

Configurable Multifunction Gate NL7SZ57

The NL7SZ57 is an advanced high-speed CMOS multifunction gate. The device allows the user to choose logic functions AND, OR, NAND, NOR, XNOR, INVERT and BUFFER. The device has Schmitt-trigger inputs, thereby enhancing noise immunity.

Features

- Designed for 1.65 V to 5.5 V V_{CC} Operation
- 3.3 ns t_{PD} at $V_{CC} = 5 \text{ V (Typ)}$
- Inputs/Outputs Overvoltage Tolerant up to 5.5 V
- IOFF Supports Partial Power Down Protection
- Sink 24 mA at 3.0 V
- Chip Complexity < 100 FETs
- –Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MARKING DIAGRAMS

SC-88/SC70-6/ SOT-363 CASE 419B-02

SC-74 CASE 318F-05

UDFN6, 1.45x1.0, 0.5P CASE 517AQ

UDFN6, 1x1, 0.35P CASE 517BX

XXX = Specific Device Code
M = Date Code*

■ = Pb-Free Package

(Note: Microdot may be in either location or may not be present)

*Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

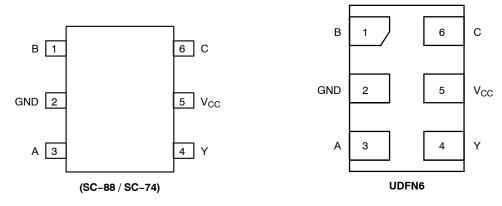


Figure 1. Pinout (Top View)

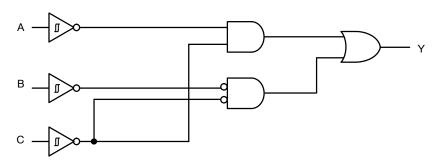


Figure 2. Function Diagram

PIN ASSIGNMENT

Pin	Function
1	В
2	GND
3	Α
4	Υ
5	V _{CC}
6	С

FUNCTION TABLE*

	Input				
Α	В	С	Υ		
L	L	L	Н		
L	L	Н	L		
L	Н	L	H		
L	Н	Н	Н		
Н	L	L	L		
Н	L	Н	L		
Н	Н	L	L		
Н	Н	Н	Н		

 $[\]ensuremath{^{\star}}\xspace$ To select a logic function, please refer to "Logic Configurations section".

LOGIC CONFIGURATIONS

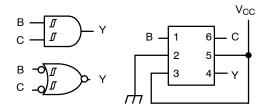


Figure 3. 2-Input AND (When A = "H")

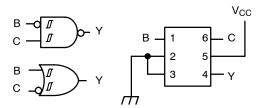


Figure 4. 2-Input NAND with input B inverted (When A = "L")

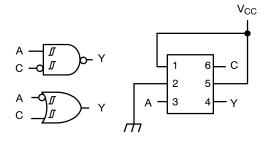


Figure 5. 2-Input NAND with Input C Inverted (When B = "H")

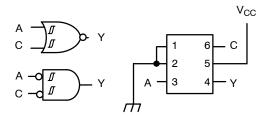


Figure 6. 2-Input NOR (When B = "L")

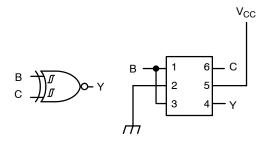


Figure 7. 2-Input XNOR (When A = B)

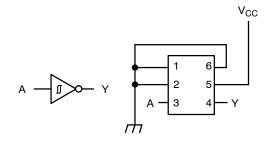


Figure 8. Inverter (When B = C = "L")

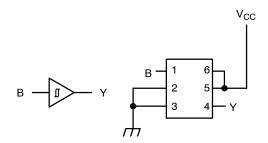


Figure 9. Buffer (When A = "L" and C = "H")

