ON Semiconductor®

http://onsemi.com

Advance Information

CMOS LSI

8M-bit (1024K x 8) Serial Flash Memory

Overview

The LE25U81AMC is a SPI bus flash memory device with a 8M bit (1024K × 8-bit) configuration that adds a high performance Dual output and Dual I/O function. It uses a single 2.5V power supply. While remains the most of the features inherent to a serial flash memory device, the LE25U81AMC is housed in an 8-pin use a-min sure package. All these features make this device ideally suited to storing program in applications such as portate information devices, which are required to have increasingly more compact dimensions. The LE25U81AC as on has small sector erase capability which makes the device ideal for storing parameters or data that have the two cycles and conventional EEPROMs cannot handle due to insufficient capacity.

Function

• Read/write operations enabled by single 2.5V power pply 2.3 2.7 v supply voltage range

Operating frequency : 40MHz
 Temperature range : -40 to +85°C

• Serial interface : SPI mode rode supposed

• Sector size : 4K 1 - c/si. 11 sc 64K by tes/sector

• Small sector erase, sector erase, hip era functions

• Page program function (256 byt / page

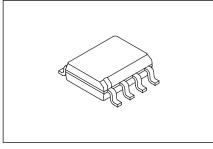
• Block protect function

• Data retention period :) years

• Status functions seady/busy information, protect information

• Highly really te

No ber revolte the selection in the No. 100,000 times


 small ctc rase time
 . 40ms (t,p), 150ms (max.)

 ctor case time
 . 8 ms (typ.), 250ms (max.)

 c. rase time
 . 500ms (typ.), 6.0s (max.)

Page program time : 0.3 ins/256 bytes (typ.), 0.5 ms/256 bytes (max.)

• Package . S'DPSJ, CASE 751CU

SOP8J(200mil)

* This product is licensed from Silicon Storage Technology, Inc. (USA).

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ORDERING INFORMATION

See detailed ordering and shipping information on page 23 of this data sheet.

Specifications

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	unit
Maximum supply voltage		With respect to V _{SS}	-0.5 to +4.6	V
DC voltage (all pins)		With respect to V _{SS}	−0.5 to V _{DD} +0.5	٧
Storage temperature	Tstg		−55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Operating Conditions

Parameter	Symbol	Conditions	Ratings	unit
Operating supply voltage	V_{DD}		2.3 to 2.7	V
Operating ambient temperature	Topr		-40 to +85	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Allowable DC Operating Conditions

Parameter	Symbol	Conditions	min	Ratin	max	unit
		SCK = 0.1V _{DD} /0.9V _{DD} , Single 30 4z			6	mA
Read mode operating current	ICCR	$\overline{\text{HOLD}} = \overline{\text{WP}} = 0.9 \text{V}_{\text{DD}},$ Single		170	8	mA
		SO = open			10	mA
Write mode operating current (erase+page program)	ICCW	$t_{SSE} = t_{SE} = t_{CHE} = t_{V}$ $p_{P} = q_{X}$	150	en	0,10	mA
CMOS standby current	I _{SB}	$ \overline{CS} = V_{DD}, \overline{HC} = \overline{WP} = V_{D}, $ $ SI = V_{C} \gamma_{D}, S \text{open} $ $ \overline{CS} = V_{D}, $	ON	7	50	μА
Power-down standby current	I _{DSB}	$\overline{CS} = V_{DL}$ $\Rightarrow V_{DD}$	70	5/4,	10	μΑ
Input leakage current	ILI	"	IF		2	μΑ
Output leakage current	20	60,61,91			2	μΑ
Input low voltage	V _{IL}	20 NO OR	-0.3		0.3V _{DD}	V
Input high voltage	/н	20 170 60	0.7V _{DD}		V _{DD} +0.3	V
Output low voltane	VOL	$i_{OL} = 100\mu A$, $V'_{DD} = V_{DD} min$			0.2	V
		1 _{DL} = 1.6r iA, V _{DD} = V _{DD} mia			0.4	V
Out nigh age	ŸOH	I _{OH} = -100μA, V _{DL}) = V _{DD} min	V _{CC} -0.2			V

Data h `′ Kewriting frequency

Pa	avameter	Conditions	min	max	unit
D		Program/Erase	100,000		times/
Rewriting fre juency		Status resister write	1,000		Sector
⊃ata nold	20		20		year

Pin Capacitance at Ta = 25°C, f = 1MHz

	9			
Doromotor	Cumah al	Conditions	Ratings	unit
Parameter	Symbol	Conditions	max	unit
Output pin capacitance	C _{SO}	V _{SO} = 0V	12	pF
Input pin capacitance	C _{IN}	V _{IN} = 0V	6	pF

Note: These parameter values do not represent the results of measurements undertaken for all devices but rather values for some of the sampled devices.

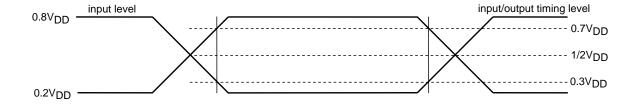
No.A2286-2/23

AC Characteristics

Parameter		0		Ratings			
	Parameter		Symbol	min	typ	max	unit
Ole als frages and	Read instruction	n (03h)				30	MHz
Clock frequency	All instruction except for read (03h)		fCLK			40	MHz
Input signal rising/falling	j time		t _{RF}	0.1			V/ns
30MHz			14			ns	
SCK logic high level pulse width 40MHz		^t CLHI	11.5			ns	
SCK logic low level pulse width 30MHz 40MHz			14			ns	
		tCLLO	11.5			ns	
CS setup time			tcss	10			ns
Data setup time			t _{DS}	5			ns
Data hold time		^t DH	4			ns	
CS hold time		^t CSH	10			ns	
CS wait pulse width		^t CPH	25			ns	
Output high impedance time from $\overline{\text{CS}}$		t _{CHZ}			15	ns	
Output data time from SCK		t _V		8	9	Ue	
Output data hold time		tHO	1			ns	
HOLD setup time		tHS	5		11	ns	
HOLD hold time		tHH	5		5/14	ns	
Output low impedance time from HOLD		tHLZ			12	ns	
Output high impedance time from HOLD		tHHZ		-0	9	ns	
WP setup time			twer	_0	<.0	· 100	ns
WP hold time				20	1	3/, (()	ns
Write status register tim	е		tsrv		103	10	ms
		256F		-10	0.3	0.5	ms
Page programming cycl	e time			1/2	0.15	0.20+	
3		1120	100	/i*().15/256	n*0.30/256	ms	
Small sector erase cycle time			tes <u>-</u>	7 , 2	0.04	0.15	s
Sector erase cycle time		t <u>Sr</u>		0.08	0.25	S	
Chip erase cycle time			tCHE	-OK	0.5	6.0	S
Power-down time			t _D p	70		5	μs
Power-down rc very			PRB	*		500	μs
Output In imped se t	in a fro SCK	40 C	t _C .z	0			ns

Proc parame per unance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicate by the actirical Characteristics if operated under differences differences differences differences differences and the conditions.

