline B_1-B_8, Y_{9}-Y_{13} \\ \hline C_{14}-C_{17} \\ \hline B_1-B_8, Y_{9}-Y_{13} \\ \hline \end{array}$	3.0 3.0 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	3.0 4.5 3.3 5.0 3.3 5.0 3.3 5.0	0.85 0.8 60 55 30 35 1650 1650	0.95 0.9 60 55 30 35 1650 1650	Ω	I _{OL} = 84 mA I _{OL} = 84 mA (Note 5)(No
н П П П П П П П П П П П П П П П П П П П	Impedance Minimum Output Impedance Maximum Pull-Up Resistance Minimum Pull-Up Resistance	$\begin{array}{c} PLH \\ B_1 - B_8, Y_9 - Y_{13} \\ \\ B_1 - B_8, Y_9 - Y_{13} \\ \\ B_1 - B_8, Y_9 - Y_{13}, \\ C_{14} - C_{17} \\ \\ \\ B_1 - B_8, Y_9 - Y_{13} \end{array}$	3.0 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	4.5 3.3 5.0 3.3 5.0 3.3 5.0 3.3 5.0	0.8 60 55 30 35 1650 1650	0.9 60 55 30 35 1650 1650		I _{OL} = 84 mA (Note 5)(No
н П П П П П П П П П П П П П П П П П П П	Impedance Minimum Output Impedance Maximum Pull-Up Resistance Minimum Pull-Up Resistance	$\begin{array}{c} B_{1} - B_{8}, Y_{9} - Y_{13} \\ \\ B_{1} - B_{8}, Y_{9} - Y_{13} \\ \\ B_{1} - B_{8}, Y_{9} - Y_{13}, \\ \\ C_{14} - C_{17} \\ \\ B_{1} - B_{8}, Y_{9} - Y_{13} \end{array}$	3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	3.3 5.0 3.3 5.0 3.3 5.0	60 55 30 35 1650 1650	60 55 30 35 1650 1650		(Note 5)(No
н П П П П П П П П П П П П П П П П П П П	Impedance Minimum Output Impedance Maximum Pull-Up Resistance Minimum Pull-Up Resistance	$B_{1}-B_{8}, Y_{9}-Y_{13}$ $B_{1}-B_{8}, Y_{9}-Y_{13}, C_{14}-C_{17}$ $B_{1}-B_{8}, Y_{9}-Y_{13}$	3.3 3.3 3.3 3.3 3.3 3.3 3.3	5.0 3.3 5.0 3.3 5.0	55 30 35 1650 1650	55 30 35 1650 1650		
R _P N F N I _I H N C	Minimum Output Impedance Maximum Pull-Up Resistance Minimum Pull-Up Resistance	$B_{1}-B_{8}, Y_{9}-Y_{13},$ $C_{14}-C_{17}$ $B_{1}-B_{8}, Y_{9}-Y_{13}$	3.3 3.3 3.3 3.3 3.3 3.3	3.3 5.0 3.3 5.0	30 35 1650 1650	30 35 1650 1650		
R _P M F N I _{IH} N C	Impedance Maximum Pull-Up Resistance Minimum Pull-Up Resistance	$B_{1}-B_{8}, Y_{9}-Y_{13},$ $C_{14}-C_{17}$ $B_{1}-B_{8}, Y_{9}-Y_{13}$	3.3 3.3 3.3 3.3	5.0 3.3 5.0	35 1650 1650	35 1650 1650		(Note 5)(No
R _P N F N F I _{IH} N C	Maximum Pull-Up Resistance Minimum Pull-Up Resistance	C ₁₄ -C ₁₇ B ₁ -B ₈ , Y ₉ -Y ₁₃	3.3 3.3 3.3	3.3 5.0	1650 1650	1650 1650	Ω	(Note 5)(No
я М Л _{ІН} М С	Resistance Minimum Pull-Up Resistance	C ₁₄ -C ₁₇ B ₁ -B ₈ , Y ₉ -Y ₁₃	3.3 3.3	5.0	1650	1650	Ω	
F N F I _{IH} N C	Minimum Pull-Up Resistance	C ₁₄ -C ₁₇ B ₁ -B ₈ , Y ₉ -Y ₁₃	3.3		1650		Ω	
F I _{IH} N C	Resistance	B ₁ -B ₈ , Y ₉ -Y ₁₃		3.3	1150	1150		
F I _{IH} N C	Resistance	1 0 0 10		0.0				1
I _{IH} N		014 017		5.0	1150	1150	Ω	
C	Maximum input	A ₉ –A ₁₃ , PLH _{IN} ,	3.6	3.6	1.0	1.0	-	V _I = 3.6V
	Current in	HD, DIR, HLH _{IN}	5.0	5.0	1.0	1.0		v] = 3.0 v
	HIGH State	C ₁₄ -C ₁₇	3.6	3.6	50.0	50.0	μA	$V_I = 3.6V$
	inori otate	C ₁₄ -C ₁₇	3.6	5.5	100	100	-	V _I = 5.5V
-	Maximum Input		3.6	3.6	-1.0	-1.0	μA	$V_{\rm I} = 0.0V$
	Current in	A ₉ –A ₁₃ , PLH _{IN} , HD, DIR, HLH _{IN}	3.0	3.0	-1.0	-1.0	μΑ	v _l = 0.0v
L	LOW State	C ₁₄ -C ₁₇	3.6	3.6	-3.5	-3.5	mA	$V_{I} = 0.0V$
		C ₁₄ -C ₁₇	3.6	5.5	-5.0	-5.0	mA	$V_{I}=0.0V$
I _{OZH} N	Maximum Output	A ₁ -A ₈	3.6	3.6	20	20	μA	$V_{O} = 3.6V$
0	Disable Current	B ₁ –B ₈	3.6	3.6	50	50	μA	$V_O = 3.6V$
((HIGH)	B ₁ –B ₈	3.6	5.5	100	100	μA	$V_{O} = 5.5V$
I _{OZL} N	Maximum	A ₁ -A ₈	3.6	3.6	-20	-20	μA	$V_{0} = 0.0V$
C	Output Disable	B ₁ -B ₈	3.6	3.6	-3.5	-3.5	mA	
C	Current (LOW)	B ₁ -B ₈	3.6	5.5	-5.0	-5.0	mA	
I _{OFF} F	Power Down	B ₁ -B ₈ , Y ₉ -Y ₁₃ ,						
	Output Leakage	PLH	0.0	0.0	100	100	μA	$V_{O} = 5.5V$
I _{OFF} F	Power Down			1				
li	Input Leakage	C ₁₄ –C ₁₇ , HLH _{IN}	0.0	0.0	100	100	μA	$V_I = 5.5V$
011 100	Power Down		0.0	0.0	250	250	μA	(Note 6)
	Leakage to V _{CC} Power Down Leakage							
	to V _{CC—Cable}		0.0	0.0	250	250	μΑ	(Note 6)