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +6.5	V
V _{IN}	DC Input Voltage	-0.5 to +6.5	V
V _{OUT}	DC Output Voltage Active-Mode (High or Low State Tri-State Mode (Note Power-Down Mode (V _{CC} = 0	-0.5 to +6.5	V
I _{IK}	DC Input Diode Current V _{IN} < GI	ND -50	mA
I _{OK}	DC Output Diode Current V _{OUT} < Gl	ND -50	mA
l _{out}	DC Output Source/Sink Current	±50	mA
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Ground Pin	±100	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Secs	260	°C
TJ	Junction Temperature Under Bias	+150	°C
$\theta_{\sf JA}$	Thermal Resistance (Note 2) SC- SC- UDF	74 320	°C/W
P _D	Power Dissipation in Still Air SC-SC-UDF	74 390	mW
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Oxygen Index: 28 to	34 UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage (Note 3) Human Body Mc Charged Device Mo Charged Device Mo	del >200	V
I _{LATCHUP}	Latchup Performance (Note 4)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Applicable to devices with outputs that may be tri-stated.
- 7. Applicable to devices with outputs that may be the stated.
 2. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow per JESD51-7.
 3. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued. per JEDEC/JEP172A.
- 4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

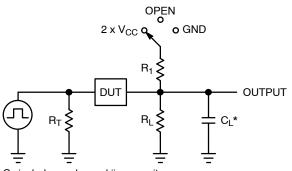
Symbol	Pa	Min	Max	Unit	
V _{CC}	Positive DC Supply Voltage		1.65	5.5	V
V _{IN}	DC Input Voltage		0	5.5	V
V _{OUT}	DC Output Voltage	Active–Mode (High or Low State) Tri–State Mode (Note 1) Power–Down Mode ($V_{CC} = 0 \text{ V}$)	0 0 0	V _{CC} 5.5 5.5	V
T _A	Operating Free-Air Temperature		-55	+125	°C
t _r , t _f	Input Rise or Fall Rate	$\begin{array}{c} V_{CC} = 1.65 \text{ V to } 1.95 \text{ V} \\ V_{CC} = 2.3 \text{ V to } 2.7 \text{ V} \\ V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ V_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \end{array}$	0 0 0 0	No Limit No Limit No Limit No Limit	nS/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

			V _{CC}		Γ _A = 25°(C		≤ T _A ≤		≤ T _A ≤ 5°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V_{T+}	Positive Input		1.65	-	_	1.4	-	1.4	-	1.4	V
	Threshold Voltage		2.3	-	-	1.8	-	1.8	-	1.8	
			3.0	-	-	2.2	-	2.2	-	2.2	
			4.5	-	-	3.1	-	3.1	-	3.1	
			5.5	-	-	3.6	-	3.6	-	3.6	
V_{T-}	Negative Input		1.65	0.2	-	-	0.2	-	0.2	-	V
	Threshold Voltage		2.3	0.4	-	-	0.4	-	0.4	-	
			3.0	0.6	-	-	0.6	-	0.6	-	
			4.5	1.0	-	-	1.0	-	1.0	-	
			5.5	1.2	-	-	1.2	_	1.2	-	
V _H	Negative Input		1.65	0.1	0.1	0.9	0.48	0.9	0.1	0.9	V
	Threshold Voltage		2.3	0.25	0.25	1.1	0.75	1.1	0.25	1.1	
			3.0	0.4	0.4	1.2	0.93	1.2	0.4	1.2	
			4.5	0.6	0.6	1.5	1.2	1.5	0.6	1.5	
			5.5	0.7	0.7	1.7	1.4	1.7	0.7	1.7	
V _{OH}	High-Level Output Voltage	I _{OH} = -50 μA	1.65 to 5.5	V _{CC} - 0.1	V _{CC}	-	V _{CC} - 0.1	-	V _{CC} - 0.1	-	V
	$V_{IN} = V_{IH}$ or V_{IL}	I _{OH} = -4 mA	1.65	1.20	1.52	-	1.20	_	1.20	-	
		I _{OH} = -8 mA	2.3	1.9	2.1	-	1.9	_	1.9	-	
		I _{OH} = -16 mA	3	2.4	2.7	-	2.4	-	2.4	-	
		I _{OH} = -24 mA	3	2.3	2.5	-	2.3	_	2.3	-	
		I _{OH} = -32 mA	4.5	3.8	4	-	3.8	_	3.8	-	
V _{OL}	Low-Level Output Voltage	I _{OL} = 100 μA	1.65 to 5.5	-	-	0.1	-	0.1	-	0.1	V
	$V_{IN} = V_{IH}$ or V_{IL}	I _{OL} = 4 mA	1.65	-	0.08	0.45	-	0.45	-	0.45	
		I _{OL} = 8 mA	2.3	-	0.2	0.3	-	0.3	-	0.4	
		I _{OL} = 16 mA	3	-	0.28	0.4	-	0.4	-	0.5	
		I _{OL} = 24 mA	3	-	0.38	0.55	-	0.55	-	0.55	
		I _{OL} = 32 mA	4.5	-	0.42	0.55	-	0.55	-	0.65	
I _{IN}	Input Leakage Current	V _{IN} = 5.5 V or GND	1.65 to 5.5	-	_	+0.1	-	+1.0	-	+1.0	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0	-	-	1.0	-	10	-	10	μΑ
I _{CC}	Quiescent Supply Current	V _{IN} = 5.5 V or GND	5.5	_	_	1.0	-	10	-	10	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


