2.2mA, 12MHz, Low Noise, Rail-to-Rail I/O Tiny Package, CMOS Operational Amplifier

GENERAL DESCRIPTION

The SGM8602 is a dual, low voltage, low noise and low power operational amplifier, which can operate from 2.1V to 5.5V single supply, while consuming only 2.2mA quiescent current at 5V.

The minimum input common mode voltage is within 0.1V below the negative rail, and the output swing is rail-to-rail with heavy loads. The SGM8602 exhibits a high gain-bandwidth product of 12MHz and a slew rate of 9V/µs. These specifications make the operational amplifier appropriate for various applications.

The SGM8602 is available in Green SOT-23-8 and TDFN-2×3-8L packages. It is specified over the extended -40°C to +125°C industrial temperature range.

FEATURES

Input Offset Voltage: 5.1mV (MAX)
High Gain-Bandwidth Product: 12MHz

• High Slew Rate: 9V/µs

• Settling Time to 0.1% with 2V Step: 0.2µs

Overload Recovery Time: 0.4µs
Low Noise: 9nV/√Hz at 10kHz

• Rail-to-Rail Input and Output

Supply Voltage Range: 2.1V to 5.5V

• Input Voltage Range: -0.1V to +5.6V with V_s = 5.5V

SGM8602

• Low Power: 2.2mA (TYP) Supply Current

• -40°C to +125°C Operating Temperature Range

 Available in Green SOT-23-8 and TDFN-2×3-8L Packages

APPLICATIONS

Sensors

Audio

Active Filters

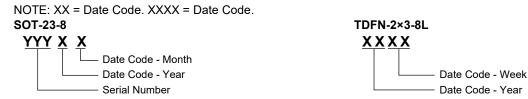
A/D Converters

Communications

Test Equipment

Cellular and Cordless Phones

Laptops and PDAs


Photodiode Amplification

Battery-Powered Instrumentation

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SCM9602	SOT-23-8	-40°C to +125°C	SGM8602XN8G/TR	SUDXX	Tape and Reel, 3000
SGM8602	TDFN-2×3-8L	-40°C to +125°C	SGM8602XTDC8G/TR	8602 XXXX	Tape and Reel, 3000

MARKING INFORMATION

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

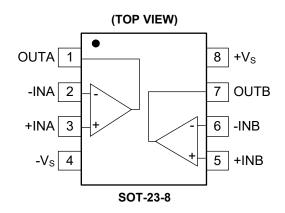
Supply Voltage, +V _S to -V _S	6V
Input Common Mode Voltage Range	
(-V _S) - 0.3V to (-	+V _S) + 0.3V
Junction Temperature	+150°C
Storage Temperature Range65°C	C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	8000V
MM	400V
CDM	1000V

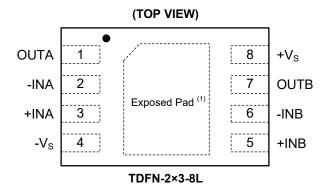
RECOMMENDED OPERATING CONDITIONS

Input Voltage Range	2.1V to 5.5V
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

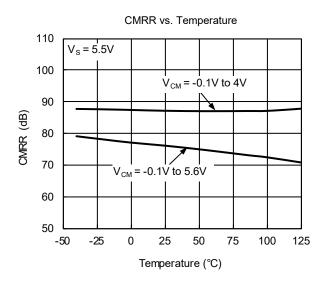

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

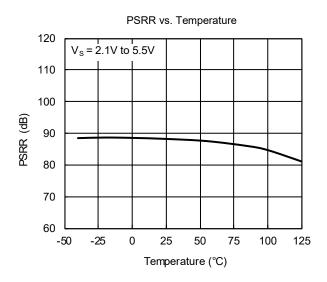
DISCLAIMER

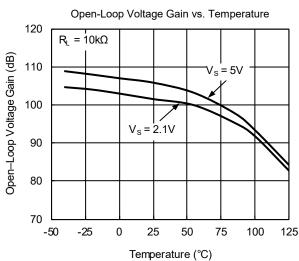
SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