Note 5: Output impedance is measured with the output active LOW and active HIGH (HD = HIGH).

Note 6: Power-down leakage to V_{CC} or $V_{CC-Cable}$ is tested by simultaneously forcing all pins on the cable-side (B₁-B₈, Y₉-Y₁₃, PLH, C₁₄-C₁₇ and HLH_{IN}) to 5.5V and measuring the resulting I_{CC} or I_{CC-Cable}.

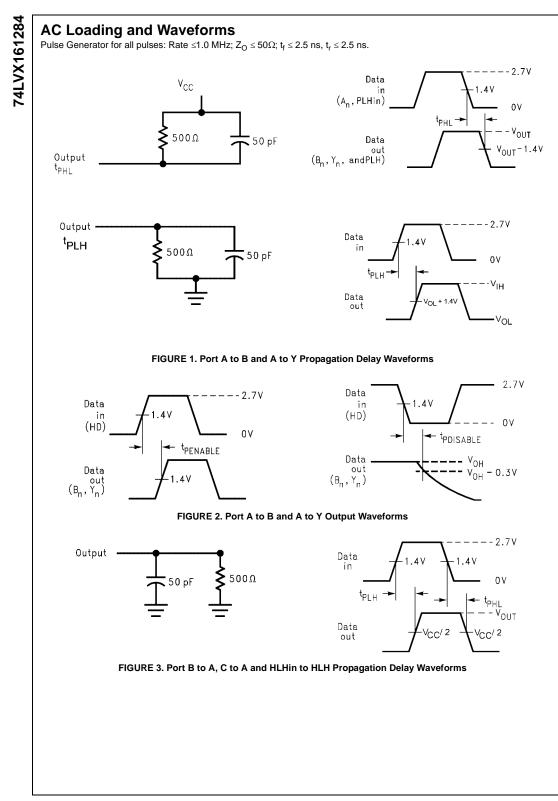
Note 7: This parameter is guaranteed but not tested, characterized only.

