

FEATURES

16-bit dual simultaneous sampling SAR ADC

Single-ended analog inputs

Quad channel with 2:1 multiplexers

Channel sequencer mode

High throughput rate of up to 4 MSPS

On-chip oversampling functions

SNR (typical)

87.5 dB, $V_{REF} = 3.3$ V external

93 dB with-OSR = 8, $V_{REF} = 2.5$ V internal

INL (typical): ± 1.5 LSBs

Resolution boost function

2.5 V internal reference at 10 ppm/ $^{\circ}$ C (maximum)

Alert function

-40 $^{\circ}$ C to +125 $^{\circ}$ C temperature range

16-lead LFCSP, 3 mm \times 3 mm

APPLICATIONS

Motor control position feedback

Motor control current sense

Sonars

Power quality

Data acquisition systems

Erbium doped fiber amplifier (EDFA) applications

Inphase and quadrature demodulation

GENERAL DESCRIPTION

The AD7386 is a 16-bit, dual simultaneous sampling, high speed, successive approximation register (SAR) analog-to-digital converter (ADC) that operates from a 3.0 V to 3.6 V power supply and features throughput rates of up to 4 MSPS. The analog input types are single-ended and are sampled and converted on the falling edge of CS.

The AD7386 has an on-chip sequencer and integrated on-chip oversampling blocks to improve dynamic range and reduce noise at lower bandwidths. A buffered internal 2.5 V reference is included. Alternatively, an external reference up to 3.3 V can be used. The conversion process and data acquisition use standard control inputs, allowing easy interfacing to microprocessors or digital signal processors (DSPs). The AD7386 is compatible with 1.8 V, 2.5 V, and 3.3 V interfaces, using the separate logic supply.

The AD7386 is available in a 16-lead LFCSP package with operation specified from -40 $^{\circ}$ C to +125 $^{\circ}$ C.

PRODUCT HIGHLIGHTS

1. 4-channel, dual simultaneous sampling ADC.
2. Pin-compatible product family.
3. High 4 MSPS throughput rate.
4. Space-saving 3 mm \times 3 mm LFCSP package.
5. Integrated oversampling block to increase dynamic range and SNR and reduce SCLK speed requirements.
6. Single-ended analog inputs.
7. Small sampling capacitor reduces amplifier drive burden.

FUNCTIONAL BLOCK DIAGRAM

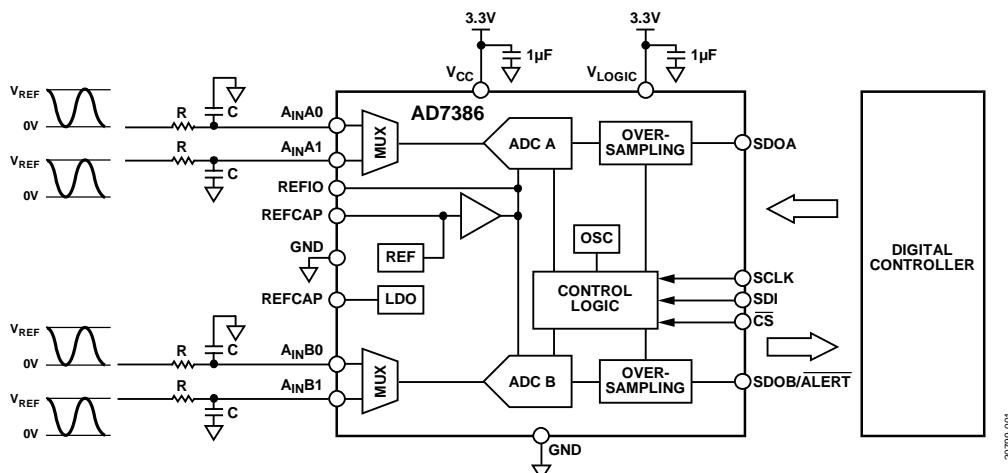


Figure 1.

Rev. 0

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700

©2019 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com

TABLE OF CONTENTS

Features	1	Sequencer	16
Applications.....	1	Oversampling.....	17
General Description	1	Resolution Boost	19
Product Highlights	1	Alert	19
Functional Block Diagram	1	Power Modes.....	20
Revision History	2	Internal and External Reference.....	20
Specifications.....	3	Software Reset.....	20
Timing Specifications	5	Diagnostic Self Test.....	20
Absolute Maximum Ratings.....	7	Interface	21
Thermal Resistance	7	Reading Conversion Results	21
ESD Caution.....	7	Low Latency Readback	22
Pin Configuration and Function Descriptions.....	8	Reading From Device Registers	23
Typical Performance Characteristics	9	Writing to Device Registers	23
Terminology	12	CRC	24
Theory of Operation	13	Registers.....	26
Circuit Information.....	13	Addressing Registers.....	27
Converter Operation.....	13	CONFIGURATION1 Register	27
Analog Input Structure.....	13	CONFIGURATION2 Register	29
ADC Transfer Function.....	14	Alert Register	29
Applications Information	15	ALERT_LOW_THRESHOLD Register	30
Power Supply.....	15	ALERT_HIGH_THRESHOLD Register	30
Modes of Operation	16	Outline Dimensions	31
Channel Selection.....	16	Ordering Guide	31

REVISION HISTORY

8/2019—Revision 0: Initial Version

SPECIFICATIONS

$V_{CC} = 3.0$ V to 3.6 V, $V_{LOGIC} = 1.65$ V to 3.6 V, reference voltage (V_{REF}) = 2.5 V internal, sampling frequency (f_{SAMPLE}) = 4 MSPS, and $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$, no oversampling enabled, unless otherwise noted.

Table 1. AD7386

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
RESOLUTION		16			Bits
THROUGHPUT					
Conversion Rate			4		MSPS
Single Channel Pair			2		MSPS
Alternating Channels	SEQ = 1				
DC ACCURACY					
No Missing Codes		16			Bits
Differential Nonlinearity Error		-1.0	± 0.5	+1.0	LSB
Integral Nonlinearity Error		-3.5	± 1.5	+3.5	LSB
Gain Error		-0.025	± 0.006	+0.025	% FS
Gain Error Temperature Drift		-3	± 1	+3	ppm/ $^\circ\text{C}$
Gain Error Match		-0.025	± 0.006	+0.025	% FS
Offset Error		-0.6	± 0.1	+0.6	mV
Offset Temperature Drift		-3	± 1	+3	$\mu\text{V}/^\circ\text{C}$
Offset Error Match		-0.5	0.12	+0.5	mV
AC ACCURACY					
Dynamic Range	$f_{IN} = 1$ kHz $V_{REF} = 3.3$ V external		87.8		dB
			86		dB
Oversampled Dynamic Range	Normal averaging, oversampling ratio (OSR) = 4, RES = 1		91.5		dB
Signal-to-Noise Ratio (SNR)	$V_{REF} = 3.3$ V external	85.5	87.5		dB
		83.5	85.5		dB
	Rolling averaging, OSR = 8, RES = 1		93		dB
	$f_{IN} = 100$ kHz		85.3		dB
Spurious-Free Dynamic Range (SFDR)			-100		dB
Total Harmonic Distortion (THD)	$V_{REF} = 3.3$ V external		-99		dB
			-98		dB
			-96		dB
Signal-to-Noise-and-Distortion (SINAD)	$f_{IN} = 100$ kHz $V_{REF} = 3.3$ V	85	87.4		dB
		83	85.5		dB
Channel-to-Channel Isolation			-109.7		dB
Channel-to-Channel Memory			-93.5		dB
ANALOG INPUT					
Voltage Input Range		0		V_{REF}	V
DC Leakage Current			0.1	1	μA
Input Capacitance	When in track mode When in hold mode		18		pF
			5		pF
SAMPLING DYNAMICS					
Input Bandwidth	-0.1 dB		5.3		MHz
	-3 dB		22		MHz
Aperture Delay			2		ns
Aperture Delay Match			300	450	ps
Aperture Jitter			20		ps

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
REFERENCE INPUT/OUTPUT					
V_{REF} Input Voltage Range	External reference	2.49	3.4		V
V_{REF} Input Current	External reference		0.47	0.51	mA
V_{REF} Output Voltage	$T_A = 25^\circ C$ $-40^\circ C$ to $+125^\circ C$	2.498	2.5	2.502	V
V_{REF} Temperature Coefficient		2.496	2.5	2.505	V
V_{REF} Line Regulation			1	10	ppm/ $^\circ C$
V_{REF} Load Regulation			-38		ppm/V
V_{REF} Noise			-106		ppm/mA
			7		μV rms
DIGITAL INPUTS (SCLK, SDI, CS)					
Logic Levels					
Input Low Voltage (V_{IL})				$0.2 \times V_{LOGIC}$	V
Input High Voltage (V_{IH})				$0.8 \times V_{LOGIC}$	V
Input Low Current (I_{IL})		-1		+1	μA
Input High Current (I_{IH})		-1		+1	μA
DIGITAL OUTPUTS (SDOA, SDOB/ALERT)					
Output Coding				Straight binary	Bits
Output Low Voltage (V_{OL})	Sink current (I_{SINK}) = 300 μA			0.4	V
Output High Voltage (V_{OH})	Source current (I_{SOURCE}) = -300 μA			$V_{LOGIC} - 0.3$	V
Floating State Leakage Current				± 1	μA
Floating State Output Capacitance			10		pF
POWER SUPPLIES					
V_{CC}		3.0	3.3	3.6	V
	External reference = 3.3 V	3.2	3.3	3.6	V
V_{LOGIC}		1.65		3.6	V
V_{CC} Current (I_{VCC})				22	mA
Normal Mode (Operational)				2.2	mA
Normal Mode (Static)				100	μA
Shutdown Mode				200	
V_{LOGIC} Current (I_{VLOGIC})				3.15	mA
Normal Mode (Operational)	$f_{IN} = 1$ kHz sine wave			10	nA
Normal Mode (Static)				10	nA
Shutdown Mode				200	
Power Dissipation				83	mW
Total Power (P_{TOTAL})				73	mW
V_{CC} Power (P_{VCC})				7.3	mW
Normal Mode (Operational)				330	μW
Normal Mode (Static)				10.4	mW
Shutdown Mode				33	nW
V_{LOGIC} Power (P_{VLOGIC})	$f_{IN} = 1$ kHz sine wave			33	nW
Normal Mode (Operational)				720	
Normal Mode (Static)				720	
Shutdown Mode				720	

TIMING SPECIFICATIONS

$V_{CC} = 3.0$ V to 3.6 V, $V_{LOGIC} = 1.65$ V to 3.6 V, $V_{REF} = 2.5$ V internal, and $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$, unless otherwise noted. All specifications include a 10 pF load.

Table 2.

Parameter	Min	Typ	Max	Unit	Description
t_{CYC}				ns	Time between conversions
	250			ns	4 MSPS
	500			ns	Alternating conversion channels
t_{SCLKED}	0.8			ns	\overline{CS} falling edge to first SCLK falling edge
t_{SCLK}	12.5			ns	SCLK period
t_{SCLKH}	5			ns	SCLK high time
t_{SCLKL}	5			ns	SCLK low time
t_{CSH}	10			ns	\overline{CS} pulse width
t_{QUIET}	10			ns	Interface quiet time prior to conversion
t_{SDOEN}				ns	\overline{CS} low to SDOx enabled
		6			$V_{LOGIC} \geq 2.25$ V
		8			$1.65\text{ V} \leq V_{LOGIC} < 2.3\text{ V}$
t_{SDOH}	2			ns	SCLK rising edge to SDO hold time
t_{SDOS}				ns	SCLK rising edge to SDO setup time
		6			$V_{LOGIC} \geq 2.25$ V
		8			$1.65\text{ V} \leq V_{LOGIC} < 2.3\text{ V}$
t_{SDOT}		8		ns	\overline{CS} rising edge to SDO high impedance
t_{SDIS}	1			ns	SDI setup time prior to SCLK falling edge
t_{SDIH}	1			ns	SDI hold time after SCLK falling edge
t_{SCLKCS}	0			ns	SCLK rising edge to \overline{CS} rising edge
$t_{CONVERT}$		190		ns	Conversion time
$t_{ACQUIRE}$	110			ns	Acquire time
$t_{POWERUP}$				ns	Supply active to conversion
		5		ms	First conversion allowed
		11		ms	Settled to within 1% with internal reference
		5		ms	Settled to within 1% with external reference
$t_{REGWRITE}$		5		ms	Supply active to register read write access allowed
$t_{STARTUP}$				ms	Exiting power-down mode to conversion (see Figure 37)
		11		ms	Settled to within 1% with internal reference
		10		μs	Settled to within 1% with external reference
$t_{CONVERT0}$	4	7	10	ns	Conversion start time for first sample in normal averaging mode, not shown in Figure 6
$t_{CONVERTx}$				ns	Conversion time for x^{th} sample in normal averaging mode
		$t_{CONVERT0} + (320 \times (x - 1))$		ns	
t_{ALERTS}			200	ns	Time from \overline{CS} to $\overline{\text{ALERT}}$ indication (see Figure 36)
t_{ALERTC}			12	ns	Time from \overline{CS} to $\overline{\text{ALERT}}$ clear (see Figure 36)
t_{ALERTS_NOS}			12	ns	Time from internal conversion with exceeded threshold to $\overline{\text{ALERT}}$ indication (see Figure 36)