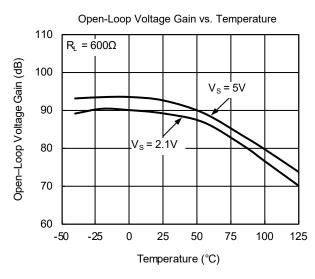
PIN CONFIGURATIONS

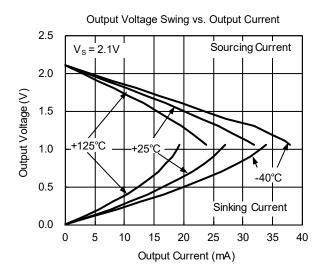
NOTE: 1. Exposed pad can be connected to - V_{S} or left floating.

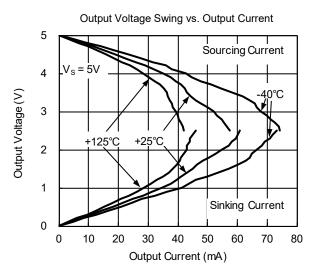

ELECTRICAL CHARACTERISTICS

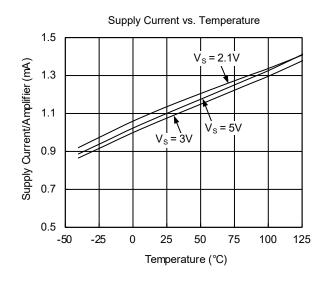

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Characteristics		•		•	•	
Innet Offer A Vallege (A.)			1.2	5.1		
Input Offset Voltage (Vos)	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			5.5	mV	
Input Bias Current (I _B)			1		pА	
Input Offset Current (Ios)			1		рА	
Input Common Mode Voltage Range (V _{CM})	V _S = 5.5V	-0.1		5.6	V	
	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 4V	67	84		٦D	
Common Made Dejection Datio (CMDD)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	66			- dB	
Common Mode Rejection Ratio (CMRR)	V _S = 5.5V, V _{CM} = -0.1V to 5.6V	60	75		dD	
	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	59			- dB	
	$R_L = 10k\Omega$, $V_{OUT} = 0.05V$ to 4.95V	97	104		.ID	
On an Least Walkering C. J. (A.)	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	72			dB	
Open-Loop Voltage Gain (A _{OL})	$R_L = 600\Omega$, $V_{OUT} = 0.15V$ to $4.85V$	84	92		٩D	
	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	64			- dB	
Input Offset Voltage Drift (ΔV _{OS} /ΔT)			4.7		μV/°C	
Output Characteristics				•		
	$R_L = 10k\Omega$		6	12		
Output Voltage Swing from Rail (V _{OL})	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			17	- mV	
	$R_L = 600\Omega$		75	100		
	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			144	- mV	
Outrot Compant (I		52	65		^	
Output Current (I _{OUT})	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	36			mA	
Power Supply						
Operating Voltage Range		2.1		5.5	V	
Davies Comply Daile stice Datie (DCDD)	V_S = +2.1V to +5.5V, V_{CM} = (- V_S) + 0.5V	68	82		٩D	
Power Supply Rejection Ratio (PSRR)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	63			- dB	
Quiescent Current (I _Q)	I _{OUT} = 0		2.2	2.8	mΛ	
Quiescent Current (IQ)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			3.6	- mA	
Dynamic Performance						
Gain-Bandwidth Product (GBP)	$R_L = 600\Omega$		12		MHz	
Slew Rate (SR)	G = 1, 2V output step		9.0		V/µs	
Settling Time to 0.1% (t_S)	G = 1, 2V output step		0.2		μs	
Overload Recovery Time	V _{IN} × Gain = V _S		0.4		μs	
Phase Margin (φ ₀)	Margin (ϕ_0) $R_L = 600\Omega$		65		0	
Noise Performance						
Input Voltage Noise Density (en)	f = 1kHz		13		n\// 5	
impar voitage Noise Delisity (en)	f = 10kHz		9		nV/√Hz	