AC Test Conditions


Input purse level ----- 0 2V DD to 0.8VDD

Liput rising/falling time ... ins

(nput timing level 0.3VDD, 0.7VDD

Output timing level $\cdots 1/2 \times V_{DD}$ Output load $\cdots 15pF$

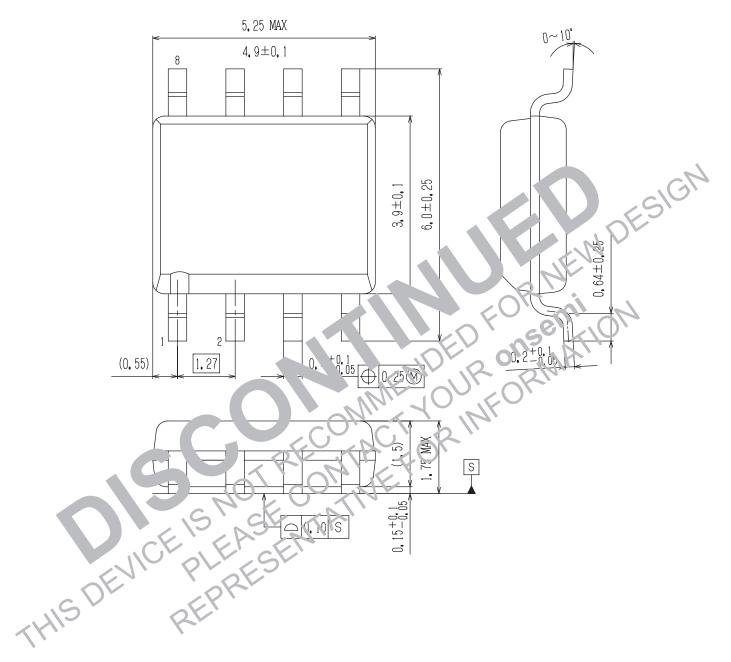
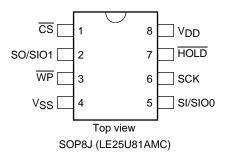
Note: As the test conditions for "typ", the measurements are conducted using 2.5V for V_{DD} at room temperature.

Package Dimensions

unit: mm

SOIC-8 / SOP8J (200 mil)

CASE 751CU ISSUE O

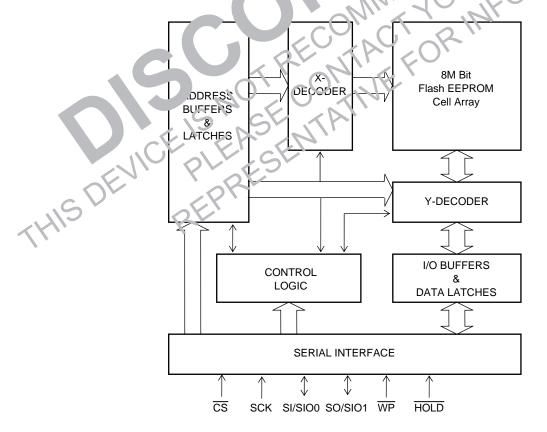
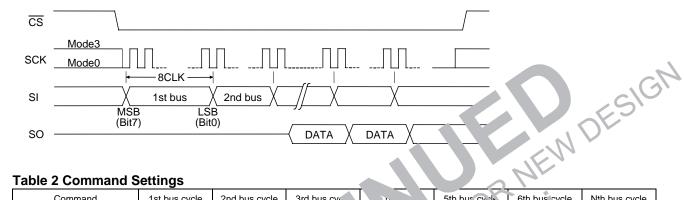

Figure 1 Pin Assignments

Table 1 Pin Description

Symbol	Pin Name	Description
SCK	Serial clock	This pin controls the data input/output timing.
		The input data and addresses are latched synchronized to the rising edge of the seric lock, and the data is
		output synchronized to the falling edge of the serial clock.
SI/SIO0	Serial data input	The data and addresses are input from this pin, and latched inter y synchrol d to e rising code of he
	/ Serial data input output	serial clock. It changes into the output pin at Dual Output and it connected that output pin a Sual I/O.
SO/SIO1	Serial data input	The data stored inside the device is output from this pin syn oniz to the ling edge of the serial clock. It
	/ Serial data input output	changes into the output pin at Dual Output and it changes into hip apput pin at Dual I/O.
cs	Chip select	The device becomes active when the logic leve. this is low is deselected at 4 placed in standby status
		when the logic level of the pin is high.
WP	Write protect	The status register write protect (\$\sqrt{P}\) es hen the logic level of this pin is low.
HOLD	Hold	Serial communication is surrounded v. in the legic level of this uin is low.
V_{DD}	Power supply	This pin supplies the 2.5 to 2. 'supply 'age.
V _{SS}	Ground	This pin supplies the 'supply age.

Figure 2 Block Diagram



Device Operation

The read, erase, program and other required functions of the device are executed through the command registers. The serial I/O corrugate is shown in Figure 3 and the command list is shown in Table 2. At the falling CS edge the device is selected, and serial input is enabled for the commands, addresses, etc. These inputs are normalized in 8 bit units and taken into the device interior in synchronization with the rising edge of SCK, which causes the device to execute operation according to the command that is input.

The LE25U81AMC supports both serial interface SPI mode 0 and SPI mode 3. At the falling $\overline{\text{CS}}$ edge, SPI mode 0 is automatically selected if the logic level of SCK is low, and SPI mode 3 is automatically selected if the logic level of SCK is high.