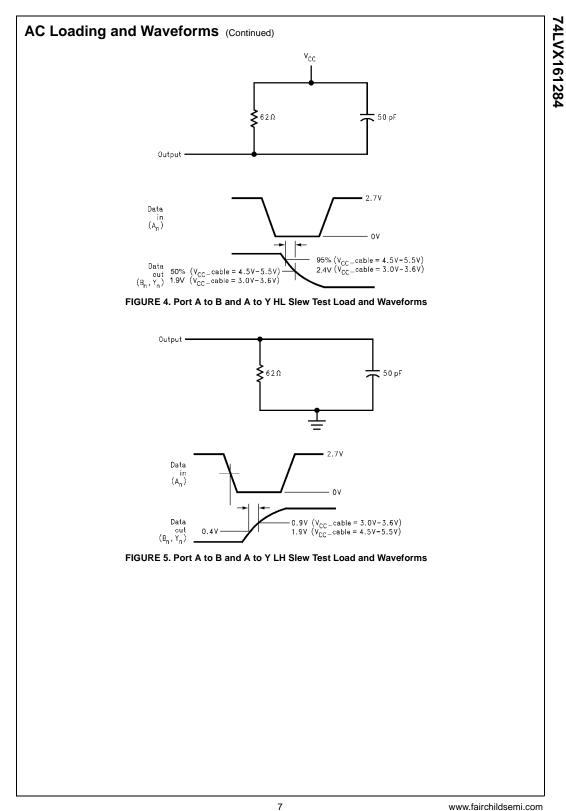
Symbol		T _A = 0°C to +70°C V _{CC} = 3.0V–3.6V		T _A = -40° V _{CC} = 3		Figure	
	Parameter	V _{CC—Cable}	= 3.0V–5.5V	V _{CC—Cable}	Units	Number	
		Min	Max	Min	Max		
t _{PHL}	A ₁ -A ₈ to B ₁ -B ₈	2.0	40.0	2.0	44.0	ns	Figure 1
t _{PLH}	A ₁ -A ₈ to B ₁ -B ₈	2.0	40.0	2.0	44.0	ns	Figure 2
t _{PHL}	B ₁ -B ₈ to A ₁ -A ₈	2.0	40.0	2.0	44.0	ns	Figure 3
t _{PLH}	B ₁ -B ₈ to A ₁ -A ₈	2.0	40.0	2.0	44.0	ns	Figure 3
t _{PHL}	A ₉ -A ₁₃ to Y ₉ -Y ₁₃	2.0	40.0	2.0	44.0	ns	Figure 1
t _{PLH}	A ₉ -A ₁₃ to Y ₉ -Y ₁₃	2.0	40.0	2.0	44.0	ns	Figure 2
t _{PHL}	C ₁₄ -C ₁₇ to A ₁₄ -A ₁₇	2.0	40.0	2.0	44.0	ns	Figure 3
t _{PLH}	C ₁₄ -C ₁₇ to A ₁₄ -A ₁₇	2.0	40.0	2.0	44.0	ns	Figure 3
t _{SKEW}	LH-LH or HL-HL		10.0		12.0	ns	(Note 9)
t _{PHL}	PLH _{IN} to PLH	2.0	40.0	2.0	44.0	ns	Figure 1
t _{PLH}	PLH _{IN} to PLH	2.0	40.0	2.0	44.0	ns	Figure 2
t _{PHL}	HLH _{IN} to HLH	2.0	40.0	2.0	44.0	ns	Figure 3
t _{PLH}	HLH _{IN} to HLH	2.0	40.0	2.0	44.0	ns	Figure 3
t _{PHZ}	Output Disable Time	2.0	15.0	2.0	18.0	ns	Figure 7
t _{PLZ}	DIR to A1-A8	2.0	15.0	2.0	18.0		
t _{PZH}	Output Enable Time	2.0	50.0	2.0	50.0	ns	Figure 8
t _{PZL}	DIR to A ₁ -A ₈	2.0	50.0	2.0	50.0	lis Figure	r igure o
t _{PHZ}	Output Disable Time	2.0	50.0	2.0	50.0	ns	Figure 9
t _{PLZ}	DIR to B ₁ -B ₈	2.0	50.0	2.0	50.0		r igure 9
t _{pEN}	Output Enable Time	2.0	25.0	2.0	28.0	ns Figure	Figure 2
	HD to B ₁ -B ₈ , Y ₉ -Y ₁₃	2.0	25.0	2.0	28.0	113	
t _{pDIS}	Output Disable Time	2.0	25.0	2.0	28.0	ns	Figure 2
	HD to B ₁ -B ₈ , Y ₉ -Y ₁₃	2.0	25.0	2.0	28.0		
t _{pEN} —t _{pDIS}	Output Enable-		10.0		12.0	ns	
	Output Disable						
t _{SLEW}	Output Slew Rate						
t _{PLH}	B ₁ -B ₈ , Y ₉ -Y ₁₃	0.05	0.40	0.05	0.40	V/ns	Figure 5
t _{PHL}		0.05	0.40	0.05	0.40		Figure 4
t _r , t _f	t _{RISE} and t _{FALL}		120		120	ns	Figure 6
	B ₁ -B ₈ (Note 8),		120		120	113	(Note 10)