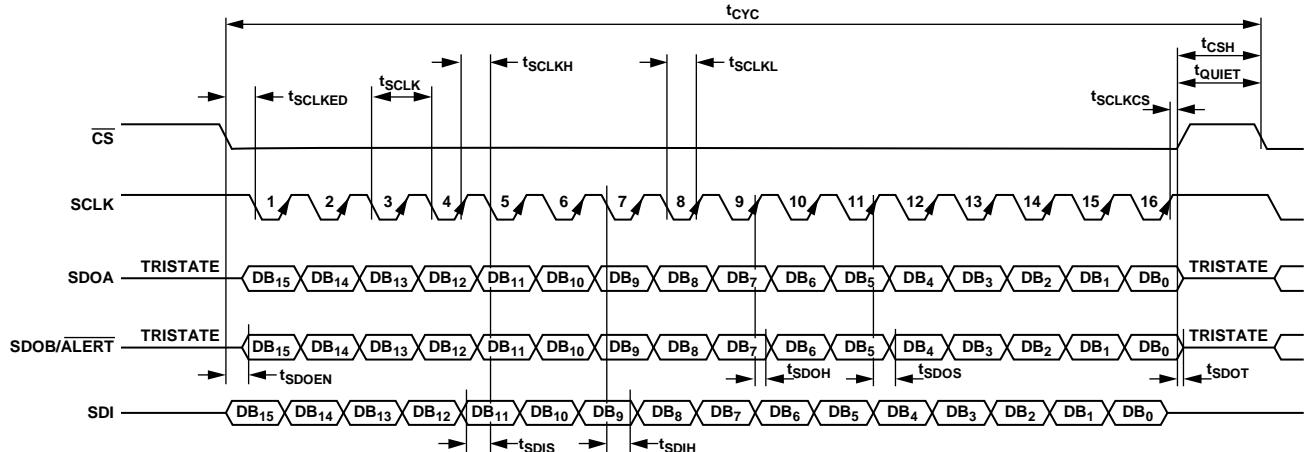


Figure 2. Serial Interface Timing Diagram

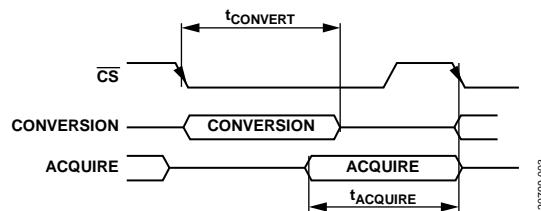


Figure 3. Internal Conversion Acquire Timing

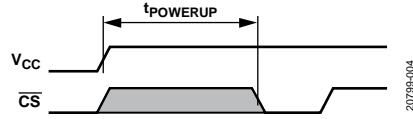


Figure 4. Power-Up Time to Conversion

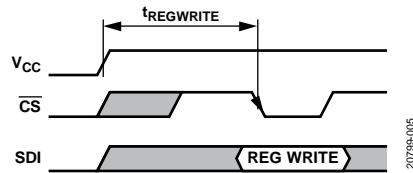
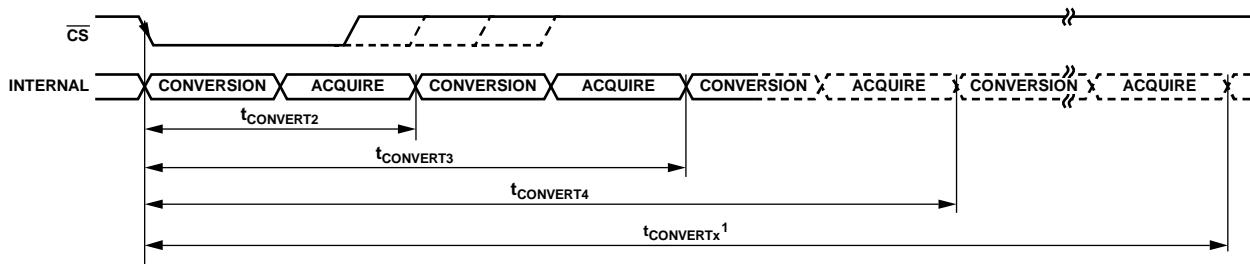



Figure 5. Power-Up Time to Register Read Write Access

¹t_{CONVERTx} STANDS FOR t_{CONVERT2}, t_{CONVERT3}, OR t_{CONVERT4}.

Figure 6. Conversion Timing During Normal Averaging Oversampling Mode

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
V _{CC} to GND	−0.3 V to +4 V
V _{LOGIC} to GND	−0.3 V to +4 V
Analog Input Voltage to GND	−0.3 V to V _{REF} + 0.3 V, V _{CC} + 0.3 V or 4 V
Digital Input Voltage to GND	−0.3 V to V _{LOGIC} + 0.3 V or 4 V
Digital Output Voltage to GND	−0.3 V to V _{LOGIC} + 0.3 V or 4 V
REFIO Input to GND	−0.3 V to V _{CC} + 0.3 V or 4 V
Input Current to Any Pin Except Supplies	±10 mA
Operating Temperature Range	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Maximum Junction Temperature	150°C
Pb-Free Soldering Reflow Temperature	260°C
ESD Ratings	
Human Body Model (HBM)	4 kV
Field Induced Charge Device Model (FICDM)	1.25 kV

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

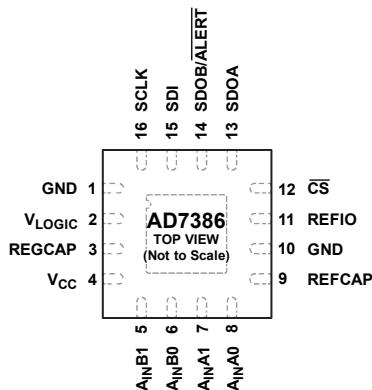
Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θ_{JC} is the junction to case thermal resistance.

Table 4. Thermal Resistance

Package Type	θ_{JA}	θ_{JC}	Unit
CP-16-45 ¹	55.4	12.7	°C/W

¹ Test Condition 1: Thermal impedance simulated values are based on JEDEC 252P thermal test board with four thermal vias. See JEDEC JESD51.


ESD CAUTION

ESD (electrostatic discharge) sensitive device.

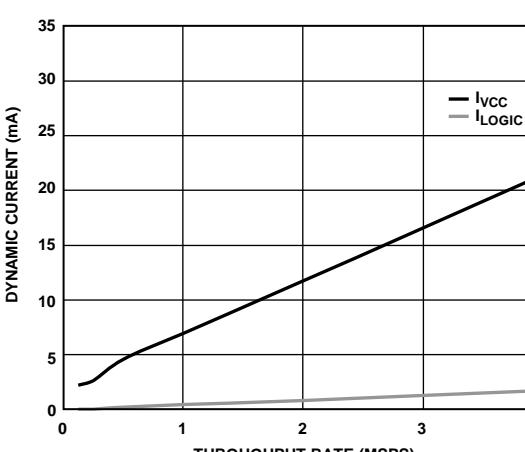
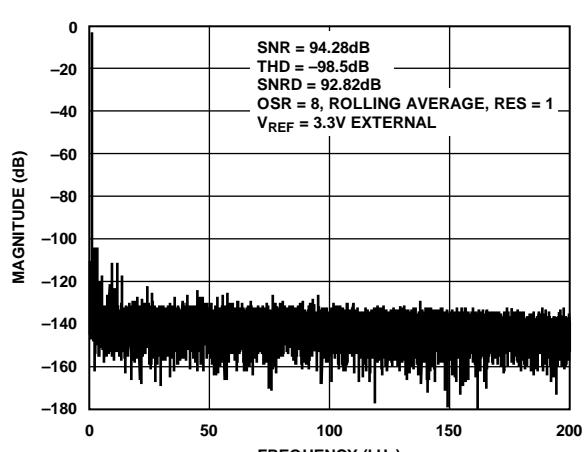
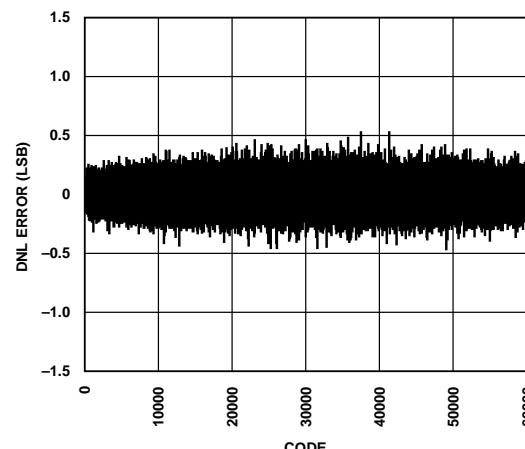
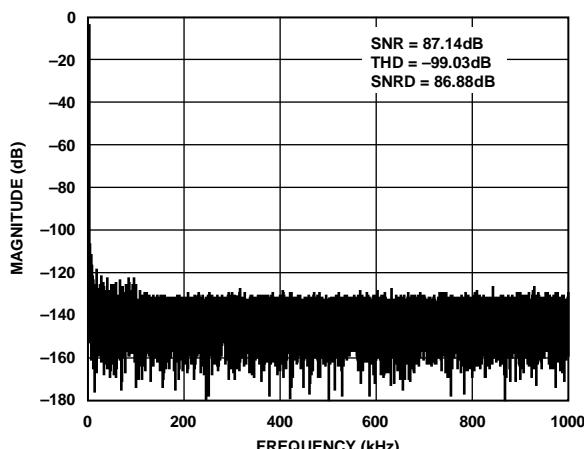
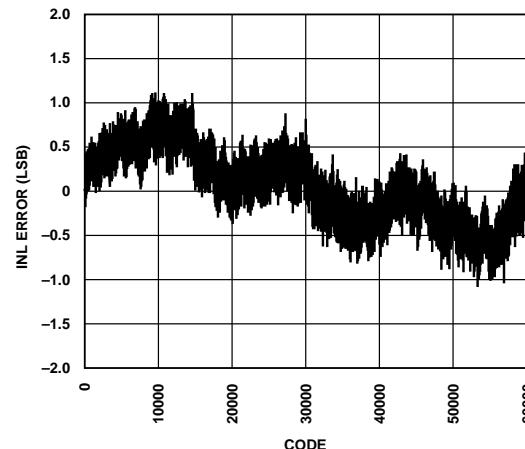
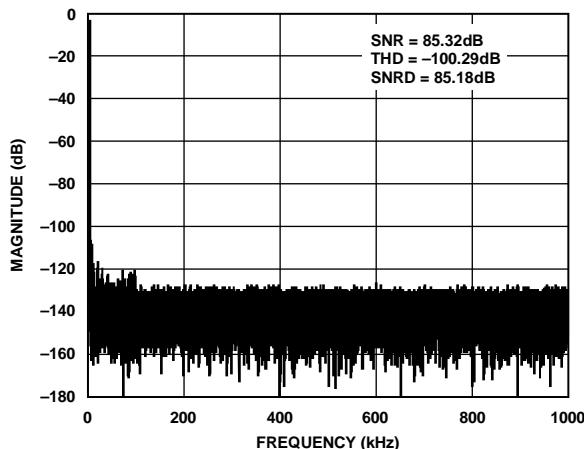
Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

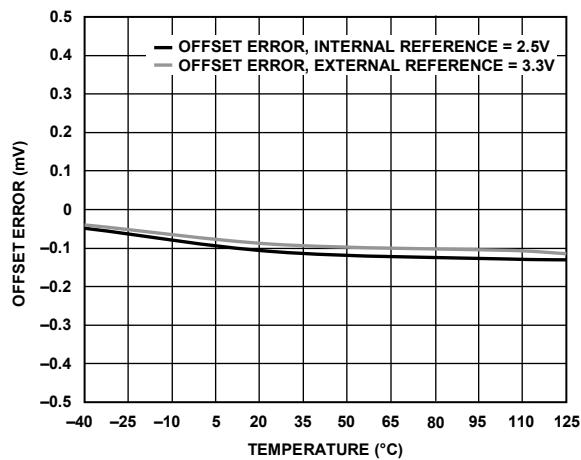
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

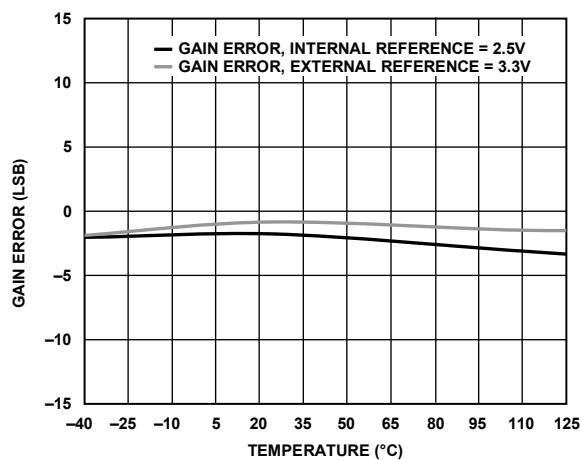
1. EXPOSED PAD. FOR CORRECT OPERATION OF THE DEVICE, THE EXPOSED PAD MUST BE CONNECTED TO GND.