Figure 3 I/O waveforms

Table 2 Command Settings

Table 2 Communic	ottiii igo		1				
Command	1st bus cycle	2nd bus cycle	3rd bus cyc	Du	5th bur, cycle	6th bus cycle	Nth bus cycle
Read	03h	A23-A16	8r ^A	7-A0	P.D "T	RD 1	.2D *1
High Speed Read	0Bh	A23-A16	A1 8	A ₁ -A0	x c	RD*í	RD *1
Dual Output Read	3Bh	A23-A16	A15-	A7 AU	- 2//	FD*1	RD *1
Dual I/O Read	BBh	A23-	-A0, X, ∠	50.4	RD *1	RD *1	RD *1
Small sector erase	20h / D7h	41t	.15-A8	A7-A0), 'Ok		
Sector erase	D8h	A23- 6	A15-Aε	.^7 Au	-IF		
Chip erase	6° n		-0/4		112.		
Page program	02h	_∠3-A16	A15-A3	A7-00	PD *2	PD *2	PD *2
Write enable	`6h	.01		20			
Write disable	0411	3	16				
Power down	B9h		1/1/				
Star regisu sau	υδh		10/1				
Statu egister ite	01n	DATA	//				
JEDEC rr	9Fh						
ID read	(Bin	72	Х	X			
power down	B9h						
Exit powe: down mode	ABI						

Explanatory notes for Table 2

The "h" following each code indicates that the number given is in hexadecimal notation.

Addresses A23 to A20 for all commands are "Don't care".

[&]quot;X" signifies "don't care" (that is to say, any value may be input).

^{*1: &}quot;RD" stands for read data. *2: "PD" stands for page program data.

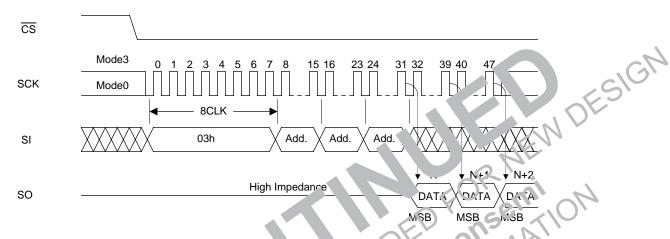
Table 3 Memory Organization

8M Bit

15	255 to 240 239 To 96 95 to 80 79 to 64 63 to	0FF000h 0F0000h 0EF000h 060000h 05F000h 050000h 04F000h 040000h 03F000h	OFFFFH OFOFFFH OEFFFFH OGOFFFH OSOFFFH O4FFFFH O40FFFH
14 to 6	240 239 To 96 95 to 80 79 to 64	0EF000h 060000h 05F000h 050000h 04F000h	0EFFFh 060FFFh 05FFFFh 050FFFh 04FFFFh
4	239 To 96 95 to 80 79 to 64 63	0EF000h 060000h 05F000h 050000h 04F000h	0EFFFh 060FFFh 05FFFFh 050FFFh 04FFFFh
4	To 96 95 to 80 79 to 64 63	060000h 05F000h 050000h 04F000h	060FFFh 05FFFFh 050FFFh 04FFFFh
4	96 95 to 80 79 to 64 63	05F000h 050000h 04F000h	05FFFFh 050FFFh 04FFFFh
4	95 to 80 79 to 64 63	05F000h 050000h 04F000h	05FFFFh 050FFFh 04FFFFh
4	to 80 79 to 64 63	050000h 04F000h 040000h	050FFFh 04FFFFh
4	80 79 to 64 63	04F000h 040000h	04FFFFh
	79 to 64 63	04F000h 040000h	04FFFFh
	to 64 63	040000h	
	64 63		040FFFh
3	63		040FFFh
3		03F000h	
3	to		FFFFh
	48	030000h	JFFFh
	47	02F000h	02FFFi h
2	to		
	32	5001	020FFFh
	31	0 700h	01FFFFh
1	to		
	16	010000h	010FFFi
	15	00F300h	70F.FFFh
	40	0	
0		002000h	002FFFh
	1	0.010.00h	001FFFh
		000000h	000FFFh
	1	000000h	001FFFh

Description of Commands and Their Operations

A detailed description of the functions and operations corresponding to each command is presented below.


1. Standard SPI read

There are two read commands, the standard SPI read command and High-speed read command.

1-1. Read command

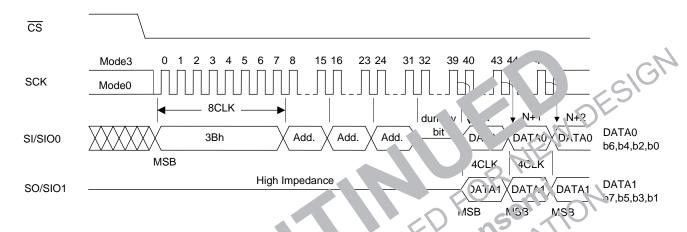
Consisting of the first through fourth bus cycles, the 4 bus cycle read command inputs the 24-bit addresses following (03h). The data is output from SO on the falling clock edge of fourth bus cycle bit 0 as a reference. "Figure 4-a Read" shows the timing waveforms.


Figure 4-a Read

1-2. High-speed read command

Consisting of the first through fifth by the color of the

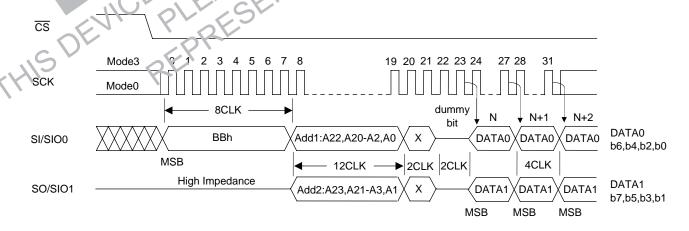
Figure 4-b High-smed lead


2. Dual read

There are two Dual read commands, the Dual Output read command and the Dual I/O read command. They achieve the twice speed-up from a High-speed read command.