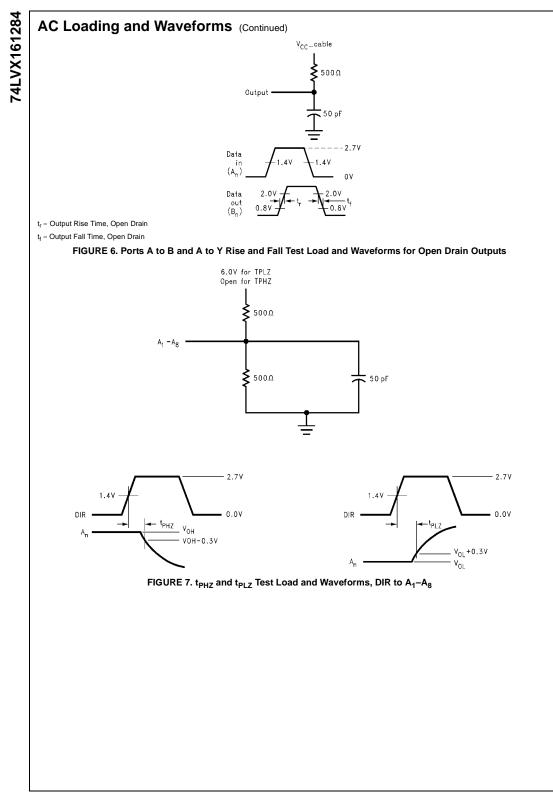
Note 9: t_{SKEW} is measured for common edge output transitions and compares the measured propagation delay for a given path type:

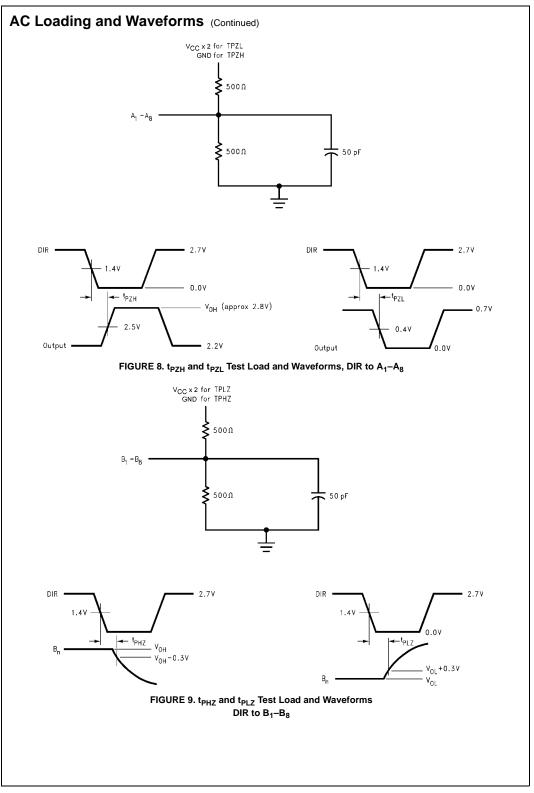
(i) $\mathsf{A}_1\text{--}\mathsf{A}_8$ to $\mathsf{B}_1\text{--}\mathsf{B}_8,\,\mathsf{A}_9\text{--}\mathsf{A}_{13}$ to $\mathsf{Y}_9\text{--}\mathsf{Y}_{13}$