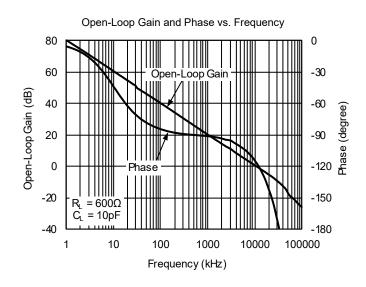

ELECTRICAL CHARACTERISTICS (continued)

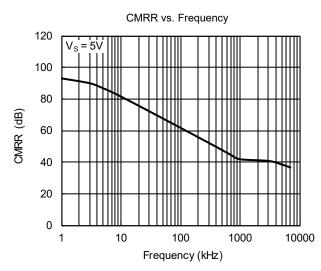

PARAMETER	CONDITIONS MIN		TYP	MAX	UNITS	
Input Characteristics		•	•	•	•	
Input Offset Voltage (V)			1.2	5.5	m)/	
Input Offset Voltage (Vos)	T _A = -40°C to +125°C		5.9		mV	
Input Bias Current (I _B)			1		pА	
Input Offset Current (Ios)			1		pА	
Input Common Mode Voltage Range (V _{CM})	V _S = 2.1V	-0.1		2.2	V	
	$V_S = 2.1V$, $V_{CM} = -0.1V$ to 0.6V	60	77		٩D	
Common Made Dejection Datic (CMDD)	T _A = -40°C to +125°C	51			dB	
Common Mode Rejection Ratio (CMRR)	V _S = 2.1V, V _{CM} = -0.1V to 2.2V	53	68		dD	
	T _A = -40°C to +125°C	46			- dB	
	$R_L = 10k\Omega$, $V_{OUT} = 0.05V$ to 2.05V	90	100		dD	
Open Lean Valtage Cain (A.)	T _A = -40°C to +125°C	68			dB	
Open-Loop Voltage Gain (A _{OL})	$R_L = 600\Omega$, $V_{OUT} = 0.15V$ to 1.95V	75	88		dB	
	T _A = -40°C to +125°C	63				
Input Offset Voltage Drift (ΔV _{OS} /ΔT)			4.5		μV/°C	
Output Characteristics						
	$R_L = 10k\Omega$		4	10		
Output Valtage Suing from Bail (V.)	T _A = -40°C to +125°C			12	mV	
Output Voltage Swing from Rail (V _{OL})	$R_L = 600\Omega$		36	51	m\/	
	T _A = -40°C to +125°C			67	mV	
Output Current (I		15	30		m A	
Output Current (I _{OUT})	T _A = -40°C to +125°C	7			mA	
Power Supply						
Quiaccant Current (I)	I _{OUT} = 0		2.2	2.8	m A	
Quiescent Current (I _Q)	T _A = -40°C to +125°C			3.6	mA	
Dynamic Performance						
Gain-Bandwidth Product (GBP)	$R_L = 600\Omega$		11.5		MHz	
Slew Rate (SR)	G = 1, 2V output step		8.6		V/µs	
Settling Time to 0.1% (t _S)	G = 1, 2V output step		0.2		μs	
Overload Recovery Time	V _{IN} × Gain = V _S		0.7		μs	
Phase Margin (φ _O)	$R_L = 600\Omega$		65		۰	
Noise Performance		•	•	•		
Input Valtage Naise Develty (a.)	f = 1kHz		15		n\// 5	
Input Voltage Noise Density (en)	f = 10kHz		9		nV/√Hz	