20799-009

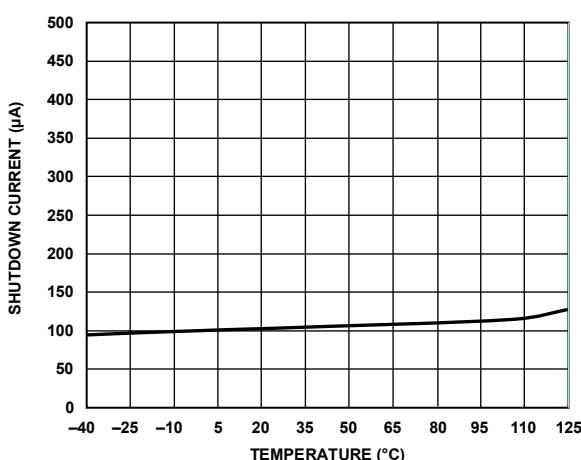






Figure 7. Pin Configuration

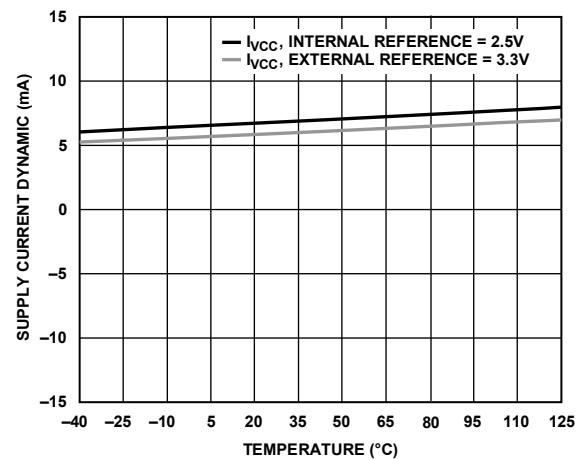

Table 5. Pin Function Descriptions

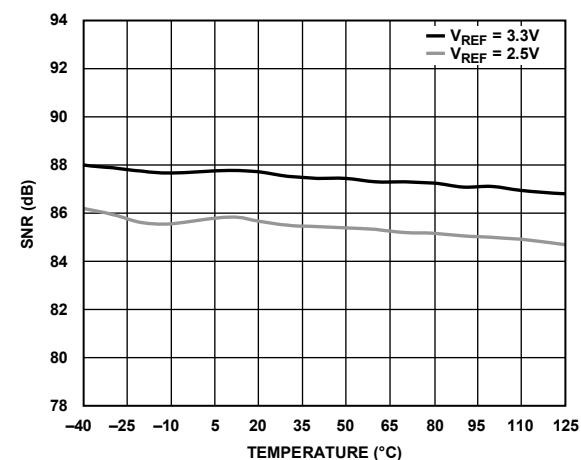
Pin No.	Mnemonic	Description
1, 10	GND	Ground Reference Point. These pins are the ground reference points for all circuitry on the device.
2	V _{LOGIC}	Logic Interface Supply Voltage, 1.65 V to 3.6 V. Decouple this pin to GND with a 1 μ F capacitor.
3	REGCAP	Decoupling Capacitor Pin for Voltage Output from Internal Regulator. Decouple this pin to GND with a 1 μ F capacitor. The voltage at this pin is 1.9 V typical.
4	V _{CC}	Power Supply Input Voltage, 3.0 V to 3.6 V. Decouple this pin to GND using a 1 μ F capacitor.
5, 6	A _{INB1} , A _{INB0}	Analog Inputs of ADC B.
7, 8	A _{INA1} , A _{INA0}	Analog Inputs of ADC A.
9	REFCAP	Decoupling Capacitor Pin for Band Gap Reference. Decouple this pin to GND with a 0.1 μ F capacitor. The voltage at this pin is 2.5 V typical. If the device is configured for external reference operation, the 0.1 μ F capacitor is not required.
11	REFIO	Reference Input/Output. The on-chip reference of 2.5 V is available as an output on this pin for external use if the device is configured accordingly. Alternatively, an external reference of 2.5 V to 3.3 V can be input to this pin. The REFSEL bit in the CONFIGURATION1 register must be set correctly when choosing the reference voltage source. Decoupling is required on this pin for both the internal and external reference options. A 1 μ F capacitor must be applied from this pin to GND.
12	CS	Chip Select Input. Active low, logic input. This input provides the dual function of initiating conversions on the AD7386 and framing the serial data transfer.
13	SDOA	Serial Data Output A. This pin functions as a serial data output pin to access the ADC A or ADC B conversion results or data from any of the on-chip registers.
14	SDOB/ALERT	Serial Data Output B (SDOB). This pin functions as a serial data output pin to access the ADC B conversion results. Alert Indication Output (ALERT). This pin operates as an alert pin going low to indicate that a conversion result has exceeded a configured threshold.
15	SDI	Serial Data Input. This input provides the data written to the on-chip control registers.
16	SCLK	Serial Clock Input. This serial clock input is for data transfers to and from the ADC.
Not Applicable	EPAD	Exposed Pad. For correct operation of the device, the exposed pad must be connected to GND.

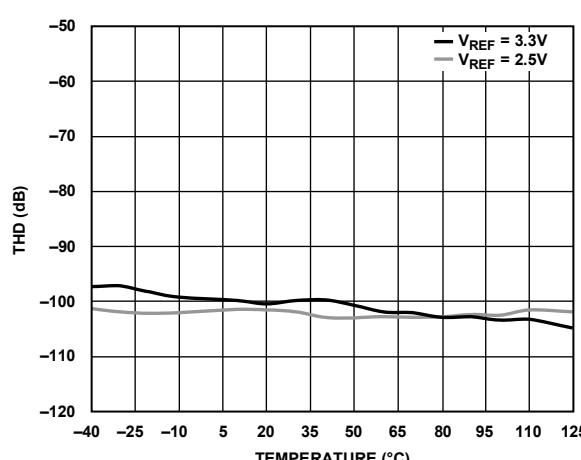

TYPICAL PERFORMANCE CHARACTERISTICS

$V_{REF} = 2.5$ V internal, $V_{CC} = 3.6$ V, $V_{LOGIC} = 3.3$ V, $f_{SAMPLE} = 4$ MSPS, $f_{IN} = 1$ kHz, and $T_A = 25^\circ\text{C}$, unless otherwise noted.




20799-016


20799-017


20799-018

20799-019

20799-020

20799-021

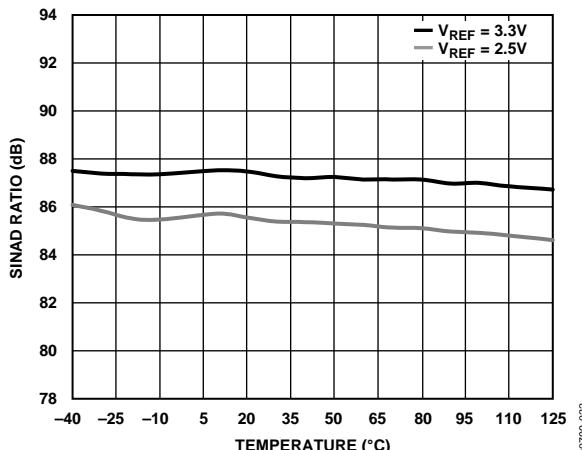


Figure 20. SINAD Ratio vs. Temperature

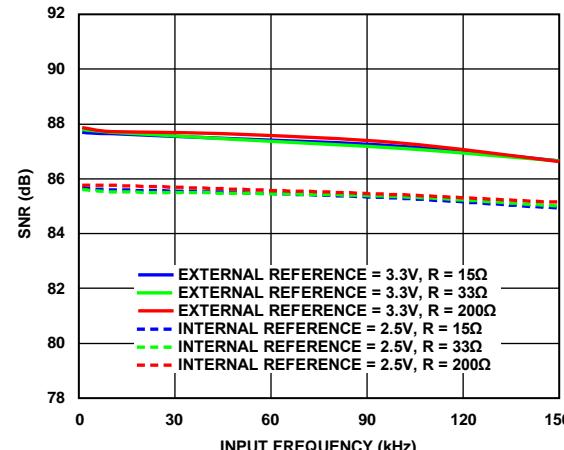


Figure 23. SNR vs. Input Frequency

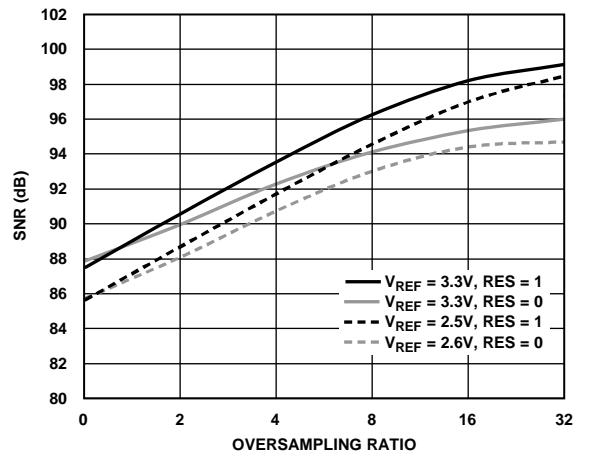


Figure 21. SNR at Normal Oversampling

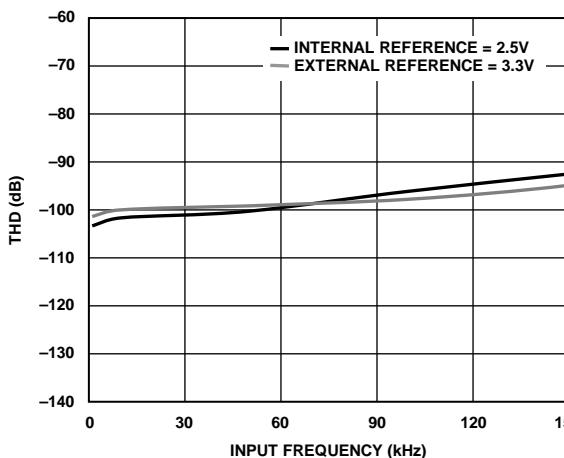


Figure 24. THD vs. Input Frequency

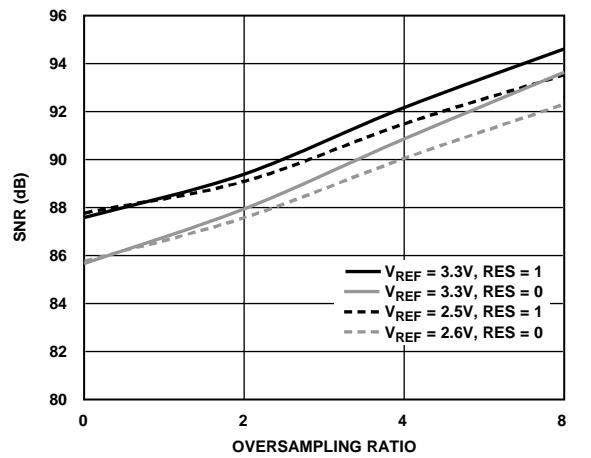


Figure 22. SNR at Rolling Average Oversampling

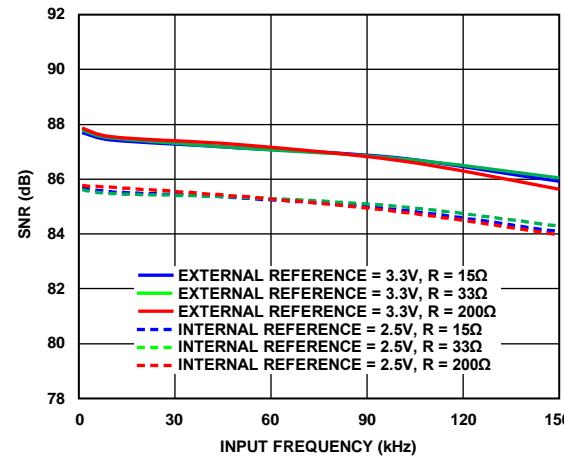


Figure 25. SNR vs. Input Frequency

TERMINOLOGY

Differential Nonlinearity (DNL)

In an ideal ADC, code transitions are 1 LSB apart. DNL is the maximum deviation from this ideal value. It is often specified in terms of resolution for which no missing codes are guaranteed.

Integral Nonlinearity (INL)

INL is the deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs $\frac{1}{2}$ LSB before the first code transition. Positive full scale is defined as a level $1\frac{1}{2}$ LSB beyond the last code transition. The deviation is measured from the middle of each code to the true straight line.

Gain Error

The first transition (from 000...000 to 000...001) must occur at a level $\frac{1}{2}$ LSB above nominal negative full scale. The last transition (from 111...110 to 111...111) occurs for an analog voltage $1\frac{1}{2}$ LSB below the nominal full scale. The gain error is the deviation of the difference between the actual level of the last transition and the actual level of the first transition from the difference between the ideal levels.

Gain Error Drift

The gain error change due to a temperature change of 1°C .

Gain Error Matching

Gain error matching is the difference in negative full-scale error between the input channels and the difference in positive full-scale error between the input channels.

Offset Error

The first transition must occur at a level $\frac{1}{2}$ LSB above analog ground. The offset error is the deviation of the actual transition from that point.

Offset Error Drift

The zero error change due to a temperature change of 1°C .

Signal-to-Noise Ratio (SNR)

SNR is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, excluding harmonics and dc. The value for SNR is expressed in decibels.

Spurious-Free Dynamic Range (SFDR)

SFDR is the difference, in decibels (dB), between the rms amplitude of the input signal and the peak spurious signal.

Total Harmonic Distortion (THD)

THD is the ratio of the rms sum of the first five harmonic components to the rms value of a full-scale input signal and is expressed in decibels.

Signal-to-Noise-and-Distortion (SINAD) Ratio

SINAD is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components that are less than the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in decibels.

Channel-to-Channel Memory

Channel-to-channel memory is a measure of the level of crosstalk between channels in sequencer mode. It is measured by applying a full-scale signal of a specific frequency in one analog input channel of the ADC and determining how much that signal is attenuated in the alternate ADC channel, when a full-scale signal of different frequency is applied. The figure given is the typical value in decibels and is measured for both ADC A and ADC B.

Common-Mode Rejection Ratio (CMRR)

CMRR is the ratio of the power in the ADC output at the frequency, f , to the power of a 200 mV p-p sine wave applied to the common-mode voltage of $A_{\text{INX}0}$ and $A_{\text{INX}1}$ of frequency, f .

$$\text{CMRR (dB)} = 10\log(P_{\text{ADC_IN}}/P_{\text{ADC_OUT}})$$

where:

$P_{\text{ADC_IN}}$ is the common-mode power at the frequency, f , applied to the $A_{\text{INX}0}$ and $A_{\text{INX}1}$ inputs.

$P_{\text{ADC_OUT}}$ is the power at the frequency, f , in the ADC output.

Aperture Delay

Aperture delay is the measure of the acquisition performance and is the time between the falling edge of the $\overline{\text{CS}}$ input and when the input signal is held for a conversion.

Aperture Jitter

Aperture jitter is the variation in aperture delay.

THEORY OF OPERATION

CIRCUIT INFORMATION

The AD7386 is a high speed, 4-channel, dual simultaneous sampling, single-ended, 16-bit SAR ADC. The device operates from a 3.3 V power supply and features throughput rates of up to 4 MSPS.

The AD7386 contains two SAR ADCs, a multiplexer, a sequencer, and a serial interface with two separate data output pins. The device is housed in a 16-lead LFCSP package, offering the user considerable space-saving advantages over alternative solutions.

Data is accessed from the device via the serial interface. The interface can operate with two or one serial outputs. The AD7386 has an on-chip, 2.5 V internal reference, V_{REF} . If an external reference is desired, the internal reference buffer can be disabled and a reference value ranging from 2.5 V to V_{CC} can be supplied. If the internal reference is used elsewhere in the system, the reference output must be buffered. The analog input range for the AD7386 is 0 V to V_{REF} .

The AD7386 features on-chip oversampling blocks to improve performance. Normal averaging and rolling average oversampling modes are available. Power-down options to allow power saving between conversions are available. Configuration of the device is implemented via the standard serial interface. See the Interface section for more information.

CONVERTER OPERATION

The AD7386 has two SAR ADCs, each based around two capacitive DACs. Figure 26 and Figure 27 show simplified schematics of one of these ADCs in acquisition and conversion phases, respectively. The ADC comprises control logic, an SAR, and two capacitive DACs. In Figure 26 (the acquisition phase), SW2 is closed and SW1 is in Position A, the comparator is held in a balanced condition, and the sampling capacitor array acquires the signal on the input.

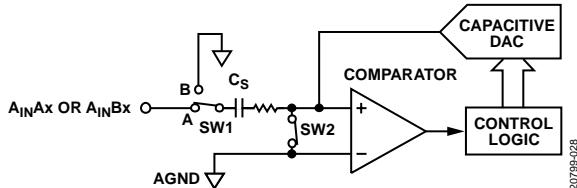
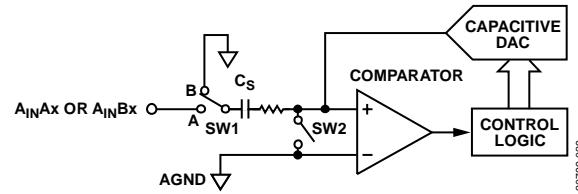
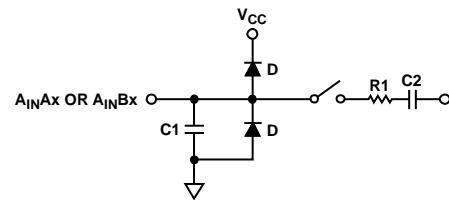


Figure 26. ADC Acquisition Phase

When the ADC starts a conversion (see Figure 27), SW2 opens and SW1 moves to Position B, causing the comparator to become unbalanced. The control logic and the charge redistribution DAC are used to add and subtract fixed amounts of charge from the capacitive DAC to bring the comparator back into a balanced condition. When the comparator is rebalanced, the conversion is complete. The control logic generates the ADC output code.




Figure 27. ADC Conversion Phase

20799-029

ANALOG INPUT STRUCTURE

Figure 28 shows the equivalent circuit of the analog input structure of the AD7386. The two diodes provide ESD protection for the analog inputs. Care must be taken to ensure that the analog input signals never exceed the supply rails by more than 300 mV. Exceeding the limit causes these diodes to become forward-biased and start conducting into the substrate. These diodes can conduct up to 10 mA without causing irreversible damage to the device.

The C1 capacitor in Figure 28 is typically 3 pF and can primarily be attributed to pin capacitance. The R1 resistor is a lumped component made up of the on resistance of the switches. The value of these resistors is typically about 200 Ω . The C2 capacitor is the sampling capacitor of the ADC with a capacitance of 15 pF, typically.

20799-030

Figure 28. Equivalent Analog Input Circuit, Conversion Phase = Switch Open, Track Phase = Switch Closed

ADC TRANSFER FUNCTION

The AD7386 uses a 2.5 V to 3.3 V reference. The AD7386 converts the voltage of the analog inputs ($A_{IN}A0$ and $A_{IN}A1$, $A_{IN}B1$ and $A_{IN}B0$) into a digital output.

The conversion result is MSB first, straight binary. The LSB size is $(V_{REF})/2^N$, where N is the ADC resolution. The ADC resolution is determined by the resolution of the device chosen and if resolution boost mode is enabled. Table 6 outlines the LSB size expressed in volts for different resolutions and reference voltages options.

The ideal transfer characteristic of the AD7386 is shown in Figure 29.

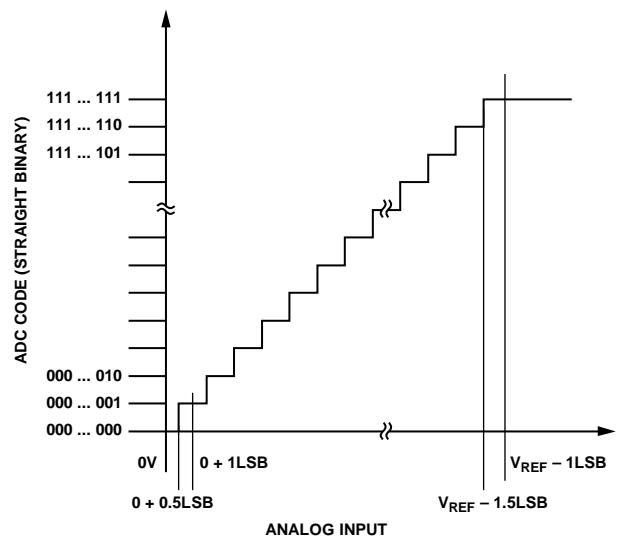


Figure 29. ADC Ideal Transfer Function (FSR = Full-Scale Range)

Table 6. LSB Size

Resolution	2.5 V Reference	3.3 V Reference	Unit
16 Bits	38.1	50.4	μ V
18 Bits	9.55	12.6	μ V



Figure 30. Typical Application Circuit

APPLICATIONS INFORMATION

Figure 30 shows an example of a complete signal chain connection diagram for the AD7386. Decouple the V_{CC} , V_{LOGIC} , REGCAP, and REFIO pins with suitable decoupling capacitors as shown in Figure 30.

The exposed pad is a ground reference point for circuitry on the device and must be connected to the board ground.

A differential RC filter must be placed on the analog inputs to ensure performance is achieved. For a typical application, the recommended resistor is $R = 33 \Omega$, and $C = 330 \text{ pF}$.

The performance of the AD7386 may be impacted by noise on the digital interface. This impact is dependent on board layout and design. Keep a minimal distance of the digital line to the digital interface or place a 100Ω resistor in series and close to the SDOA pin and SDOB/ALERT pin to reduce noise from the digital interface coupling of the AD7386.

Each of the single-ended analog inputs of the AD7386 can accept voltage from 0 V to V_{REF} and can easily be driven by an amplifier for optimum performance. Table 7 shows the recommended components for the complete signal chain solution that can best fit the application for the AD7386.

The AD7386 has an internal 2.5 V reference and can use an ultralow noise, high accuracy voltage reference ranging from 2.5 V to 3.3 V, such as the [ADR4525](#) or [ADR4533](#), as an external voltage source.

Table 7. Signal Chain Components

Companion Devices	Device Name	Description	Typical Application
ADC Driver	ADA4896-2	1 nV/ $\sqrt{\text{Hz}}$, rail-to-rail output amplifier	Precision, low noise, high frequency
	ADA4807-2	1 mA, rail-to-rail output amplifier	Precision, low power, high frequency
External Reference	ADR4525	Ultralow noise, high accuracy voltage reference	2.5 V reference voltage
	ADR4533		3.3 V reference voltage
LDO	ADP166	Very low quiescent, 150 mA, LDO regulator	3.0 V to 3.6 V supply for V_{CC} and V_{LOGIC}
	ADP7104	Low noise, CMOS LDO regulator	5 V supply for driver amplifier
	ADP7182	Low noise line regulator	-2.5 V supply for driver amplifier

POWER SUPPLY

The typical application circuit in Figure 30 can be powered by a single 5 V voltage source supplying the whole signal chain. The 5 V supply can come from a low noise, complementary metal-oxide semiconductor (CMOS) low dropout (LDO) [ADP7105](#). The two independent supplies of the AD7386, V_{CC} and V_{LOGIC} , which supply the analog circuitry and digital interface, respectively, can be supplied by a very low quiescent current LDO regulator like the [ADP166](#). The [ADP166](#) is a suitable supply with a fixed output voltage range from 1.2 V to 3.3 V for typical V_{CC} and V_{LOGIC} levels. Decouple both the V_{CC} supply and the V_{LOGIC} supply separately with a 1 μF capacitor. Additionally, there is an internal LDO regulator to supply the AD7386. The on-chip regulator provides a 1.9 V supply for internal use on the device only. Decouple the REGCAP pin with a 1 μF capacitor to GND.

Power-Up

The AD7386 is robust to power supply sequencing. V_{CC} and V_{LOGIC} can be applied in any sequence. An external reference must be applied after V_{CC} and V_{LOGIC} are applied.

The AD7386 requires a $t_{POWERUP}$ time from applying V_{CC} and V_{LOGIC} until the ADC conversion results are stable. Applying CS pulses or interfacing with the AD7386 prior to the setup time elapsing does not have a negative impact on ADC operation.

MODES OF OPERATION

The AD7386 has several on-chip configuration registers for controlling the operational mode of the device.

CHANNEL SELECTION

The ADC channel pairs for conversion ($A_{IN}A0/A_{IN}B0$ and $A_{IN}A1/A_{IN}B1$) are selected by setting the CH bit in the CONFIGURATION1 register. If the CH bit is set to 0, the $A_{IN}A0$ and $A_{IN}B0$ channels simultaneously convert. Alternatively, if the CH bit is set to 1, the $A_{IN}A1$ and $A_{IN}B1$ channels are selected for simultaneous conversion.

If the channel to convert is changing, the ADC requires additional settling time. The maximum throughput rate when changing between the $A_{IN}X0$ and $A_{IN}X1$ channels is 2 MSPS.

SEQUENCER

The AD7386 can be configured to automatically cycle through the $A_{IN}X0$ and $A_{IN}X1$ channels using the on-chip sequencer.

The sequencer is controlled via the SEQ bit in the CONFIGURATION1 register. If the SEQ bit is set to 0, the sequencer is disabled. If SEQ is set to 1, the sequencer is enabled. The CH bit is not queried for the sequencer mode. The sequencer always starts at the $A_{IN}X0$ channels and then moves to the $A_{IN}X1$ channels. After converting the $A_{IN}X1$ channel, the sequencer loops back to the $A_{IN}X0$ channels and the sequence restarts.

If the channel to convert is changing, the ADC requires additional settling time. The maximum throughput rate when changing between $A_{IN}X0$ and $A_{IN}X1$ channels is 2 MSPS.

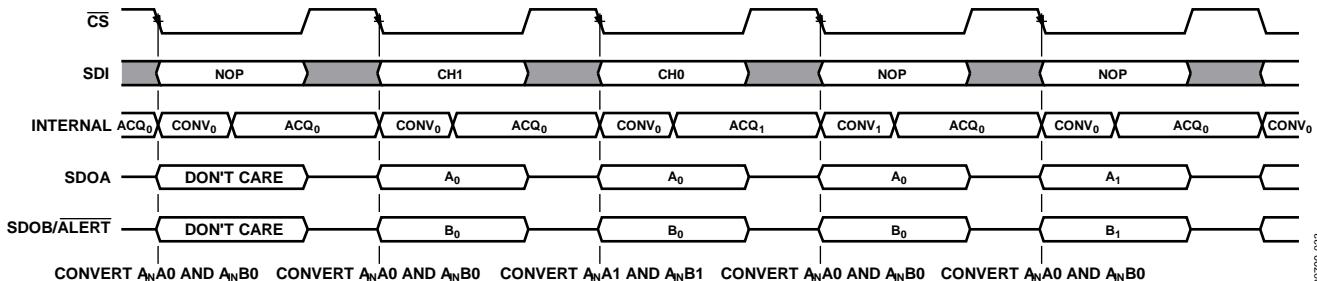


Figure 31. Manual Channel Selection Setup

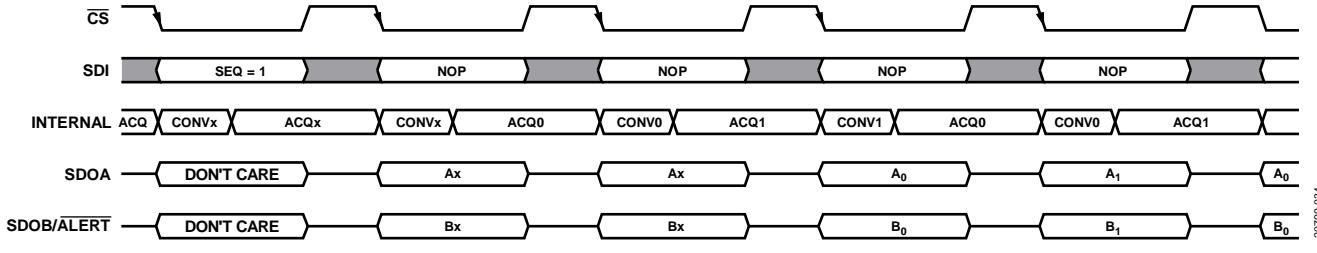


Figure 32. Channel Sequencer Setup

OVERSAMPLING

Oversampling is a common method used in analog electronics to improve the accuracy of the ADC result. Multiple samples of the analog input are captured and averaged to reduce the noise component from quantization noise and thermal noise (kTC) of the ADC. The AD7386 offers an oversampling function on chip and has two user configurable oversampling modes, normal averaging and rolling average.

The oversampling functionality is configured by programming the OS_MODE bit and OSR[2:0] bits in the CONFIGURATION1 register.

Normal Averaging Oversampling

Normal averaging oversampling mode can be used in applications where slower output data rates are allowable and where higher SNR or dynamic range is desirable. Normal averaging oversampling involves taking a number of samples, adding them together, and dividing the result by the number of samples taken. This result is then output from the device. The sample data is cleared when the process is completed.

Normal averaging oversampling mode is configured by setting the OS_MODE bit to Logic 0 and having a valid nonzero value in the OSR[2:0] bits. Writing to the OSR[2:0] bits has a two-cycle

latency before the register updates. The oversampling ratio of the digital filter is controlled using the oversampling bits, OSR[2:0]. Table 8 provides the oversampling bit decoding to select the different oversampling rates. The output result is decimated to a 16-bit resolution for the AD7386. If additional resolution is required, configure the RES bit in the CONFIGURATION1 register. See the Resolution Boost section for further details.

The number of samples, n , defined by the OSR[2:0] bits are taken, added together, and the result is divided by n . The initial ADC conversion is initiated by the falling edge of CS and the AD7386 controls all subsequent samples in the oversampling sequence internally. The sampling rate of the additional n samples is at the device maximum sampling rate, 3 MSPS for the AD7386 in normal averaging oversampling mode. The data is ready for readback on the next serial interface access. After the technique is applied, the sample data used in the calculation is discarded. This process is repeated every time the application needs a new conversion result and is initiated by the next falling edge of CS.

As the output data rate is reduced by the oversampling ratio, the serial peripheral interface (SPI) SCLK frequency required to transmit the data is also reduced accordingly.

Table 8. Normal Averaging Oversampling Overview

OSR[2:0]	Oversampling Ratio	SNR 2.5 V Internal Reference (dB Typical)	SNR 3.3 V External Reference (dB Typical)	Data Output Rate (kSPS Maximum)
000	No oversampling	85	87	4000
001	2	88	90	1500
010	4	90.7	92.3	750
011	8	93	94	375
100	16	94.4	95	187.5
101	32	94.7	96	93.75

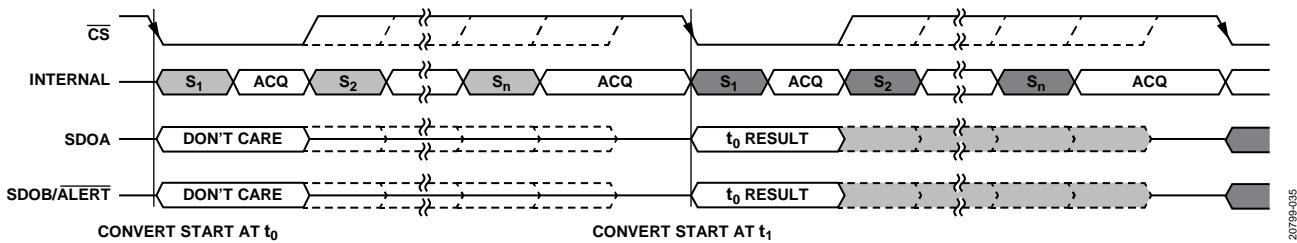


Figure 33. Normal Averaging Oversampling Operation

20799-035

Rolling Average Oversampling

Rolling average oversampling mode can be used in applications where higher output data rates are required and where higher SNR or dynamic range is desirable. Rolling average oversampling involves taking a number of samples, adding the samples together, and dividing the result by the number of samples taken. This result is then output from the device. The sample data is not cleared when the process is completed. The rolling oversampling mode uses a first in, first out (FIFO) buffer of the most recent samples in the averaging calculation, allowing the ADC throughput rate and output data rate to stay the same. Rolling average oversampling mode is configured by setting the OS_MODE bit to Logic 1 and having a valid nonzero value in the OSR[2:0] bits. The oversampling ratio of the digital filter is controlled using the OSR[2:0] bits. Table 9 provides the oversampling bit decoding to select the different oversample rates. The output result is decimated to 16-bit resolution for the AD7386. If additional resolution is required, this resolution can be achieved by configuring the RES bit in the CONFIGURATION1 register. See the Resolution Boost section for further details.

In rolling average oversampling mode, all ADC conversions are controlled and initiated by the falling edge of \overline{CS} . When a conversion is complete, the result is loaded into the FIFO. The FIFO length is 8 regardless of the oversampling ratio set. The FIFO is filled on the first conversion after a power-on reset (POR), the first conversion after a software controlled hard or soft reset, or the first conversion after the REFSEL bit is toggled. A new conversion result is shifted into the FIFO on completion of every ADC conversion, regardless of the status of the OSR[2:0] bits and the OS_MODE bit. This shift allows a seamless transition from no oversampling to rolling average oversampling, or different rolling average oversampling ratios without waiting for the FIFO to fill.

The number of samples, n , defined by the OSR[2:0] bits, are taken from the FIFO, added together, and the result is divided by n . The time between \overline{CS} falling edges is the cycle time that can be controlled by the user, depending on the desired data output rate.

Table 9. Rolling Average Oversampling Overview

OSR[2:0]	Oversampling Ratio	SNR 2.5 V Internal Reference (dB Typical)	SNR 3.3 V External Reference (dB Typical)	Data Output Rate (kSPS Maximum)
000	No oversampling	85	87	4000
001	2	87.5	89.1	4000
010	4	90	91.5	4000
011	8	92.3	93.5	4000

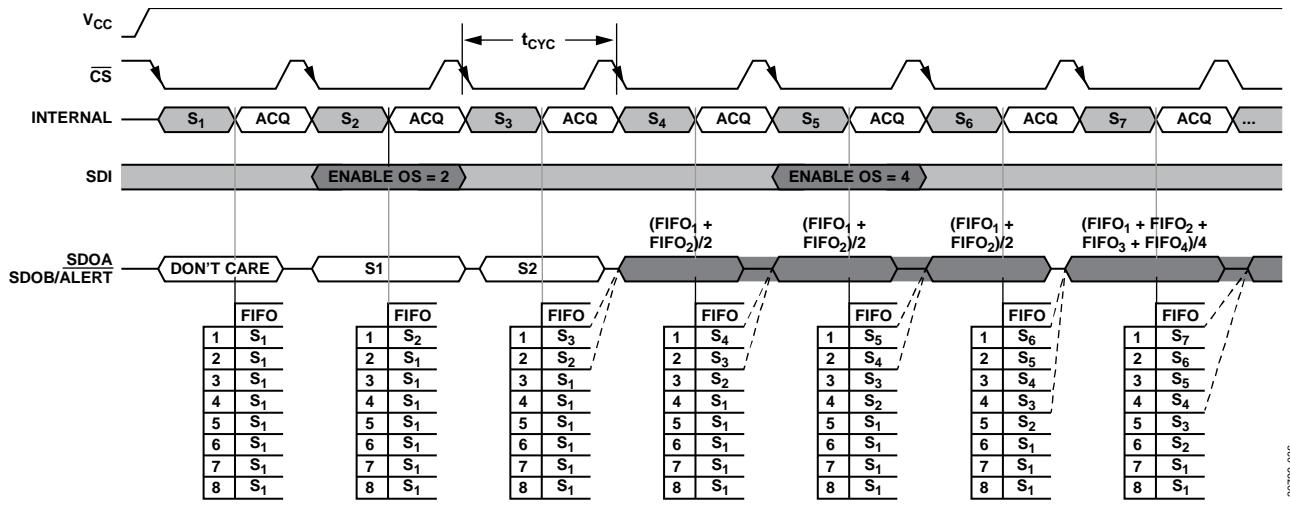


Figure 34. Rolling Average Oversampling Mode Configuration

20799-038

RESOLUTION BOOST

The default conversion result output data size for the AD7386 is 16 bits. When the on-chip oversampling function is enabled, the performance of the ADC can exceed the 16-bit level for the AD7386. To accommodate the performance boost achievable, it is possible to enable an additional two bits of resolution. If the RES bit in the CONFIGURATION1 register is set to Logic 1 and the AD7386 is in a valid oversampling mode, the conversion result size for the AD7386 is 18-bit. 18 SCLKs are required to propagate the data for the AD7386.

ALERT

The alert functionality is an out of range indicator and can be used as an early indicator of an out of bounds conversion result. An alert event triggers when the conversion result value register exceeds the alert high limit value in the ALERT_HIGH_THRESHOLD register or falls below the alert low limit value in the ALERT_LOW_THRESHOLD register. The ALERT_HIGH_THRESHOLD register and the ALERT_LOW_THRESHOLD register are common to all ADCs. Detailed alert information is accessible in the Alert Register section. The register contains two status bits per ADC, one corresponding to the high limit and the

other to the low limit. A logical OR of alert signals for all ADCs creates a common alert value. This value can be configured to drive out on the ALERT function of the SDOB/ALERT pin. The SDOB/ALERT pin is configured as ALERT by configuring the following bits in the CONFIGURATION1 register and the CONFIGURATION2 register:

- Set the SDO bit to 1.
- Set the ALERT_EN bit to 1.
- Set a valid value to the ALERT_HIGH_THRESHOLD register and the ALERT_LOW_THRESHOLD register.

The alert indication function is available in oversampling, both rolling average and normal averaging and in nonoversampling modes.

The ALERT function of the SDOB/ALERT pin is updated at the end of conversion. The alert indication status bits in the alert register update as well and must be read before the end of the next conversion. The ALERT function of the SDOB/ALERT pin is cleared with a falling edge of CS. Issuing a software reset also clears the alert status in the alert register.

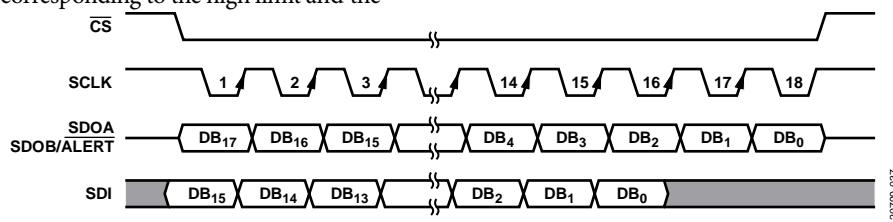


Figure 35. Resolution Boost

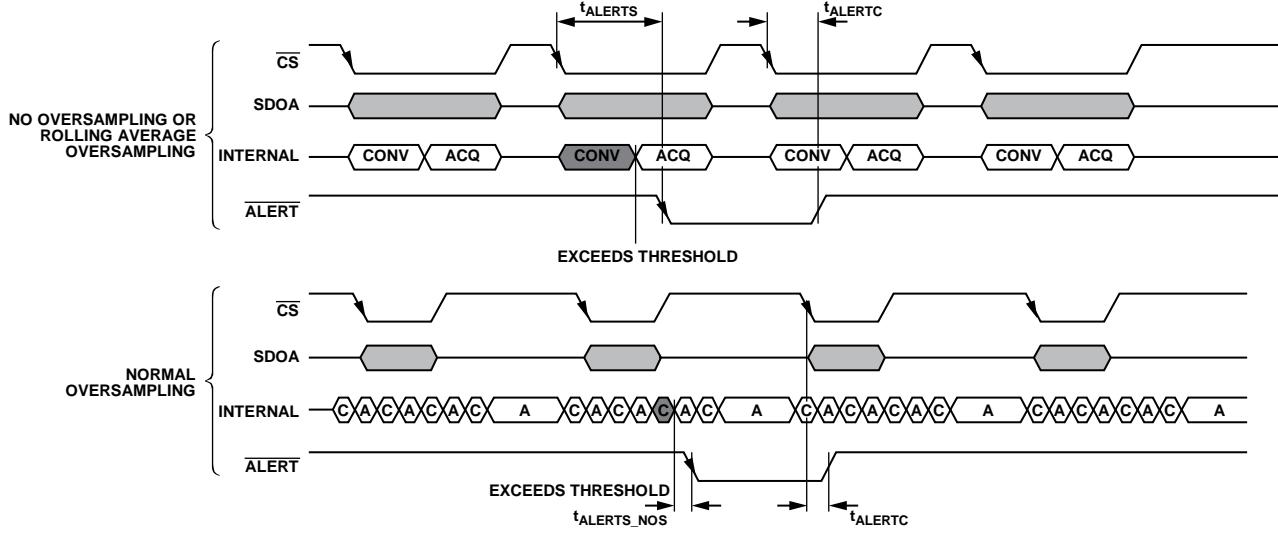


Figure 36. Alert Operation

20799-038

POWER MODES

The AD7386 has two power modes, normal mode and power-down mode. These modes of operation provide flexible power management options, allowing optimization of the power dissipation and throughput rate ratio for different application requirements.

Program the PMODE bit in the CONFIGURATION1 register to configure the power modes in the AD7386. Set PMODE to Logic 0 for normal mode and Logic 1 for power-down mode.

Normal Mode

Keep the AD7386 in normal mode to achieve the fastest throughput rate. All blocks within the AD7386 remain fully powered at all times, and an ADC conversion can be initiated by a falling edge of CS when required. When the AD7386 is not converting, the device is in static mode and power consumption automatically reduces. Additional current is required to perform a conversion. Therefore, power consumption of the AD7386 scales with throughput.

Power-Down Mode

When slower throughput rates and lower power consumption are required, use power-down mode by either powering down the ADC between each conversion or by performing a series of conversions at a high throughput rate and then powering down the ADC for a relatively long duration, depending on the user application, between these burst conversions. When the AD7386 is in power-down mode, all analog circuitry powers down including the internal reference if enabled. The serial interface remains active during power-down mode to allow the AD7386 to exit power-down mode.

To enter power-down mode, write to the power mode configuration bit, PMODE, in the CONFIGURATION1 register to a Logic 1. The AD7386 shuts down and current consumption reduces.

To exit power-down mode and return to normal mode, set the PMODE bit in the CONFIGURATION1 register to Logic 0. All register configuration settings remain unchanged entering or leaving power-down mode. After exiting power-down mode, allow sufficient time for the circuitry to turn on before starting a conversion. If the internal reference is enabled, the reference must be allowed to settle for accurate conversions to happen.

INTERNAL AND EXTERNAL REFERENCE

The AD7386 has a 2.5 V internal reference. Alternatively, if a more accurate reference or higher dynamic range is required, an external reference can be supplied. An externally supplied reference can be in the range of 2.5 V to 3.3 V. The recommended external voltage reference is [ADR4525](#) for 2.5 V and [ADR4533](#) for a 3.3 V reference.

Reference selection, internal and external, is configured by the REFSEL bit in the CONFIGURATION1 register. If the REFSEL bit is set to 0, the internal reference buffer is enabled. If an external reference is preferred, the REFSEL bit must be set to 1, and an external reference must be supplied to the REFIO pin.

SOFTWARE RESET

The AD7386 has two reset modes, a soft reset and a hard reset. A reset is initiated by writing to the RESET[7:0] bits in the CONFIGURATION2 register.

A soft reset maintains the contents of the configurable registers but refreshes the interface and the ADC blocks. Any internal state machines are reinitialized, and the oversampling block and FIFO are flushed. The alert register is cleared. The reference and LDO regulator remain powered.

A hard reset, in addition to the blocks reset by a soft reset, resets all user registers to the default status, resets the reference buffer, and resets the internal oscillator block.

DIAGNOSTIC SELF TEST

The AD7386 runs a diagnostic self test after a POR or after a software hard reset to ensure correct configuration is loaded into the device.

The result of the self test is displayed in the SETUP_F bit in the alert register. If the SETUP_F bit is set to Logic 1, the diagnostic self test has failed. If this occurs, perform a software hard reset to reset the AD7386 to default status.

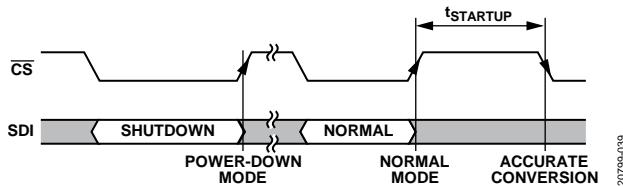


Figure 37. Power-Down Mode Operation

INTERFACE

The interface to the AD7386 is via a serial interface. The interface consists of the CS, SCLK, SDOA, SDOB/ALERT, and SDI pins.

The CS signal frames a serial data transfer and initiates an ADC conversion process. The falling edge of CS puts the track-and-hold into hold mode at which point the analog input is sampled and the bus is taken out of three-state.

The SCLK signal synchronizes data in and out of the device via the SDOA, SDOB, and SDI signals. A minimum of 16 SCLKs are required for a write to or read from a register. The minimum numbers of SCLKs for a conversion read is dependent on the resolution of the device and the configuration settings.

The ADC conversion operation is driven internally by an on-board oscillator and is independent of the SCLK signal.

The AD7386 has two serial output signals, SDOA and SDOB. To achieve the highest throughput, use both SDOA and SDOB, 2-wire mode, to read the conversion results. If a reduced throughput is required or oversampling is used, it is possible to use 1-wire mode, SDOA signal only, for reading conversion results. Programming the SDO bit in the CONFIGURATION2 register configures 2-wire or 1-wire mode.

Configuring a cyclic redundancy check (CRC) operation for SPI reads, SPI writes, and oversampling modes alters the operation of the interface. The relevant CRC Read, CRC Write, and CRC Polynomial sections of this data sheet must be consulted to ensure correct operation.

READING CONVERSION RESULTS

The CS signal initiates the conversion process. A high to low transition on the CS signal initiates a simultaneous conversion of both ADCs, ADC A and ADC B. The AD7386 has a one-cycle readback latency. Therefore, the conversion results are available on the next SPI access. Then, take the CS signal low, and the conversion result clocks out on the SDOA and SDOB/ALERT pin. The next conversion is also initiated at this point. The conversion result is shifted out of the device as a 16-bit word for the AD7386. The MSB of the conversion result is shifted out on the CS falling edge. The remaining data is shifted out of the device under the control of the serial clock (SCLK) input. The data is shifted out on the rising edge of SCLK, and the data bits are valid on both the falling edge and the rising edge. After the final SCLK falling edge, take CS high again to return the SDOA and SDOB/ALERT pins to a high impedance state.

The number of SCLK cycles to propagate the conversion results on the SDOA and SDOB/ALERT pins is dependent on the serial mode of operation configured and if resolution boost is enabled (see Figure 38 and Table 10 for details). If CRC reading is enabled, additional SCLK pulses are required to propagate the CRC information (see the CRC section for more details). As the CS signal initiates a conversion, as well as framing the data, access must be completed within a single frame.

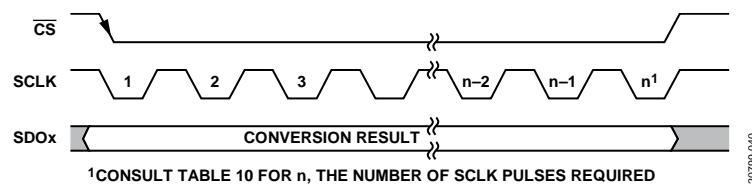


Figure 38. Reading Conversion Results

Table 10. Number of SCLKs, n, Required for Reading Conversion Results

Interface Configuration	Resolution Boost Mode	CRC Read	Number of SCLKs
2-Wire	Disabled	Disabled	16
	Enabled	Enabled	24
	Disabled	Disabled	18
	Enabled	Enabled	26
1-Wire	Disabled	Disabled	32
	Enabled	Enabled	40
	Disabled	Disabled	36
	Enabled	Enabled	44

Serial 2-Wire Mode

Configure 2-wire mode by setting the SDO bit in the CONFIGURATION2 register to 0. In 2-wire mode, the conversion result for ADC A is output on the SDOA pin, and the conversion result for ADC B is output on the SDOB/ALERT pin. See Figure 39 for more information.

Serial 1-Wire Mode

In applications where slower throughput rates are acceptable, or normal averaging oversampling is used, the serial interface can be configured to operate in 1-wire mode. In 1-wire mode, the conversion results from ADC A and ADC B are output on the serial output, SDOA. Additional SCLK cycles are required to propagate all the data. ADC A data is output first, followed by ADC B conversion results. See Figure 40 for more information.

Resolution Boost Mode

The default resolution and output data size for the AD7386 is 16 bits. Enabling the on-chip oversampling function reduces

noise and improves the device performance. To accommodate the performance boost achievable, it is possible to enable an additional two bits of resolution in the conversion output data. If the RES bit in the CONFIGURATION1 register is set to Logic 1 and the AD7386 is in a valid oversampling mode, the conversion result size for the AD7386 is 18 bits.

When the resolution boost mode is enabled, 18 SCLKs are required for the AD7386 to propagate the data.

LOW LATENCY READBACK

The interface on the AD7386 has a one-cycle latency, as shown in Figure 41. For applications that operate at lower throughput rates, the latency of reading the conversion result can be reduced. After the conversion time elapses, a second CS pulse after the initial CS pulse that initiated the conversion can be used to read back the conversion result. This operation is shown in Figure 41.