AC ELECTRICAL CHARACTERISTICS

				7	Γ _A = 25°0			S ≤ T _A S5°C		≤ T _A 25°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	PLH, the Propagation Delay, (A or B or C) to Y (Figures 10 and 11)	$R_L = 1 \text{ k}\Omega,$ $C_L = 30 \text{ pF}$	1.65 to 1.95	-	8.6	14.4	-	14.4	-	14.4	ns
		$R_L = 500 \Omega$, $CL = 30 pF$	2.3 to 2.7	_	5.1	8.3	-	8.3	-	8.3	
	$R_L = 500 \Omega,$ $C_L = 50 pF$	3.0 to 3.6	-	3.9	6.3	-	6.3	-	6.3		
		C _L = 50 pF	4.5 to 5.5	_	3.3	5.1	-	5.1	-	5.1	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	2.5	pF
C _{OUT}	Output Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	4.0	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	10 MHz, V_{CC} = 3.3 V, V_{IN} = 0 V or V_{CC} 10 MHz, V_{CC} = 5.0 V, V_{IN} = 0 V or V_{CC}	16 19.5	pF

^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

Test	Switch Position	C _L , pF	R_L, Ω	R ₁ , Ω	
t _{PLH} / t _{PHL}	Open	See AC Characteristics Table			
t _{PLZ} / t _{PZL}	2 x V _{CC}	50	500	500	
t _{PHZ} / t _{PZH}	GND	50	500	500	

X = Don't Care

C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 Ω) f=1 MHz

Figure 10. Test Circuit

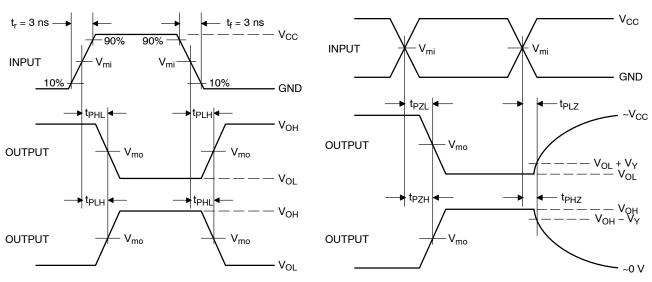


Figure 11. Switching Waveforms

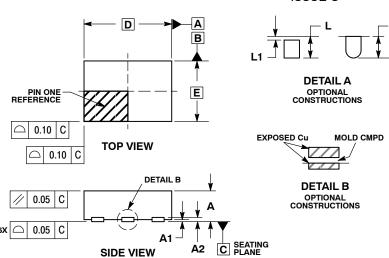
		1		
V _{CC} , V	V _{mi} , V	t _{PLH} , t _{PHL}	t _{PZL} , t _{PLZ} , t _{PZH} , t _{PHZ}	V _Y , V
1.65 to 1.95	V _{CC} /2	V _{CC} / 2	V _{CC} / 2	0.15
2.3 to 2.7	V _{CC} / 2	V _{CC} / 2	V _{CC} / 2	0.15
3.0 to 3.6	V _{CC} /2	V _{CC} / 2	V _{CC} / 2	0.3
4.5 to 5.5	V _{CC} /2	V _{CC} / 2	V _{CC} / 2	0.3