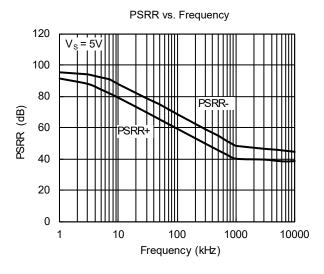

TYPICAL PERFORMANCE CHARACTERISTICS

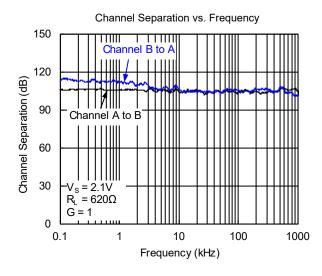


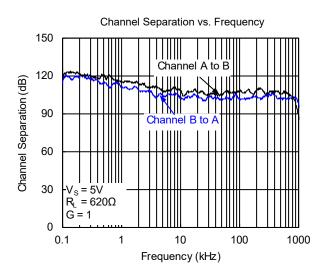


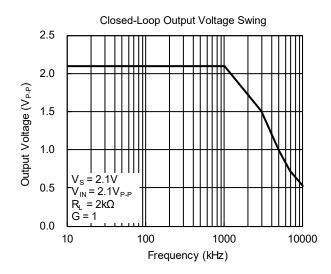


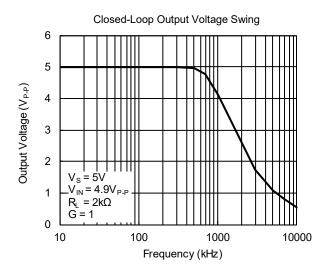


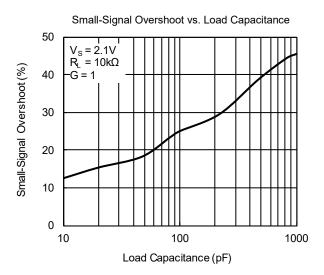


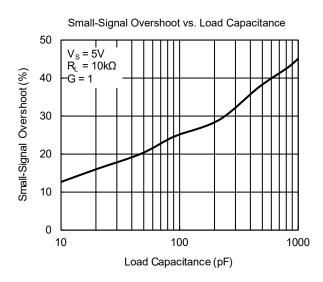


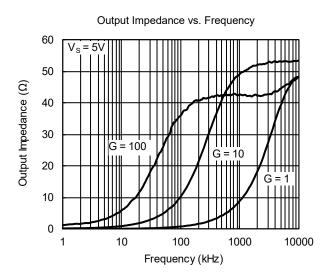


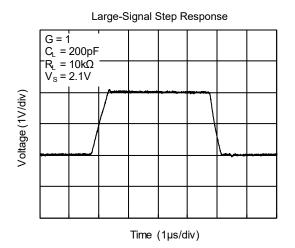


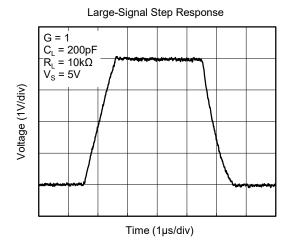


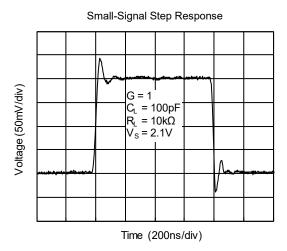


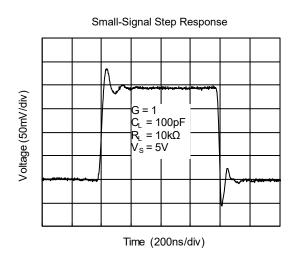


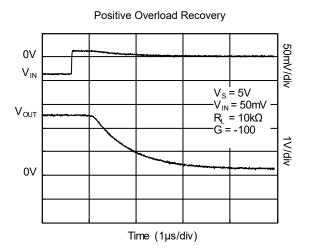


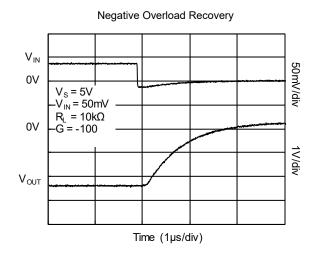


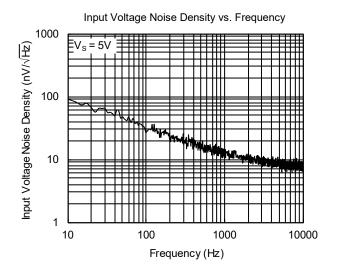


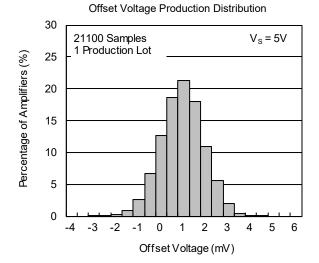












APPLICATION INFORMATION

Rail-to-Rail Input

When SGM8602 works at the power supply between 2.1V and 5.5V, the input common mode voltage range is from (-V_S) - 0.1V to (+V_S) + 0.1V. In Figure 1, the ESD diodes between the inputs and the power supply rails will clamp the input voltage not to exceed the rails.