(ii) $B_1 - B_8$ to $A_1 - A_8$

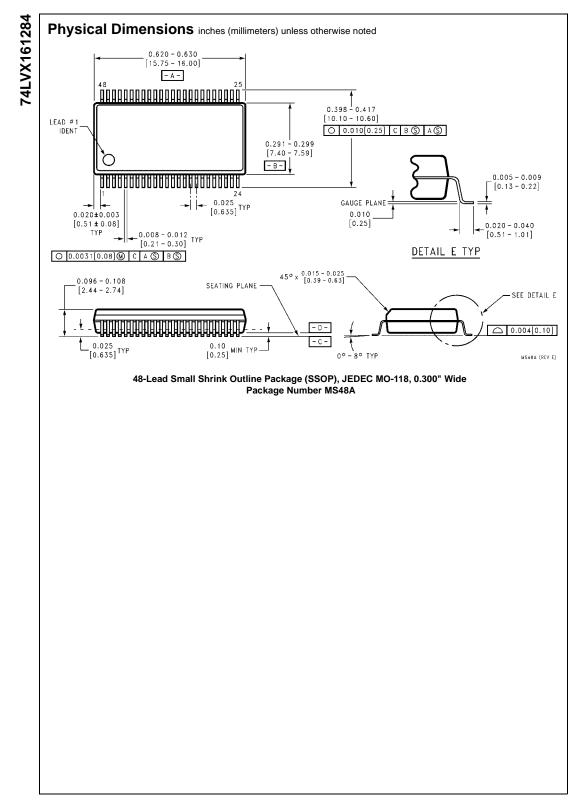

(iii) C₁₄-C₁₇ to A₁₄-A₁₇

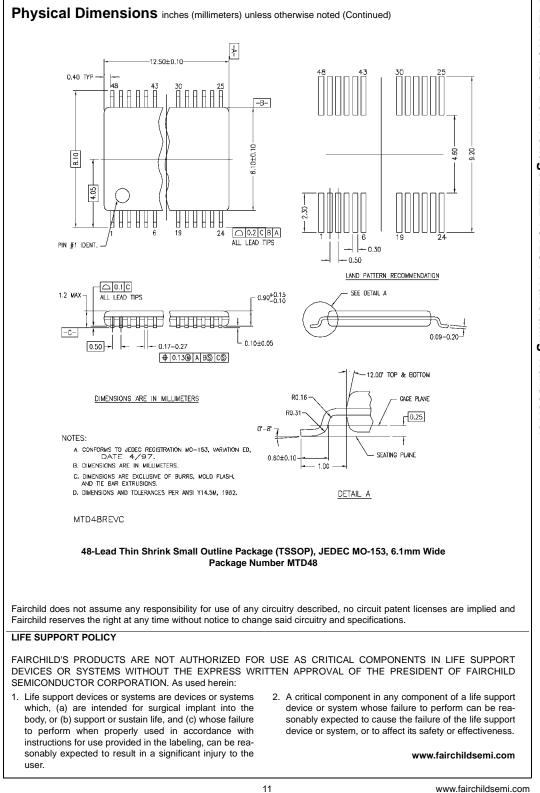

Note 10: This parameter is guaranteed but not tested, characterized only.


Capacitance


Symbol	Parameter	Тур	Units	Conditions
CIN	Input Capacitance	3	pF	$V_{CC} = 0.0V$ (HD, DIR, A ₉ –A ₁₃ , C ₁₄ –C ₁₇ , PLH _{IN} and HLH _{IN})
C _{I/O} (Note 11)	I/O Pin Capacitance	5	pF	$V_{CC} = 3.3V$

Note 11: $C_{I/O}$ is measured at frequency = 1 MHz, per MIL-STD-883B, Method 3012





9

74LVX161284 Low Voltage IEEE 161284 Translating Transceiver

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC