

1A, 200V-1000V High Efficient Surface Mount Rectifier

FEATURES

- Glass passivated chip junction
- Low power loss, high efficiency
- Fast switching for high efficiency
- Low profile package
- RoHS Compliant
- Halogen-free according to IEC 61249-2-21

APPLICATIONS

- DC to DC converter
- Switching mode converters and inverters
- Freewheeling application

KEY PARAMETERS		
PARAMETER	VALUE	UNIT
I_F	1	A
V_{RRM}	200 - 1000	V
I_{FSM}	35	A
$T_{J\ MAX}$	150	°C
Package	SOD-128	
Configuration	Single die	

**HALOGEN
FREE**

SOD-128

MECHANICAL DATA

- Case: SOD-128
- Molding compound meets UL 94V-0 flammability rating
- Moisture sensitivity level: level 1, per J-STD-020
- Terminal: Matte tin plated leads, solderable per J-STD-002
- Meet JESD 201 class 2 whisker test
- Polarity: Indicated by cathode band
- Weight: 0.028g (approximately)

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^\circ\text{C}$ unless otherwise noted)							
PARAMETER	SYMBOL	HS1DFS	HS1GFS	HS1JFS	HS1KFS	HS1MFS	UNIT
Marking code on the device		HS1DFS	HS1GFS	HS1JFS	HS1KFS	HS1MFS	
Repetitive peak reverse voltage	V_{RRM}	200	400	600	800	1000	V
Reverse voltage, total rms value	$V_{R(\text{RMS})}$	140	280	420	560	700	V
Forward current	I_F	1					A
Surge peak forward current, single half sine-wave superimposed on rated load	$t = 8.3\text{ms}$	I_{FSM}	35				
	$t = 1.0\text{ms}$		90				
Junction temperature	T_J	-55 to +150					°C
Storage temperature	T_{STG}	-55 to +150					°C

THERMAL PERFORMANCE

PARAMETER	SYMBOL	TYP	UNIT
Junction-to-lead thermal resistance	$R_{\Theta JL}$	29	°C/W
Junction-to-ambient thermal resistance	$R_{\Theta JA}$	51	°C/W
Junction-to-case thermal resistance	$R_{\Theta JC}$	22	°C/W

Thermal Performance Note: Units mounted on PCB (5mm x 5mm Cu pad test board)

ELECTRICAL SPECIFICATIONS (T_A = 25°C unless otherwise noted)

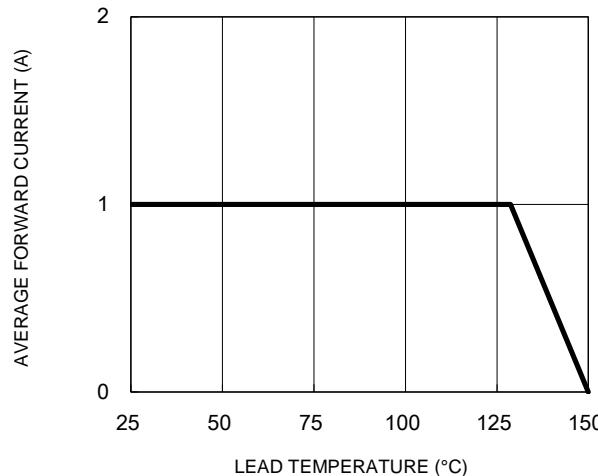
PARAMETER	CONDITIONS	SYMBOL	TYP	MAX	UNIT	
Forward voltage ⁽¹⁾	HS1DFS	$I_F = 0.5A, T_J = 25^\circ C$	V _F	0.80	-	V
		$I_F = 1.0A, T_J = 25^\circ C$		0.85	1.00	V
		$I_F = 0.5A, T_J = 125^\circ C$		0.65	-	V
		$I_F = 1.0A, T_J = 125^\circ C$		0.71	0.80	V
	HS1GFS	$I_F = 0.5A, T_J = 25^\circ C$		0.84	-	V
		$I_F = 1.0A, T_J = 25^\circ C$		0.91	1.30	V
		$I_F = 0.5A, T_J = 125^\circ C$		0.68	-	V
		$I_F = 1.0A, T_J = 125^\circ C$		0.76	0.86	V
	HS1JFS	$I_F = 0.5A, T_J = 25^\circ C$		0.92	-	V
		$I_F = 1.0A, T_J = 25^\circ C$		1.02	1.70	V
		$I_F = 0.5A, T_J = 125^\circ C$		0.73	-	V
		$I_F = 1.0A, T_J = 125^\circ C$		0.83	1.02	V
	HS1KFS HS1MFS	$I_F = 0.5A, T_J = 25^\circ C$		1.32	-	V
		$I_F = 1.0A, T_J = 25^\circ C$		1.49	1.70	V
		$I_F = 0.5A, T_J = 125^\circ C$		0.98	-	V
		$I_F = 1.0A, T_J = 125^\circ C$		1.16	1.39	V
Reverse current @ rated V _R ⁽²⁾	T _J = 25°C	I _R	-	1	µA	
	T _J = 125°C		-	35	µA	
Reverse recovery time	HS1DFS HS1GFS	I _R = 0.5A, I _{rr} = 1.0A, I _{rr} = 0.25A	t _{rr}	-	50	ns
	HS1JFS HS1KFS HS1MFS			-	75	ns
Junction capacitance	HS1DFS	1MHz, V _R = 4.0V	C _J	20	-	pF
	HS1GFS			17	-	pF
	HS1JFS			13	-	pF
	HS1KFS HS1MFS			8	-	pF

Notes:

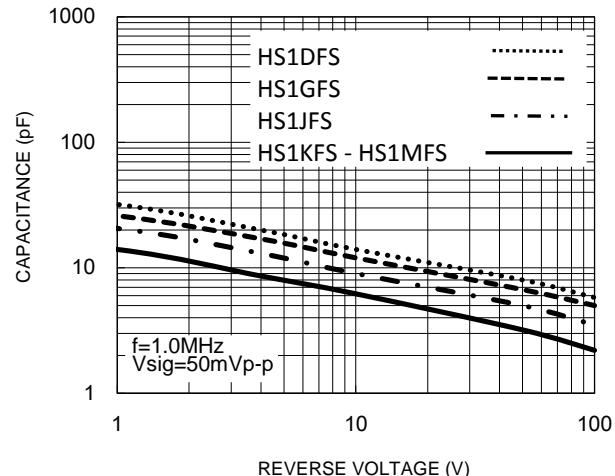
1. Pulse test with PW = 0.3ms
2. Pulse test with PW = 30ms

ORDERING INFORMATION

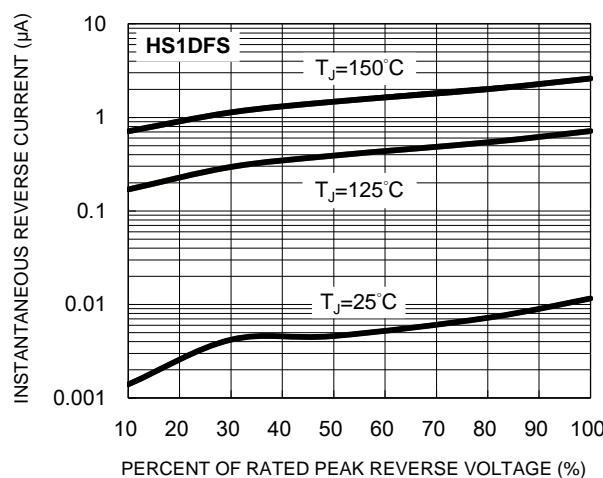
ORDERING CODE⁽¹⁾	PACKAGE	PACKING
HS1xFS	SOD-128	14,000 / Tape & Reel

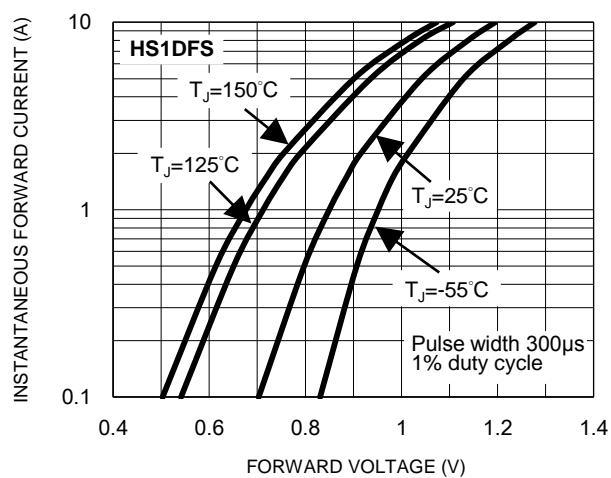

Notes:

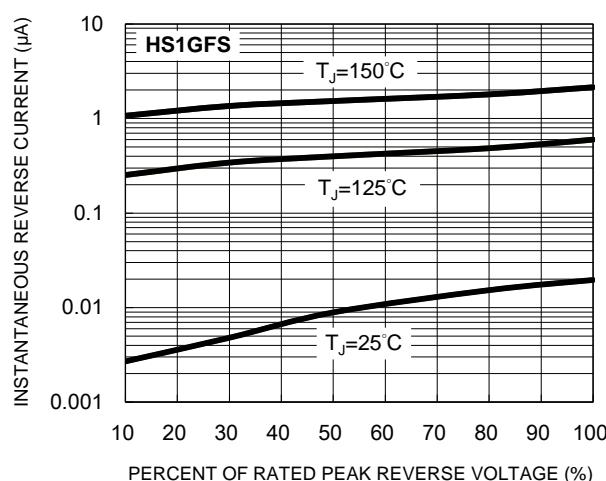
1. "x" defines voltage from 200V(HS1DFS) to 1000V(HS1MFS)


CHARACTERISTICS CURVES

($T_A = 25^\circ\text{C}$ unless otherwise noted)


Fig.1 Forward Current Derating Curve


Fig.2 Typical Junction Capacitance


Fig.3 Typical Reverse Characteristics

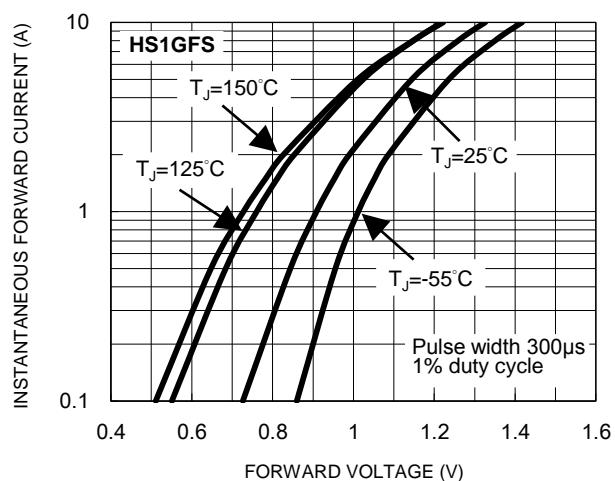
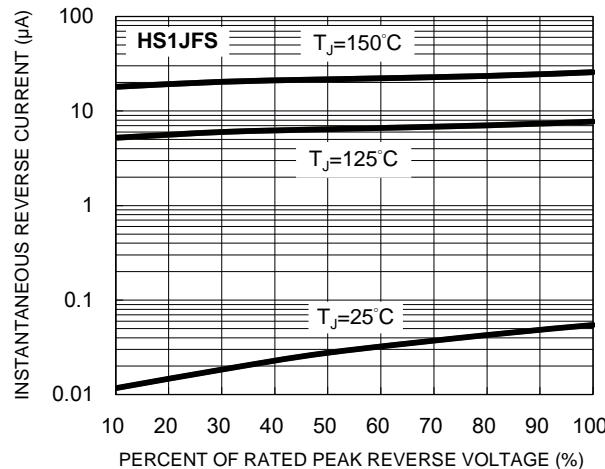
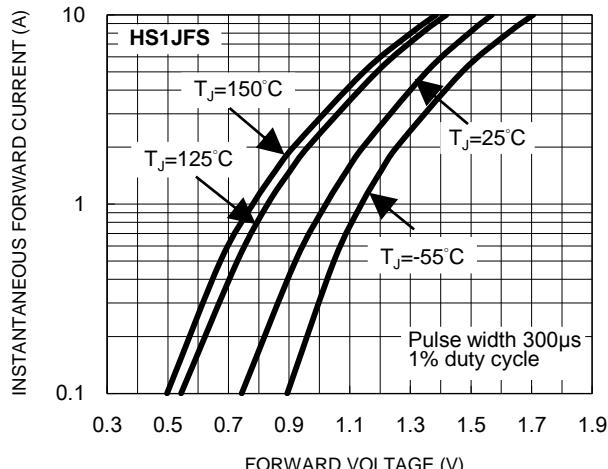

Fig.4 Typical Forward Characteristics

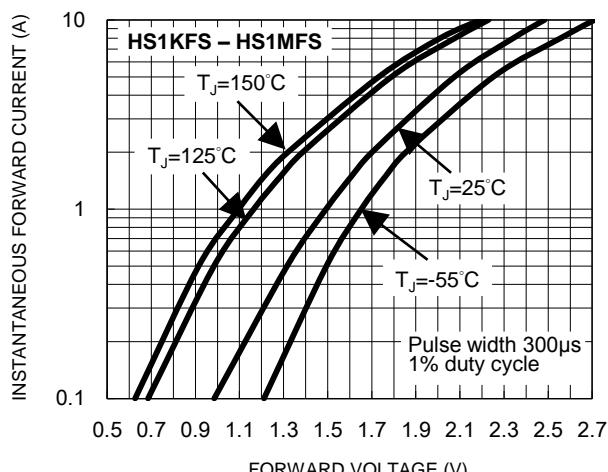
Fig.5 Typical Reverse Characteristics

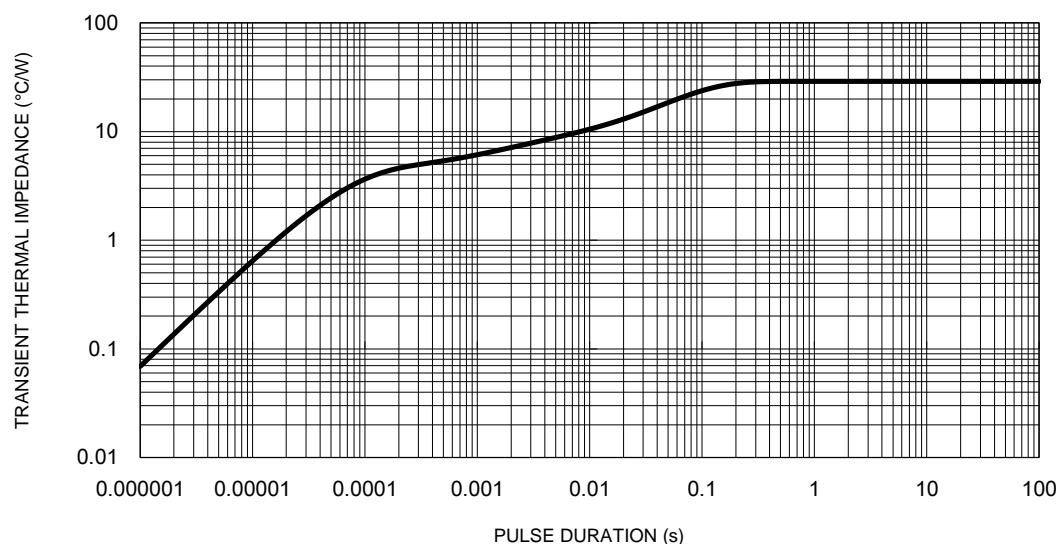

Fig.6 Typical Forward Characteristics


CHARACTERISTICS CURVES

($T_A = 25^\circ\text{C}$ unless otherwise noted)

Fig.7 Typical Reverse Characteristics


Fig.8 Typical Forward Characteristics


Fig.9 Typical Reverse Characteristics

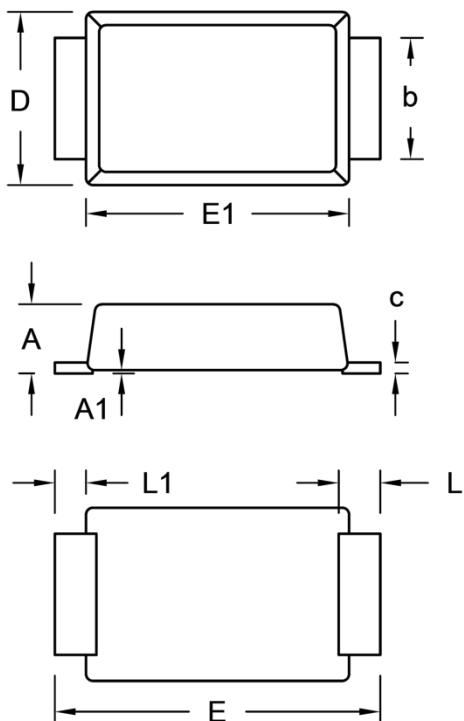


Fig.10 Typical Forward Characteristics

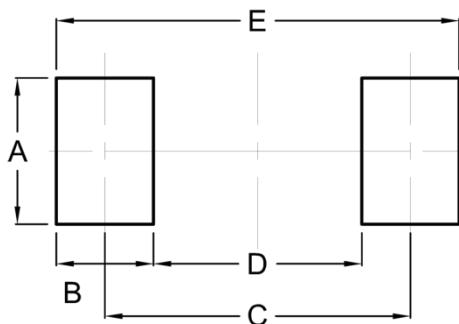


Fig.11 Typical Transient Thermal Impedance

PACKAGE OUTLINE DIMENSIONS
SOD-128

DIM.	Unit (mm)		Unit (inch)	
	Min.	Max.	Min.	Max.
A	0.90	1.10	0.035	0.043
A1	0.00	0.10	0.000	0.004
b	1.60	1.90	0.063	0.075
c	0.10	0.22	0.004	0.009
D	2.30	2.70	0.091	0.106
E	4.40	5.00	0.173	0.197
E1	3.60	4.00	0.142	0.157
L	0.40	0.80	0.016	0.031
L1	0.30	0.60	0.012	0.024

SUGGESTED PAD LAYOUT

Symbol	Unit (mm)	Unit (inch)
A	2.10	0.083
B	1.40	0.055
C	4.40	0.173
D	3.00	0.118
E	5.80	0.228

MARKING DIAGRAM

P/N = Marking Code

YW = Date Code

F = Factory Code

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.