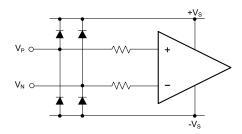


Figure 1. Input Equivalent Circuit

Rail-to-Rail Output

The SGM8602 supports rail-to-rail output operation. In single power supply application, for example, when +V_S = 5V, -V_S = GND, $10k\Omega$ load resistor is tied from OUT pin to ground, the typical output swing range is from 0.006V to 4.994V.

Driving Capacitive Loads

The SGM8602 is designed for unity-gain stable for capacitive load up to 4700pF. If greater capacitive load must be driven in application, the circuit in Figure 2 can be used. In this circuit, the IR drop voltage generated by $R_{\rm ISO}$ is compensated by feedback loop.

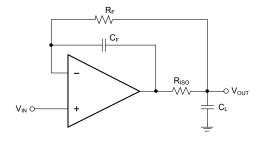


Figure 2. Circuit to Drive Heavy Capacitive Load

Power Supply Decoupling and Layout

A clean and low noise power supply is very important in amplifier circuit design, besides of input signal noise, the power supply is one of important source of noise to the amplifier through $+V_S$ and $-V_S$ pins. Power supply bypassing is an effective method to clear up the noise at power supply, and the low impedance path to ground of decoupling capacitor will bypass the noise to GND. In application, $10\mu F$ ceramic capacitor paralleled with $0.1\mu F$ or $0.01\mu F$ ceramic capacitor is used in Figure 3. The ceramic capacitors should be placed as close as possible to $+V_S$ and $-V_S$ power supply pins.

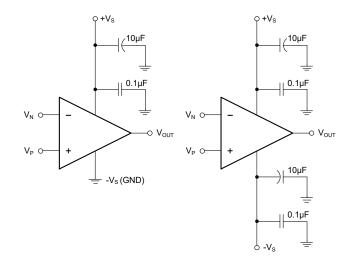


Figure 3. Amplifier Power Supply Bypassing

Grounding

In low speed application, one node grounding technique is the simplest and most effective method to eliminate the noise generated by grounding. In high speed application, the general method to eliminate noise is to use a complete ground plane technique, and the whole ground plane will help distribute heat and reduce EMI noise pickup.

Reduce Input-to-Output Coupling

To reduce the input-to-output coupling, the input traces must be placed as far away from the power supply or output traces as possible. The sensitive trace must not be placed in parallel with the noisy trace in same layer. They must be placed perpendicularly in different layers to reduce the crosstalk. These PCB layout techniques will help to reduce unwanted positive feedback and noise.

APPLICATION INFORMATION (continued)

Typical Application Circuits

Difference Amplifier

The circuit in Figure 4 is a design example of classical difference amplifier. If $R_4/R_3 = R_2/R_1$, then $V_{OUT} = (V_P - V_N) \times R_2/R_1 + V_{REF}$.

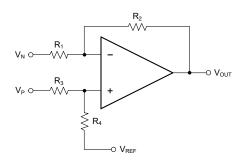


Figure 4. Difference Amplifier

High Input Impedance Difference Amplifier

The circuit in Figure 5 is a design example of high input impedance difference amplifier, the added amplifiers at the input are used to increase the input impedance and eliminate drawback of low input impedance in Figure 4.

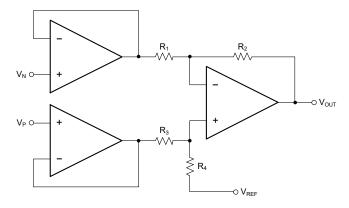


Figure 5. High Input Impedance Difference Amplifier

Active Low-Pass Filter

The circuit in Figure 6 is a design example of active low-pass filter, the DC gain is equal to $-R_2/R_1$ and the -3dB corner frequency is equal to $1/2\pi R_2C$. In this design, the filter bandwidth must be less than the bandwidth of the amplifier, the resistor values must be selected as low as possible to reduce ringing or oscillation generated by the parasitic parameters in PCB layout.