2-1. Dual Output read command

The Dual Output read command changes SI/SIO0 into the output pin function in addition to SO/SIO1, makes the data output x2 bit and has achieved a high-speed output. Consisting of the first through fifth bus cycles, the Dual Output read command inputs the 24-bit addresses and 8 dummy bits following (3Bh). DATA1 (Bit7, Bit5, Bit3 and Bit1) is output from SI/SIO0 and DATA0 (Bit6, Bit4, Bit2 and Bit0) is output from SO/SIO1 on the falling clock edge of fifth bus cycle bit 0 as a reference. "Figure 5-a Dual Output read" shows the timing waveforms.


Figure 5-a Dual Output read

2-2. Dual I/O read command

The Dual I/O read command changes and solutions. SIO1 into the input output pin function, makes the data input and output x2 bit and has achieved a high-specious string of the first through third bus cycles, the Dual I/O read command inputs the 24-bit of dress is and a lummy clocks following (BBh). The format of the address input and the dummy bit input is the x-oit input. A23, A21, A3 and A1) is input from S0/SIO1 and Add0 (A22, A20, -, A2 and A0) is input from S1 IOO. 2 LK of the latter half of the dummy clock is in the state of high impedance, the controller can state I/O is the period. DATA1 (Pit's BIt5, Bit3 and Bit1) is output from SI/SIO0 and DATA0 (Bit6, Bit4, Bit2, 14b, 180 put from SO/SIO1 on the falling clock edge of third bus cycle bit 0 as a reference. "Figure 5-b Dual To Rea" show the timing waveforms

Figu. 5-b Jal I/O Read

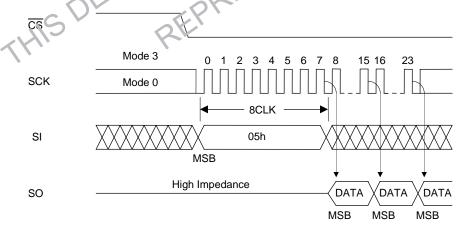
When SCK is input continuously after the read command has been input and the data in the designated addresses has been output, the address is automatically incremented inside the device while SCK is being input, and the corresponding data is output in sequence. If the SCK input is continued after the internal address arrives at the highest address (FFFFFh), the internal address returns to the lowest address (00000h), and data output is continued. By setting the logic level of $\overline{\text{CS}}$ to high, the device is deselected, and the read cycle ends. While the device is deselected, the output pin SO is in a high-impedance state.

3. Status Registers

The status registers hold the operating and setting statuses inside the device, and this information can be read (Status Register read) and the protect information can be rewritten (Status Register write). There are 8 bits in total, and "Table 4 Status registers" gives the significance of each bit.

Table 4 Status Registers

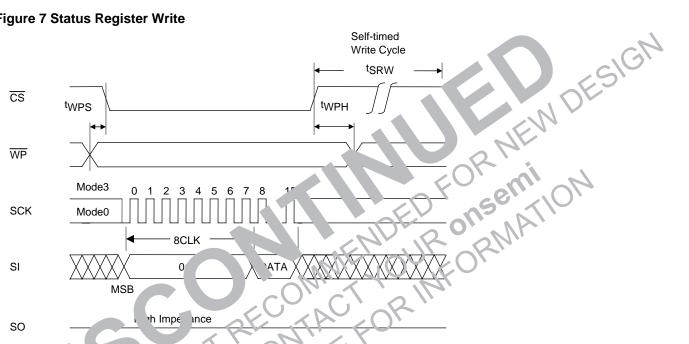
Bit	Name	Logic	Function	Power-on Time Information
D:+0	RDY	0	Ready	
Bit0 RDY		1	Erase/Program	0
Bit1	WEN	0	Write disabled	0
DILI	BILI WEIN		Write enabled	0
D:+0	DDO	0		Name alatila information
Bit2	BP0	1		Nonvolatile information
D'io	554	0	Block protect information	No. of Ch. Cofee and Co.
Bit3	Bit3 BP1	1	Protecting area switch	Nonvolatile information
D'A	DD0	0		
Bit4	BP2	1		Non. 'atile information
D::5	TD	0	Block protect	5
Bit5	ТВ	1	Upper side/Lower side switch	' slatile information
D'io	OMB	0	Block protect	I W
Bit6	CMP	1	Reverse chitch	Non volaule information
D:47	CDWD	0	Status recipter write anal.	Namedalla informati
Bit7	SRWP	1	Stat reg. ir ibled	Nonvolatile information


3-1. Status register read

The contents of the status registers can be read using the sinus register read command. This command can be executed even during the following operations.

- Small sector erase, sector eraction is se
- Page program
- Status register write

"Figure 6 Status Register Read" show timing waveforms of status register read. Consisting only of the first bus cycle, the status register mman outputs the contents of the status register synchronized to the falling edge of the clock (SCK) with which the status input, and the other bit, up to RDY (bit 0) are output in sequence, synchronized to the single self-like single self-like input is continued after RDY (bit 0) has been output, the data is output by returning to be bit (2W) that was first output, after which the output is repeated for as long as the clock input is continued. The data in he ead by the status register read command at any time (even during a program or erase cycle).


Figure 6 Status Register Read

3-2. Status register write

The information in status registers BP0, BP1, BP2, TB, CMP and SRWP can be rewritten using the status register write command. RDY and WEN are read-only bits and cannot be rewritten. The information in bits BP0, BP1, BP2, TB, CMP and SRWP is stored in the non-volatile memory, and when it is written in these bits, the contents are retained even at power-down. "Figure 7 Status Register Write" shows the timing waveforms of status register write, and Figure 20 shows a status register write flowchart. Consisting of the first and second bus cycles, the status register write command initiates the internal write operation at the rising CS edge after the data has been input following (01h). Erase and program are performed automatically inside the device by status register write so that erasing or other processing is unnecessary before executing the command. By the operation of this command, the information in bits BP0, BP1, BP2, TB, CMP and SRWP can be rewritten. Since bits RDY (bit 0) and WEN (bit 1) of the status register cannot be written, no problem will arise if an attempt is made to set them to any value when rewriting the status register. Status register write ends can be detected by RDY of status register read. To initiate status register write, the logic level of the WP pin must be set high and status register WEN must be set to "1".

Figure 7 Status Register Write

3-3. Cr

RDY 3it0)

register is tor detecting the write (program, erase and status register write) end. When it is "1", the device is in The N a busy state, and when it is "C", it means that write is completed.

WEN (bit1)

The WEN register is for dejecting whether the device can perform write operations. If it is set to "0", the device will not perform the write operation even if the write command is input. If it is set to "1", the device can perform write operations in any area that is not block-protected.

WEN can be controlled using the write enable and write disable commands. By inputting the write enable command (06h), WEN can be set to "1"; by inputting the write disable command (04h), it can be set to "0." In the following states, WEN is automatically set to "0" in order to protect against unintentional writing.

- At power-on
- Upon completion of small sector erase, sector erase or chip erase
- Upon completion of page program
- Upon completion of status register write
- * If a write operation has not been performed inside the LE25U81AMC because, for instance, the command input for any of the write operations (small sector erase, sector erase, chip erase, page program, or status register write) has failed or a write operation has been performed for a protected address, WEN will retain the status established prior to the issue of the command concerned. Furthermore, its state will not be changed by a read operation.

BP0, BP1, BP2, TB, CMP (Bits 2, 3, 4, 5, 6)

Block protect BP0, BP1, BP2, TB and CMP are status register bits that can be rewritten, and the memory space to be protected can be set depending on these bits. For the setting conditions, refer to "Table 5 Protect level setting conditions".

BP0, BP1, and BP2 are used to select the protected area, TB to allocate the protected area to the higher-order address area or lower-order address area and CMP to reverse the protected area.

Table 5 Protect Level Setting Conditions

Destruction of		Sta	atus Register I	Bits		D. A. A. I.A.
Protect Level	CMP	ТВ	BP2	BP1	BP0	Protected Area
0 (Whole area unprotected)	Х	Х	0	0	0	None
T1 (Upper side 1/16 protected)	0	0	0	0	1	0FFFFFh to 0F0000h
T2 (Upper side 1/8 protected)	0	0	0	1	0	0FFFFFh to 0E0000h
T3 (Upper side 1/4 protected)	0	0	0	1	1	0FFFFFh to 0C0000h
T4 (Upper side 1/2 protected)	0	0	1	0	0	0FFFFFh to 080000h
B1 (Lower side 1/16 protected)	0	1	0	0	1	⁷ Fh to 000000h
B2 (Lower side 1/8 protected)	0	1	0	1	0	01FFt to 000000h
B3 (Lower side 1/4 protected)	0	1	0	1	1	3FFF / to 000000h
B4 (Lower side 1/2 protected)	0	1	1	0	C	ს ,-FFh tc 00სებეი
B7 (Lower side 15/16 protected)	1	0	0	0	1	0EFFI
B6 (Lower side 7/8 protected)	1	0	0	1		CD7-FFi-h to 000000h
B5 (Lower side 3/4 protected)	1	0	0			vBFFFFh to 000000h
B4 (Lower side 1/2 protected)	1	0			0	07FFFh to 000000h
T7 (Upper side 15/16 protected)	1	1	0	0	(10	0.7F.FFFh to 0.10000h
T6 (Upper side 7/8 protected)	1	1	0	1	0	0FFF/Fት \
T5 (Upper side 3/4 protected)	1		0		1	057FF7h to 040000h
T4 (Upper side 1/2 protected)	1	1	1	2	0	CFFFFFh to 080000h
5 (Whole area protected)		X	1	0	1.0	0FFFFFh to 000000h
5 (Whole area protected)	X	X	11/1/	10	Y.	0FFFFh to 000000h

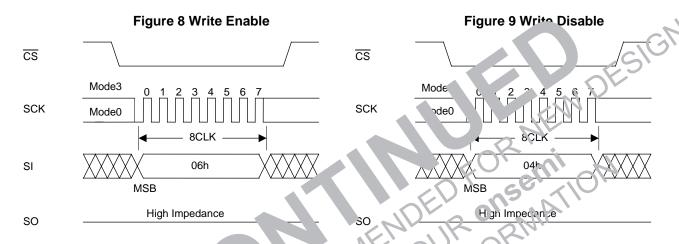
^{*} Chip erase is enabled only _____ a th_protec_level is 0.

SRWP (bit 7)

Status register—rite—rect. ... P is the bit for protecting the status registers, and its information can be rewritten. When SRW is 1 and 1 legic level of the \overline{WP} run is low, the status register write command is ignored, and status register. PO PL 2, TB, CMP and SRWP are protected. When the logic level of the \overline{WP} pin is high, the status registers a not rotected regardless of the SRWP state. The SRWP setting conditions are shown in "Table 6 SRWP setting conditions"

Table 6 SRWP Setting Conditions

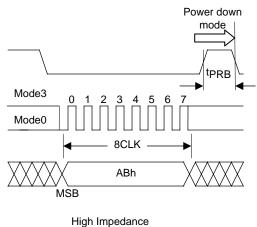
W ^r Pin	SRWP	Status Register Protect State
S	0	Unprotected
	1	Protected
4	0	Unprotected
	1	Unprotected


4. Write Enable

Before performing any of the operations listed below, the device must be placed in the write enable state. Operation is the same as for setting status register WEN to "1", and the state is enabled by inputting the write enable command. "Figure 8 Write Enable" shows the timing waveforms when the write enable operation is performed. The write enable command consists only of the first bus cycle, and it is initiated by inputting (06h).

- Small sector erase, sector erase, chip erase
- Page program
- Status register write

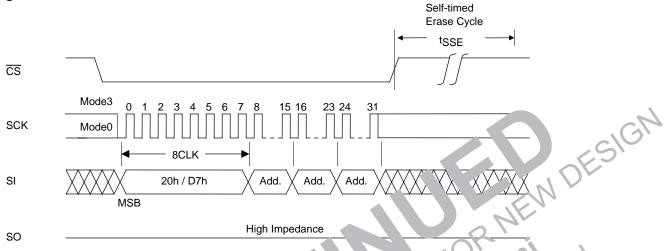
5. Write Disable


The write disable command sets status register WEN to "0" to prohibit unintentional writing. "Figure 9 Write Disable" shows the timing waveforms. The write disable command consists only of the first bus cycle, and it is initiated by inputting (04h). The write disable state (WEN "0") is exited by setting WEN to "1" using the write enable command (06h).

6. Power-down

iman(is, with the exception of the silicon ID read command and the The power-down commend sets all. command to exit from pover-do in, to the exceptance reconcited state (power-down). "Figure 10 Power-down" shows the timing way orms. The command consists only of the first bus cycle, and it is initiated by inputting (B9h). However, you down command issue 1 during an internal write operation will be ignored. The power-down ite sir 4 power down exit command (power-down is exited also when one bus cycle or more of the si on ID ad mmand (ABh) has been upput). "Figure 11 Exiting from Power-down" shows the timing waveforms of the wer- wn exit command.

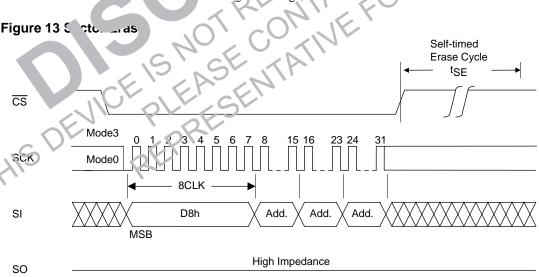
igur€ 13 Power-down Figure 11 Exiting from Power-down Power down $\overline{\mathsf{CS}}$ t_{DP} Mode3 Mode3 SCK SCK Mode0 Mode0 B9h SI SI **MSB MSB** High Impedance SO SO



No.A2286-13/23

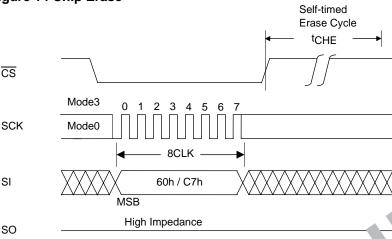
7. Small Sector Erase

Small sector erase is an operation that sets the memory cell data in any small sector to "1". A small sector consists of 4Kbytes. "Figure 12 Small Sector Erase" shows the timing waveforms, and Figure 21 shows a small sector erase flowchart. The small sector erase command consists of the first through fourth bus cycles, and it is initiated by inputting the 24-bit addresses following (20h) or (D7h). Addresses A19 to A12 are valid, and Addresses A23 to A20 are "don't care". After the command has been input, the internal erase operation starts from the rising CS edge, and it ends automatically by the control exercised by the internal timer. Erase end can also be detected using status register \overline{RDY} .


Figure 12 Small Sector Erase

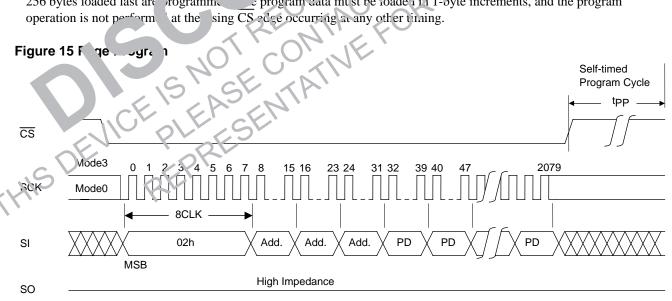
8. Sector Erase

ce. data in any sector to '1". A sector consists of 64Kbytes. "Figure 13 Sector erase is an operation that sets the me rs, dr., 21 shows a sector crase flowchar. The sector erase command Sector Erase" shows the timing way consists of the first through fourth our cyc s, a lit is initiated by inputting the 24-bit addresses following (D8h). Addresses A19 to A16 are "id, and Addresses A2? to A20 are "don't care". After the command has been input, the internal erase operation facts from L ag CS edge, and it ends automatically by the control exercised by the internal timer. Erase end com also be dete led using status register P.DY.



9. Chip Erase

Chip erase is an operation that sets the memory cell data in all the sectors to "1". "Figure 14 Chip Erase" shows the timing waveforms, and Figure 21 shows a chip erase flowchart. The chip erase command consists only of the first bus cycle, and it is initiated by inputting (60h) or (C7h). After the command has been input, the internal erase operation starts from the rising CS edge, and it ends automatically by the control exercised by the internal timer. Erase end can also be detected using status register RDY.



10. Page Program

OR NEW DESIGN Page program is an operation that programs any nut. Se. f byte. From 1 to 256 bytes within the same vector page (page addresses: A19 to A8). Before initiating page program, the data on the page concerns must be based using small sector erase, sector erase, or chip erase. "F 15 age Program" shows the page program timing waveforms, and "t. λ " ter λ alling $\overline{C\lambda}$, edge, the command (2λ 'i) is input followed by the Figure 22 shows a page program flor 24-bit addresses. Addresses A19 A0 are all. The projection data is then loaded at each rising clock edge until the rising CS edge, and data looking a continual until the rising CS edge. If the data loaded has exceeded 256 bytes, the 256 bytes loaded last are program. 256 bytes loaded in 11-byte increments, and the program operation is not perform at the sing CS edge occurring at any other timing.

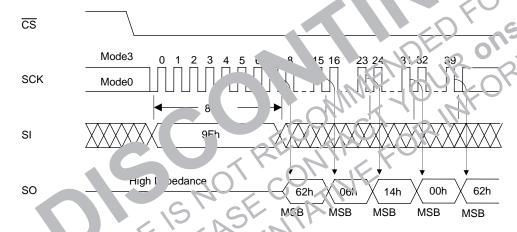
Figure 15 Fige.

11. ID Read

ID read is an operation that reads the manufacturer code and device ID information. The silicon ID read command is not accepted during writing. There are two methods of reading the silicon ID, each of which is assigned a device ID. In the first method, the read command sequence consists only of the first bus cycle in which (9Fh) is input. In the subsequent bus cycles, the manufacturer code 62h which is assigned by JEDEC, 2-byte device ID code (memory type, memory capacity), and reserved code are output sequentially. The 4-byte code is output repeatedly as long as clock inputs are present, "Table 7-1 JEDEC ID codes table" lists the silicon ID codes and "Figure 16-a JEDEC ID read" shows the JEDEC ID read timing waveforms.

The second method involves inputting the ID read command. This command consists of the first through fourth bus cycles, and the one bite silicon ID can be read when 24 dummy bits are input after (ABh). "Table 7-2 ID codes table" lists the silicon ID codes and "Figure 16-b ID read" shows the ID read timing waveforms.