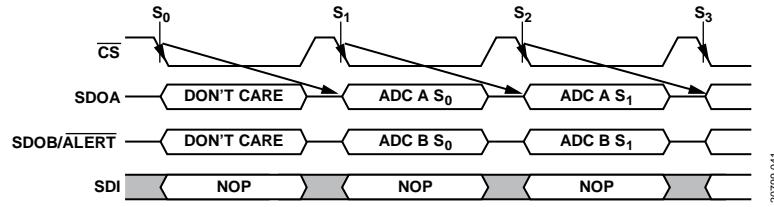


Figure 39. Reading Conversion Results for 2-Wire Mode

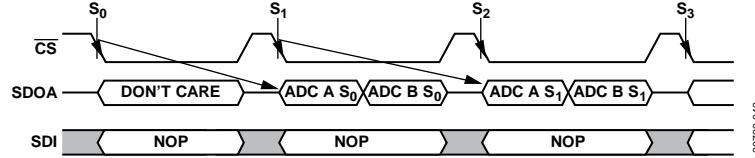


Figure 40. Read Conversion Results for 1-Wire Mode

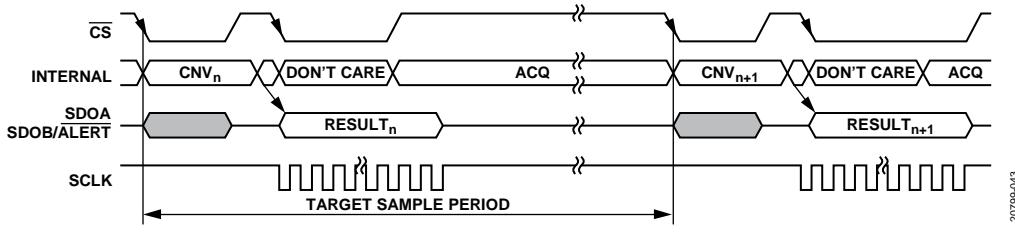


Figure 41. Low Throughput Low Latency

READING FROM DEVICE REGISTERS

All the registers in the device can be read over the serial interface. A register read is performed by issuing a register read command followed by an additional SPI command that can be either a valid command or a no operation (NOP) command. The format for a read command is shown in Table 13. Bit D15 must be set to 0 to select a read command. Bits[D14:D12] contain the register address. The subsequent 12 bits, Bits[D11:D0] are ignored. Figure 42 shows the timing details on reading the AD7386 registers.

WRITING TO DEVICE REGISTERS

All the read and write registers in the AD7386 can be written to over the serial interface. The length of an SPI write access is determined by the CRC write function. An SPI access is 16-bit if the CRC write is disabled and 24-bit when the CRC write is enabled. The format for a write command is shown in Table 13. Bit D15 must be set to 1 to select a write command. Bits[D14:D12] contain the register address. The subsequent 12 bits, Bits[D11:D0], contain the data to be written to the selected register.

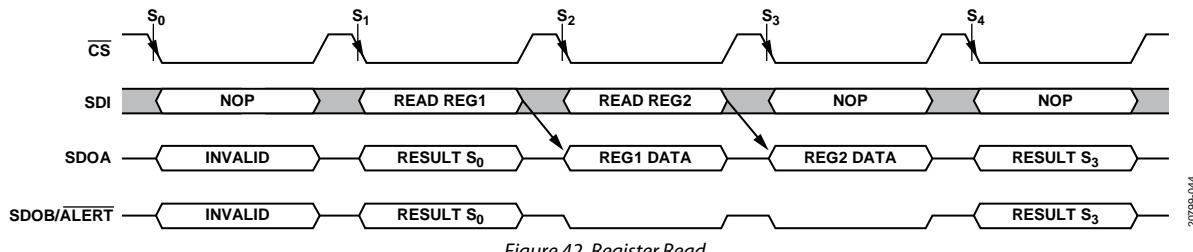


Figure 42. Register Read

20799-044

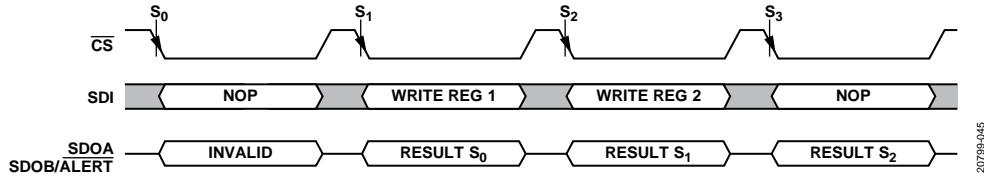


Figure 43. Register Write

20799-045

CRC

The AD7386 has CRC checksum modes that can be used to improve interface robustness by detecting errors in data transmissions. The CRC feature is independently selectable for SPI interface reads and SPI interface writes. For example, enable the CRC function for SPI writes to prevent unexpected changes to the device configuration but not enable it on SPI reads thus maintaining a higher throughput rate. The CRC feature is controlled by programming the CRC_W bit and CRC_R bit in the CONFIGURATION1 register.

CRC Read

If enabled, a CRC is appended to the conversion result or register read and consists of an 8-bit word. The CRC is calculated in the conversion result for ADC A and ADC B and is output on SDOA. A CRC is also calculated and appended to register read outputs.

The CRC read function can be used in 2-wire SPI mode, 1-wire SPI mode, and resolution boost mode.

CRC Write

To enable the CRC write function, the CRC_W bit in the CONFIGURATION1 register must be set to 1. To set the CRC_W bit to 1 to enable the CRC feature, the request frame must have a valid CRC appended to the frame.

After the CRC feature is enabled, all register write requests are ignored unless accompanied by a valid CRC command, requiring a valid CRC to both enable and disable the CRC write feature.

CRC Polynomial

For CRC checksum calculations, the following polynomial is always used:

$$x^8 + x^2 + x + 1$$

To generate the checksum, the 16-bit data conversion result of the two channels are combined, which produces a 32-bit data. The eight MSBs of the 32-bit data are inverted and then shift by eight bits to create a number ending in eight Logic 0s. The polynomial is aligned such that its MSB is adjacent to the leftmost Logic 1 of the data. An exclusive OR (XOR) function is applied to the data to produce a new, shorter number. The polynomial is again aligned such that its MSB is adjacent to the leftmost Logic 1 of the new result, and the procedure is repeated. This process repeats until the original data is reduced to a value less than the polynomial, the 8-bit checksum. For example, the polynomial is 100000111.

Let the original data of two channels be 0xAAAA and 0x5555, that is, 1010 1010 1010 1010 and 0101 0101 0101 0101. The data of the two channels is then appended including eight 0s on the right. The data then becomes 1010 1010 1010 1010 0101 0101 0101 0101 0000 0000.

Table 11 shows the CRC calculation of 16-bit, 2-channel data. In the final XOR operation, the reduced data is less than the polynomial. Thus, the remainder is the CRC for the assumed data.

Table 11. Example CRC Calculation for 2-Channel, 16-Bit Data

Data	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	X ¹							
Process Data	0	1	0	1	0	1	0	1	1	0	1	0	0	1	0	1	0	1	0	1	0	0	0	0	
	1	0	0	0	0	0	1	1	1																
		1	0	1	0	0	0	1	1	0															
		1	0	0	0	0	0	1	1	0															
			1	0	0	0	0	0	1	1															
			1	0	0	0	0	0	1	1															
				1	1	0	0	1	0	1	0	1													
				1	0	0	0	0	0	1	1	1													
					1	0	0	1	0	0	1	0	0												
					1	0	0	0	0	1	1	1													
						1	1	0	1	0	0	1	0	1											
						1	0	0	0	0	0	1	1	1											
							1	0	0	0	0	0	1	1											
								1	1	0	1	0	0	0	1	0	1								
									1	0	0	0	0	0	1	1	1								
										1	0	1	0	0	0	1	0	0							
											1	0	0	0	0	0	1	1							
												1	0	0	1	0	0	0							
													1	0	0	0	0	0							
														1	0	0	1	0	0	0					
															1	0	0	0	1	1	1	0	0	0	0
CRC																									

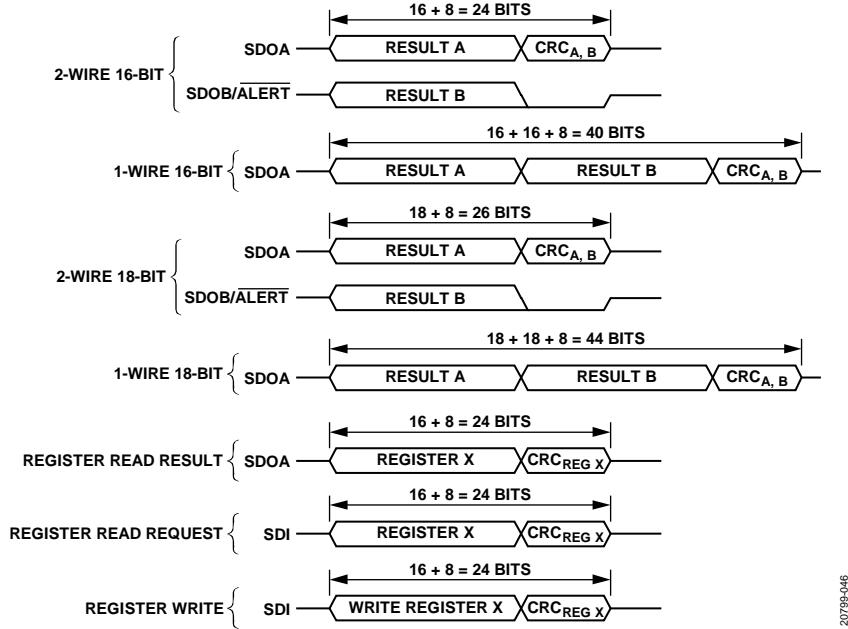

¹X = don't care.

Figure 44. CRC Operation

20799-046

REGISTERS

The AD7386 has user programmable on-chip registers for configuring the device. Table 12 shows a complete overview of the registers available on the AD7386. The registers are either read/write (R/W) or read only (R). Any read request to a write only register is ignored. Any write to a read only register is ignored. Writes to any other register address are considered a NOP and are ignored. Any read request to a register address, other than those listed in Table 12, are considered a NOP, and the data transmitted in the next SPI frame are the conversion results.

Table 12. Register Description

Reg	Name	Bits	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Reset	RW
			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0x1	CONFIGURATION1	[15:8]	ADDRESSING			CH	SEQ	OS_MODE	OSR[2]	0x0000	R/W	
		[7:0]	OSR[1:0]	CRC_W	CRC_R	ALERT_EN	RES	REFSEL	PMODE			
0x2	CONFIGURATION2	[15:8]	ADDRESSING			RESERVED			SDO	0x0000	R/W	
		[7:0]	RESET									
0x3	ALERT	[15:8]	ADDRESSING			RESERVED	CRCW_F	SETUP_F	0x0000	R		
		[7:0]	RESERVED	AL_B_HIGH	AL_B_LOW	RESERVED	AL_A_HIGH	AL_A_LOW				
0x4	ALERT_LOW_THRESHOLD	[15:8]	ADDRESSING			ALERT_LOW[11:8]			0x0000	R/W		
		[7:0]	ALERT_LOW[7:0]									
0x5	ALERT_HIGH_THRESHOLD	[15:8]	ADDRESSING			ALERT_HIGH[11:8]			0x0FF	R/W		
		[7:0]	ALERT_HIGH[7:0]									

ADDRESSING REGISTERS

A serial register transfer on the AD7386 consists of 16 SCLK cycles. The four MSBs written to the device are decoded to determine which register is addressed. The four MSBs consist of the register address (REGADDR), Bits[2:0], and the read/write bit (WR). The register address bits determine which on-chip register is selected. The read/write bit determines if the remaining 12 bits of data on the SDI input are loaded into the addressed register if the addressed register is a valid write register. If the WR bit is 1, the bits load into the register addressed by the register select bits. If the WR bit is 0, the command is seen as a read request. The addressed register data is available to be read during the next read operation.

Table 13. Addressing Register Format

MSB															LSB
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
WR	REGADDR[2:0]														D[11:0]

Table 14. Bit Descriptions for Addressing Registers

Bit	Mnemonic	Description
D15	WR	If a 1 is written to this bit, Bits[11:0] of this register are written to the register specified by REGADDR[2:0] if it is a valid address. Alternatively, if a 0 is written, the next data sent out on the SDOA pin is a read from the designated register if it is a valid address.
D14 to D12	REGADDR[2:0]	When WR = 1, the contents of REGADDR[2:0] determine the register for selection as outlined in Table 12. When WR = 0, and REGADDR[2:0] contain a valid register address, the contents on the requested register are output on the SDOA pin during the next interface access. When WR = 0, and REGADDR[2:0] contain 0x0, 0x6, or 0x7, the contents on the SDI line are ignored. The next interface access results in the conversion results being read back.
D11 to D0	D[11:0]	These bits are written into the corresponding register specified by the REGADDR[2:0] bits when the WR bit is equal to 1 and the REGADDR[2:0] bits contain a valid address.