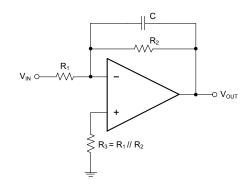
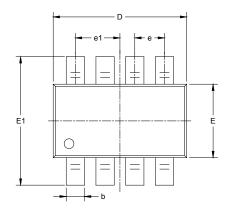
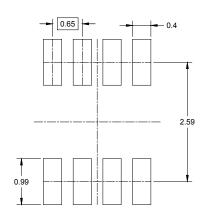


Figure 6. Active Low-Pass Filter

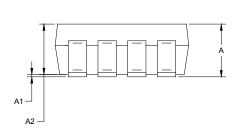
2.2mA, 12MHz, Low Noise, Rail-to-Rail I/O Tiny Package, CMOS Operational Amplifier

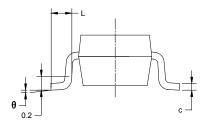
SGM8602

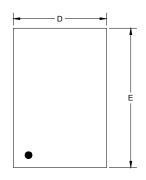

REVISION HISTORY

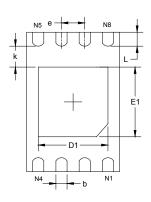

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

JANUARY 2018 – REV.A to REV.A.1	Page
Added Open-Loop Gain and Phase vs. Frequency	7
Changes from Original (AUGUST 2015) to REV.A	Page
Changed from product preview to production data	All

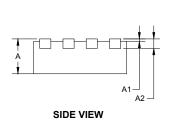


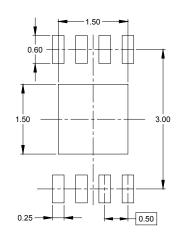

PACKAGE OUTLINE DIMENSIONS SOT-23-8


RECOMMENDED LAND PATTERN (Unit: mm)

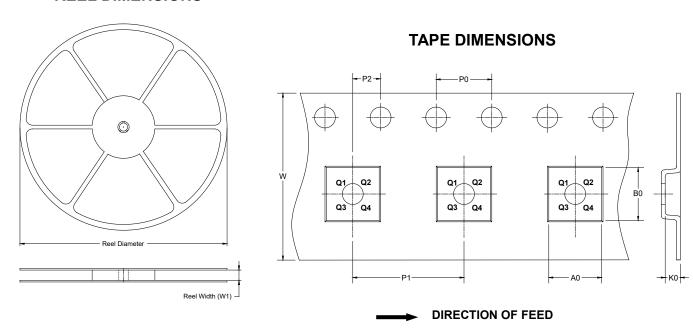


Symbol	_	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	800.0	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.650 BSC		0.026 BSC		
e1	0.975	BSC	0.038	BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	


PACKAGE OUTLINE DIMENSIONS TDFN-2×3-8L



BOTTOM VIEW

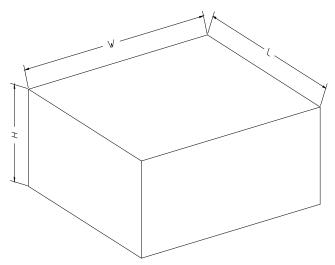


RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	REF	0.008 REF		
D	1.924	2.076	0.076	0.082	
D1	1.400	1.600	0.055	0.063	
E	2.924	3.076	0.115	0.121	
E1	1.400	1.600	0.055	0.063	
k	0.200 MIN		0.008	3 MIN	
b	0.200	0.300	0.008	0.012	
е	0.500 TYP		0.020	TYP	
L	0.224	0.376	0.009	0.015	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-8	7"	9.5	3.17	3.23	1.37	4.0	4.0	2.0	8.0	Q3
TDFN-2×3-8L	7"	9.5	2.30	3.30	1.10	4.0	4.0	2.0	8.0	Q2

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18