If the SCK input persists after a device code is read, that device code continues to be output. The data output is transmitted starting at the falling edge of the clock for bit 0 in the fourth bus cycle and the silicon ID read sequence is finished by setting CS high.


Table 7-1 JEDEC ID read

	Output code	
Manufacturer code		
Memory type	06h	
Memory capacity code	14h (8M Bit)	
1	00h	
	Memory type	

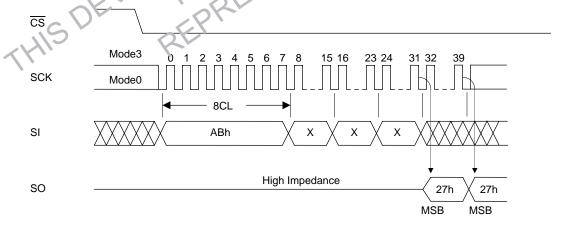
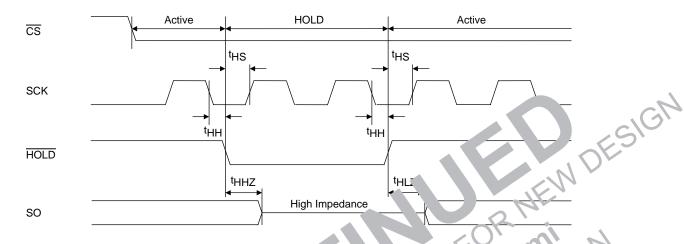

Table 7-2 ID read

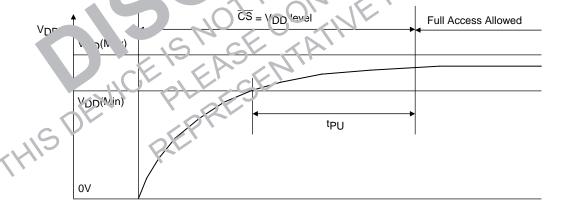
Table 7-2 ID r	
	C Lut Cou.
1 byte device IP	7h (1 =25L AN
	N
	ONE"
7	of mi all
CO	15e, 110,
1 32 39 1 D T T T	OWE
474	2/2

Figure 16-a Silicon ID Read 1


o Silicon ID Read **Figure**

12. Hold Function

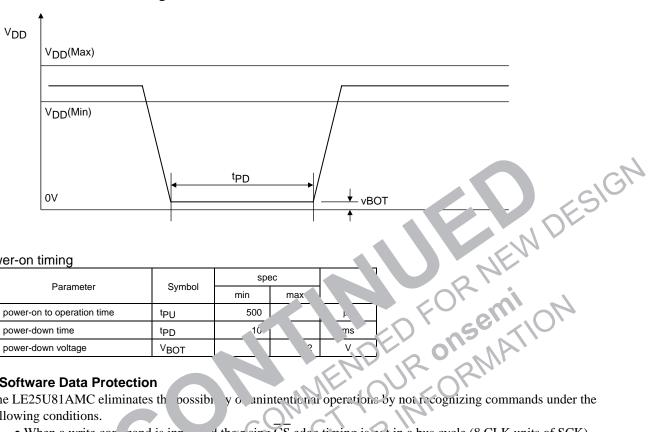
<u>Using</u> the HOLD pin, the hold function suspends serial communication (it places it in the <u>hold status</u>). "Figure 17 HOLD" shows the timing waveforms. The device is placed in the <u>hold status</u> at the falling HOLD edge while the logic level of SCK is low, and it exits from the hold status at the rising HOLD edge. When the logic level of SCK is high, HOLD must not rise or fall. The hold function takes effect when the logic level of \overline{CS} is low, the hold status is exited and serial communication is reset at the rising \overline{CS} edge. In the hold status, the SO output is in the high-impedance state, and SI and SCK are "don't care".


Figure 17 HOLD

13. Power-on

In order to protect against unintentional writing, \overline{S} must S within at $V_{D,D}$ -0.3 to $V_{D,D}$ -0.3 on power-on. After power-on, the supply voltage has stabilized $\overline{V}_{D,D}$ uin. or higher ways for the better inputting the command to start a device operation. The device is in $\overline{V}_{D,D}$ and $\overline{V}_{D,D}$ which is power-down state after power is turned on. To put the device into the power-down state, it is \overline{S}_{C} ary to enject a power-down command.

Figure 18 Power-on Tiring



14. Hardware Data Protection

LE25U81AMC incorporates a power-on reset function. The following conditions must be met in order to ensure that the power reset circuit will operate stably.

No guarantees are given for data in the event of an instantaneous power failure occurring during the writing period.

Figure 19 Power-down Timing

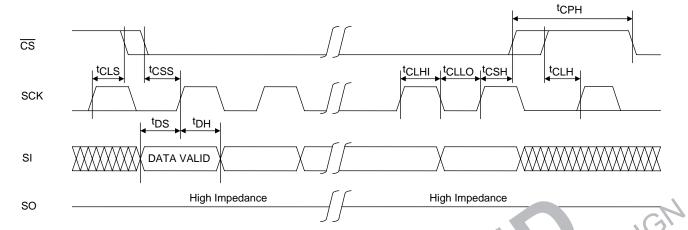
Power-on timing

O make al	spec		
Symbol	min	max	
t _{PU}	500		
t _{PD}	10		ms
V _{BOT}		3	V
	t _{PD}	Symbol min tpU 500 tpD 16	Symbol min max tpU 500 tpD 10

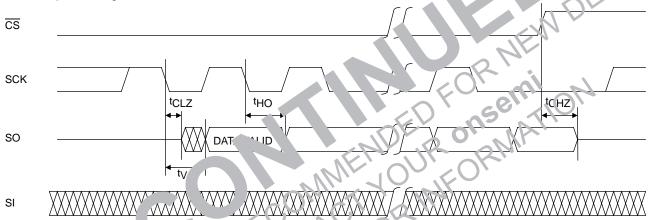
15. Software Data Protection

The LE25U81AMC eliminates the possibility of unintentional operations by not recognizing commands under the following conditions.