CONFIGURATION1 REGISTER

Address: 0x1, Reset: 0x0000, Name: CONFIGURATION1

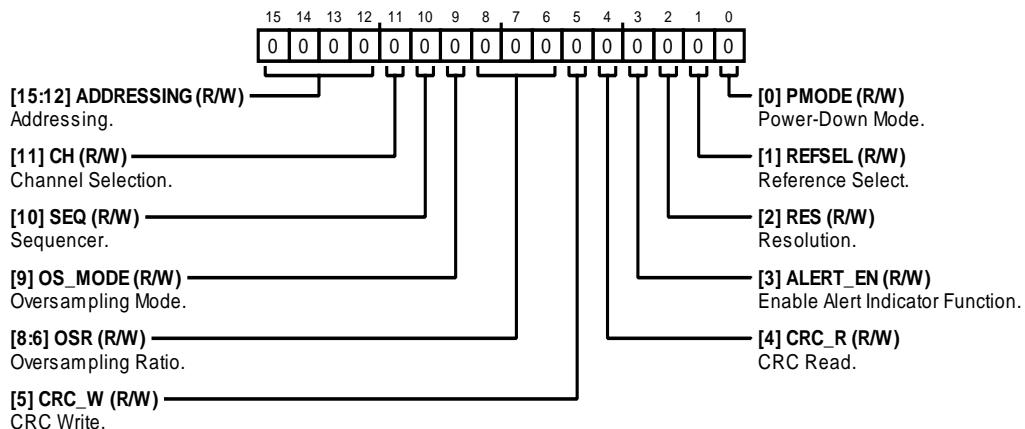


Table 15. Bit Descriptions for CONFIGURATION1

Bits	Bit Name	Description	Reset	Access
[15:12]	ADDRESSING	Addressing. Bits[15:12] define the address of the relevant register. See the Addressing Registers section for further details.	0x0	R/W
11	CH	Channel Selection. Selects the channels to be converted. 0: Channel 0s. Selects Channel 0s of the ADC, A _{IN} A0 and A _{IN} B0. 1: Channel 1s. Selects Channel 1s of the ADC, A _{IN} A1 and A _{IN} B1.	0x0	R/W
10	SEQ	Sequencer. Cycles through the A _{IN} X0 and A _{IN} X1 Channels of the ADC for conversion. 0: sequencer disabled. 1: sequencer enabled.	0x0	R/W

Bits	Bit Name	Description	Reset	Access
9	OS_MODE	Oversampling Mode. Sets the oversampling mode of the ADC. 0: normal average. 1: rolling average.	0x0	R/W
[8:6]	OSR	Oversampling Ratio. Sets the oversampling ratio for all the ADCs in the relevant mode. Normal averaging mode supports oversampling ratios of $\times 2$, $\times 4$, $\times 8$, $\times 16$, and $\times 32$. Rolling average mode supports oversampling ratios of $\times 2$, $\times 4$, and $\times 8$. 000: disabled. 001: 2 \times . 010: 4 \times . 011: 8 \times . 100: 16 \times . 101: 32 \times . 110: disabled. 111: disabled.	0x0	R/W
5	CRC_W	CRC Write. Controls the CRC functionality for the SDI interface. When setting this bit from a 0 to a 1, the command must be followed by a valid CRC to set this configuration bit. If a valid CRC is not received, the entire frame is ignored. If the bit is set to 1, it requires a CRC to clear it to 0. 0: no CRC function. 1: CRC function.	0x0	R/W
4	CRC_R	CRC Read. Controls the CRC functionality for the SDOx interface. 0: no CRC function. 1: CRC function.	0x0	R/W
3	ALERT_EN	Enable Alert Indicator Function. This register functions when the SDO bit = 1. Otherwise, the ALERT_EN bit is ignored. 0: SDOB. 1: ALERT.	0x0	R/W
2	RES	Resolution Boost. Sets the size of the conversion result data. If OSR = 0, these bits are ignored and the resolution is set to default resolution. 0: normal resolution. 1: 2-bit higher resolution.	0x0	R/W
1	REFSEL	Reference Select. Selects the ADC reference source. 0: selects internal reference. 1: selects external reference.	0x0	R/W
0	PMODE	Power-Down Mode. Sets the power modes. 0: normal mode. 1: power-down mode.	0x0	R/W

CONFIGURATION2 REGISTER

Address: 0x2, Reset: 0x0000, Name: CONFIGURATION2

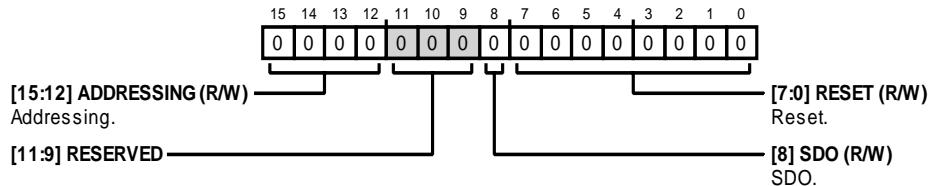


Table 16. Bit Descriptions for CONFIGURATION2

Bits	Bit Name	Description	Reset	Access
[15:12]	ADDRESSING	Addressing. Bits[15:12] define the address of the relevant register. See the Addressing Registers section for further details.	0x0	R/W
[11:9]	RESERVED	Reserved.	0x0	R
8	SDO	SDO. Conversion results serial data output. 0: 2-wire—conversion data are output on both SDOA and SDOB pins. 1: 1-wire—conversion data are output on SDOA pin only.	0x0	R/W
[7:0]	RESET	Reset. 0x3C—performs a soft reset. Refreshes some blocks. Register contents remain unchanged. Clears the alert register and flushes any oversampling stored variables or active state machine. 0xFF—performs a hard reset. Resets all possible blocks in the device. Registers contents are set to defaults. All other values are ignored.	0x0	R/W

ALERT REGISTER

Address: 0x3, Reset: 0x0000, Name: Alert

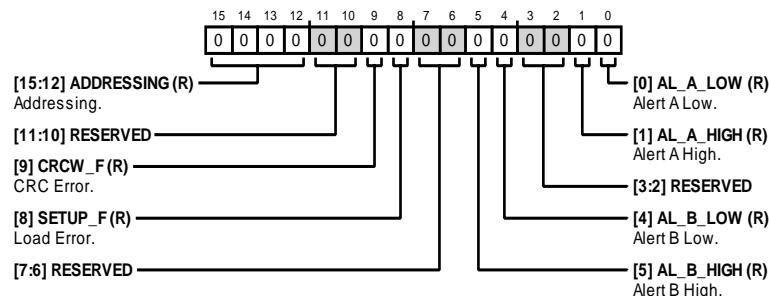


Table 17. Bit Descriptions for Alert

Bits	Bit Name	Description	Reset	Access
[15:12]	ADDRESSING	Addressing. Bits[15:12] define the address of the relevant register. See the Addressing Registers section for further details.	0x0	R
[11:10]	RESERVED	Reserved.	0x0	R
9	CRCW_F	CRC Error. Indicates that a register write command failed due to a CRC error. This fault bit is sticky and remains set until the register is read. 0: no CRC error. 1: CRC error.	0x0	R
8	SETUP_F	Load Error. The SETUP_F bit indicates that the device configuration data did not load correctly on startup. This bit does not clear on an alert register read. A hard reset via the CONFIGURATION2 register is required to clear this bit and restart the device setup again. 0: no setup error. 1: setup error.	0x0	R
[7:6]	RESERVED	Reserved.	0x0	R
5	AL_B_HIGH	Alert B High. The alert indication high bits indicate if a conversion result for the respective input channel exceeds the value set in the ALERT_HIGH_THRESHOLD register. This fault bit is sticky and remains set until the register is read. 1: alert indication. 0: no alert indication.	0x0	R

Bits	Bit Name	Description	Reset	Access
4	AL_B_LOW	Alert B Low. The alert indication low bits indicate if a conversion result for the respective input channel exceeds the value set in the ALERT_LOW_THRESHOLD register. This fault bit is sticky and remains set until the register is read. 1: alert indication. 0: no alert indication.	0x0	R
[3:2]	RESERVED	Reserved.	0x0	R
1	AL_A_HIGH	Alert A High. The alert indication high bits indicate if a conversion result for the respective input channel exceeds the value set in the ALERT_HIGH_THRESHOLD register. This fault bit is sticky and remains set until the register is read. 0: no alert indication. 1: alert indication.	0x0	R
0	AL_A_LOW	Alert A Low. The alert indication low bits indicate if a conversion result for the respective input channel exceeds the value set in the ALERT_LOW_THRESHOLD register. This fault bit is sticky and remains set until the register is read. 1: alert indication. 0: no alert indication.	0x0	R

ALERT_LOW_THRESHOLD REGISTER

Address: 0x4, Reset: 0x0000, Name: ALERT_LOW_THRESHOLD

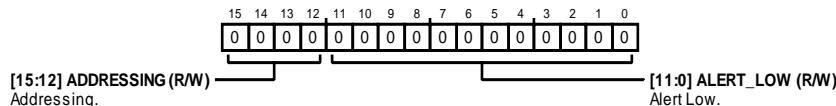


Table 18. Bit Descriptions for ALERT_LOW_THRESHOLD

Bits	Bit Name	Description	Reset	Access
[15:12]	ADDRESSING	Addressing. Bits[15:12] define the address of the relevant register. See the Addressing Registers section for further details.	0x0	R/W
[11:0]	ALERT_LOW	Alert Low. The D[11:0] bits of ALERT_LOW move to the MSBs of the internal alert low register, D[15:4]. The remaining bits, D[3:0], of the internal register are fixed at 0x0. Sets an alert when the converter result is below ALERT_LOW_THRESHOLD and alert is disabled when it is above ALERT_LOW_THRESHOLD.	0x0	R/W

ALERT_HIGH_THRESHOLD REGISTER

Address: 0x5, Reset: 0x0FFF, Name: ALERT_HIGH_THRESHOLD

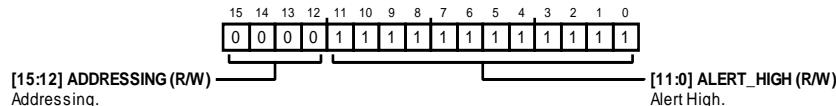


Table 19. Bit Descriptions for ALERT_HIGH_THRESHOLD

Bits	Bit Name	Description	Reset	Access
[15:12]	ADDRESSING	Addressing. Bits [15:12] define the address of the relevant register. See the Addressing Registers section for further details.	0x0	R/W
[11:0]	ALERT_HIGH	Alert High. The D[11:0] bits of ALERT_HIGH move to the MSBs of the internal alert high register D[15:4]. The remaining bits, D[3:0], of the internal register are fixed at 0xF. Sets an alert when the converter result is above the ALERT_HIGH_THRESHOLD register and alert is disabled when it is below the ALERT_HIGH_THRESHOLD Register.	0xFFFF	R/W

OUTLINE DIMENSIONS

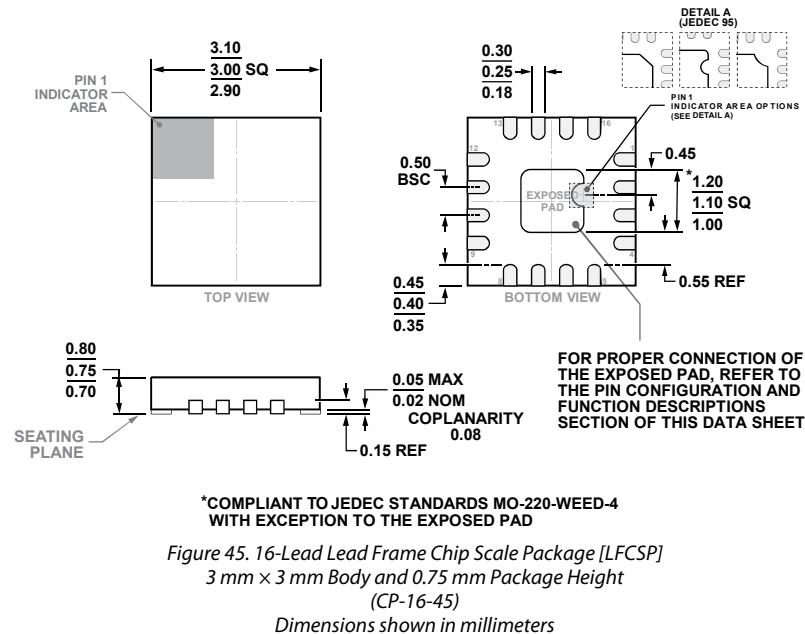


Figure 45. 16-Lead Lead Frame Chip Scale Package [LFCSP]
 3 mm × 3 mm Body and 0.75 mm Package Height
 (CP-16-45)

Dimensions shown in millimeters

ORDERING GUIDE

Model ^{1, 2}	Resolution	Temperature Range	Package Description	Package Option	Marking Code
AD7386BCPZ-RL	16-Bit	−40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-45	C8Z
AD7386BCPZ-RL7	16-Bit	−40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-45	C8Z
EVAL-AD7386FMZ			AD7386 Evaluation Board		

¹ Z = RoHS Compliant Part.

² The EVAL-AD7386FMCZ is compatible with the EVAL-SDP-CH1Z high speed controller board.