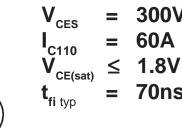
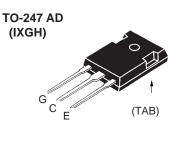


GenX3[™] 300V IGBT


IXGH60N30C3


High Speed IGBTs for 50-150kHz switching

			0 E		
Symbol	Test Conditions	Maximum Ratings			
V _{CES}	$T_{J} = 25^{\circ}C$ to $150^{\circ}C$	300	V		
V _{cgr}	$T_{J} = 25^{\circ}C$ to 150°C, $R_{GE} = 1M\Omega$	300	V		
V _{ges}	Continuous	±20	V		
V _{gem}	Transient	±30	V		
I _{C25}	$T_{c} = 25^{\circ}C$ (Limited by leads)	75	A		
I _{C110}	$T_c = 110^{\circ}C$ (chip capability)	60	А		
I _{CM}	$T_c = 25^{\circ}C$, 1ms	420	A		
I _A	$T_c = 25^{\circ}C$	60	А		
E _{AS}	$T_c = 25^{\circ}C$	400	mJ		
SSOA (RBSOA)	V_{GE} = 15V, T_{VJ} = 125°C, R_{G} = 5 Ω Clamped inductive load @ \leq 300V	I _{CM} = 170	A		
P _c	T _c = 25°C	300	W		
T,		-55 +150	°C		
Т _{јм}		150	°C		
T _{stg}		-55 +150	°C		
T _l T _{sold}	Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10s	300 260	°C ℃		
M _d	Mounting torque (TO-247)	1.13/10	Nm/lb.in.		
Weight		6	g		

Symbol	Test Conditions	Characteristic Values $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$				
		Min.	Тур.	Max.		
BV _{CES}	$I_{c} = 250 \mu A, V_{ce} = 0 V$	300			V	
	$ \begin{array}{ll} I_{\mathrm{C}} &= 250 \mu A, \ V_{\mathrm{GE}} = 0V \\ I_{\mathrm{C}} &= 250 \mu A, \ V_{\mathrm{CE}} = V_{\mathrm{GE}} \end{array} $	2.5		5.0	V	
I _{ces}	$V_{CE} = V_{CES}$			30	μA	
	$\begin{array}{l} V_{\rm CE} &= V_{\rm CES} \\ V_{\rm GE} &= 0 V \end{array}$	$T_J = 125^{\circ}C$		750	μΑ	
GES	$V_{_{CE}}$ = 0V, $V_{_{GE}}$ = ± 20V			±100	nA	
V _{CE(sat)}	I _c = 60A, V _{GE} = 15V		1.55	1.8	V	
	G GE	T _J = 125°C	1.60		V	

G = Gate E = Emitter

C = CollectorTAB = Collector

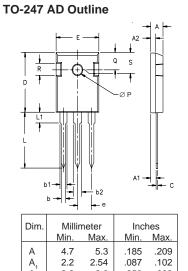
300V

60A

70ns

Features

- High Frequency IGBT
- Square RBSOA
- High avalanche capability
- Drive simplicity with MOS Gate Turn-On
- High current handling capability


Applications

- PFC Circuits
- PDP Systems
- Switched-mode and resonant-mode converters and inverters
- SMPS
- AC motor speed control
- DC servo and robot drives
- DC choppers

Symbol Test Conditions

IXGH60N30C3

SymbolTest Conditions $(T_j = 25^{\circ}C, unless otherwise specified)$	Min.	Characteristic Values Typ. Max.		
	28	46	S	
$\left.\begin{array}{c} \textbf{C}_{ies} \\ \textbf{C}_{oes} \\ \textbf{C}_{res} \end{array}\right\} V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		3800 240 63	pF pF pF	
$ \begin{array}{c} \mathbf{Q}_{g} \\ \mathbf{Q}_{ge} \\ \mathbf{Q}_{gc} \end{array} \end{array} \right\} \ \ I_{C} = I_{C110}, \ \ V_{GE} = 15V, \ \ V_{CE} = 0.5 \bullet V_{CES} $		101 21 37	nC nC nC	
$ \begin{array}{c} \mathbf{t}_{d(on)} \\ \mathbf{t}_{ri} \\ \mathbf{E}_{on} \\ \mathbf{t}_{d(off)} \\ \mathbf{t}_{fi} \\ \mathbf{E}_{off} \end{array} \end{array} \right\} \begin{array}{c} \mathbf{Inductive \ Load, \ T_{J} = 25^{\circ}C} \\ \mathbf{I}_{C} = 0.5 \bullet \mathbf{I}_{C110}, \ \mathbf{V}_{GE} = 15 \mathbf{V} \\ \mathbf{V}_{CE} = 200 \mathbf{V}, \ \mathbf{R}_{G} = 5\Omega \end{array} $		23 28 0.15 108 68 0.30	ns ns mJ 160 ns ns 0.55 mJ	
$ \begin{array}{c} \mathbf{t}_{d(on)} \\ \mathbf{t}_{ri} \\ \mathbf{E}_{on} \\ \mathbf{t}_{d(off)} \\ \mathbf{t}_{fi} \\ \mathbf{E}_{off} \end{array} \end{array} \right\} \begin{array}{c} \mathbf{Inductive \ Load, \ T_{J} = 125^{\circ}C} \\ \mathbf{I}_{C} = 0.5 \bullet \mathbf{I}_{C110}, \ V_{GE} = 15V \\ V_{CE} = 200V, \ R_{G} = 5\Omega \end{array} $		22 28 0.26 120 101 0.40	ns ns mJ ns ns mJ	
R _{thJC} R _{thCK}		0.21	0.42 °C/W °C/W	

A A₂ 2.2 2.6 .059 .098 b 1.0 1.4 .040 .055 b, 1.65 2.13 .065 .084 b, 2.87 3.12 .113 .123 C .8 .016 .031 .4 D E 20.80 21.46 .819 .845 15.75 16.26 .610 .640 e L 5.20 5.72 0.205 0.225 19.81 20.32 .780 .800 L1 4.50 .177 ØP 3.55 3.65 .140 .144 Q 5.89 6.40 0.232 0.252 R 4.32 5.49 .170 .216 S 6.15 BSC 242 BSC

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered	4,835,592	4,931,844	5,049,961	5,237,481	6,162,665	6,404,065 B1	6,683,344	6,727,585	7,005,734 B2	7,157,338B2
by one or moreof the following U.S. patents:						- , ,	6,710,405 B2	- / /	/	
	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728 B1	6,583,505	6,710,463	6,771,478 B2	7,071,537	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.