- When a write corn and is input and the rising \overline{CS} edge timing is not in a bus cycle (8 CLK units of SCK)
- When the program do a is not in 1-byte increments
- egis. write command is input for 2 bus cycles or more • When the state


16. P Julia Consistor

THIS DEV


A 1µF common capacitor must be provided to each device and connected between VDD and VSS in order to ensure that e de ce will overate stably.

Timing waveforms

Serial Input Timing

Serial Output Timing

Hold Timing

Status register write Timing

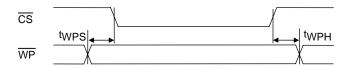
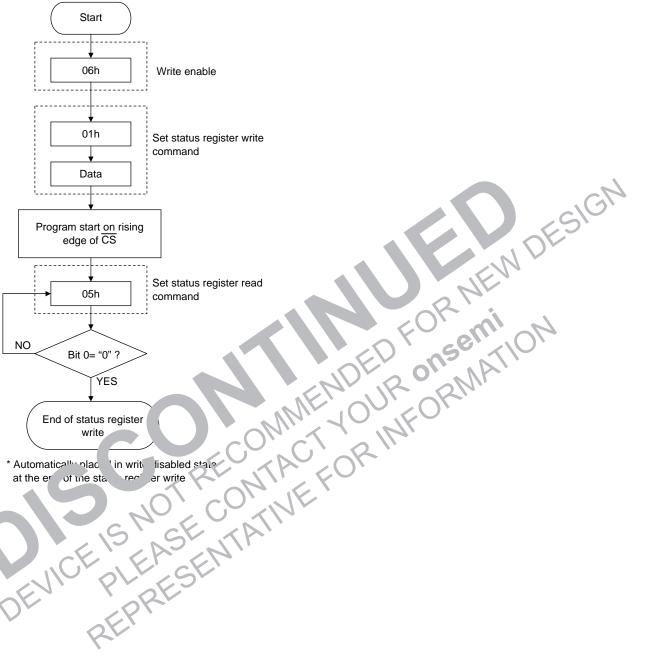
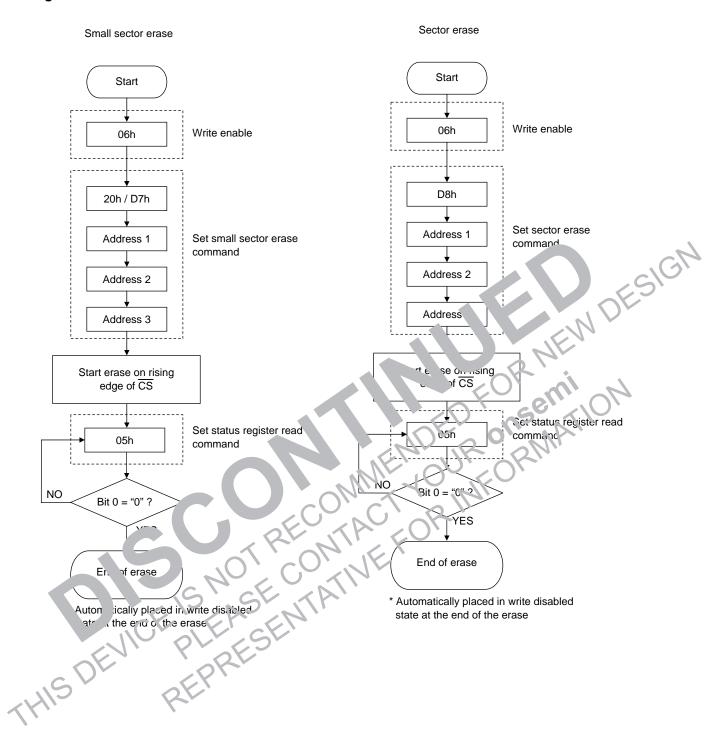
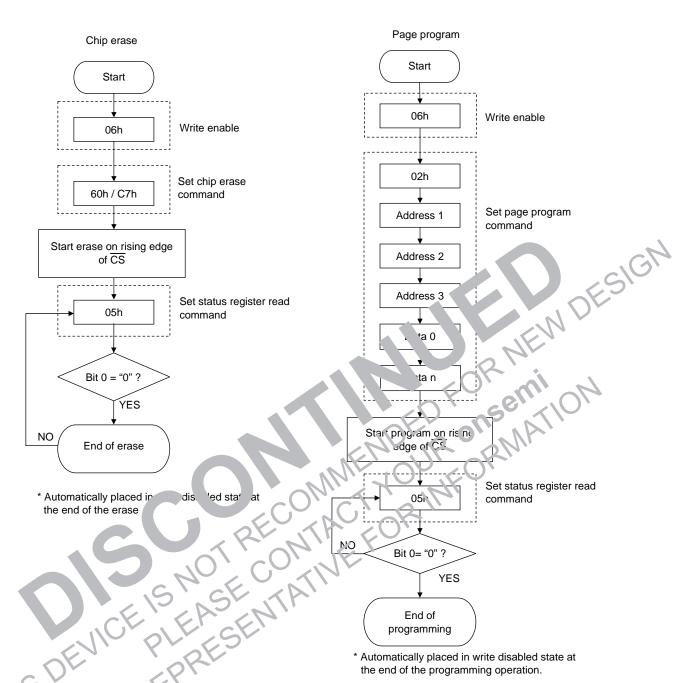


Figure 20 Status Register Write Flowchart

Status register write

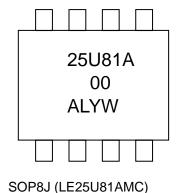

Figure 21 Erase Flowcharts

Figure 22 Page Program Flowchart

Figure 23 Making Diagrams

25U81A = Specific Device Code = Assembly Location = Wafer Lot Traceability

YW = Two Digits Year and Work Week Date coding

ORDERING INFORMATION

SOP8J (LE25U81AMC)	
		DESIGN
RDERING INFORM		
Device E25U81AMCTWG	Package SOP8J, CASE 751CU (Pb-Free / Halogen Free)	Shipping (('Pau g) 2u / Tape 'eel
		ORMIN
		ED Fosention
		ENDIRORMA
	- O ONIN	ENDED FORMATION ENDED FORMATION FOR INFORMATION
	S NOT RECONTAGE S NOT	FOR
13	MOJ COLM	
CE!	SIASKNIA	
GDEVIOLE	OLE'SE'	
SOV	EPK	

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.