ORDERING INFORMATION

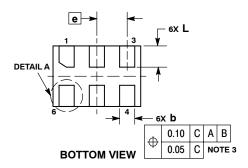
Device	Package	Specific Device Code	Pin 1 Orientation (See below)	Shipping [†]
NL7SZ57DFT2G	SC-88 (Pb-Free)	MN	Q4	3000 / Tape & Reel
NL7SZ57DFT2G-Q*	SC-88 (Pb-Free)	MN	Q4	3000 / Tape & Reel
NL7SZ57DBVT1G	SC-74 (Pb-Free)	AL	Q4	3000 / Tape & Reel
NL7SZ57MU1TCG (Contact onsemi)	UDFN6, 1.45 x 1.0, 0.5P (Pb-Free)	TBD	Q4	3000 / Tape & Reel
NL7SZ57MU3TCG (Contact onsemi)	UDFN6, 1.0 x 1.0, 0.35P (Pb-Free)	P (Rotated 270° CW)	Q4	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

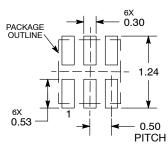
Pin 1 Orientation in Tape and Reel


Direction of Feed

^{*-}Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.


PACKAGE DIMENSIONS

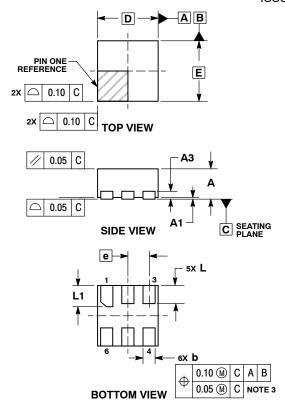
UDFN6, 1.45x1.0, 0.5P CASE 517AQ ISSUE O



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP.

$\overline{}$					
	MILLIMETERS				
DIM	MIN	MAX			
Α	0.45	0.55			
A1	0.00	0.05			
A2	0.07	REF			
b	0.20	0.30			
D	1.45	BSC			
Е	1.00	BSC			
Φ	0.50 BSC				
L	0.30	0.40			
L1		0.15			

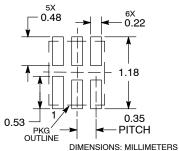
MOUNTING FOOTPRINT



DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


UDFN6, 1x1, 0.35P CASE 517BX **ISSUE O**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER DIMENSIONING AND TOLERANCING FEA ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION 6 APPLIES TO PLATED
- TERMINAL AND IS MEASURED BETWEEN
 0.15 AND 0.20 MM FROM TERMINAL TIP.
 PACKAGE DIMENSIONS EXCLUSIVE OF
 BURRS AND MOLD FLASH.

DOTTI TO AIND MICED I					
	MILLIMETERS				
DIM	MIN	MAX			
Α	0.45	0.55			
A1	0.00	0.05			
А3	0.13	REF			
b	0.12	0.22			
D	1.00	BSC			
Е	1.00	BSC			
е	0.35 BSC				
L	0.25	0.35			
L1	0.30	0.40			

RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi. On Semi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries. LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

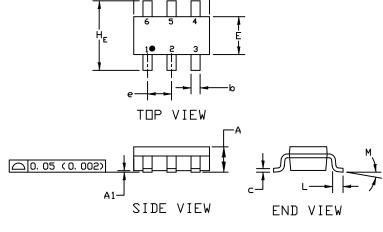
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative


SC-74 CASE 318F ISSUE P

DATE 07 OCT 2021

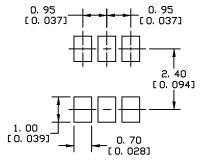
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
- 2. CONTROLLING DIMENSION: INCHES
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
A	0. 90	1. 00	1. 10	0. 035	0. 039	0. 043
A1	0. 01	0. 06	0.10	0. 001	0. 002	0. 004
ھ	0. 25	0. 37	0. 50	0. 010	0. 015	0. 020
С	0.10	0. 18	0. 26	0. 004	0. 007	0. 010
D	2. 90	3. 00	3. 10	0. 114	0. 118	0. 122
Ε	1. 30	1. 50	1. 70	0. 051	0. 059	0. 067
е	0. 85	0. 95	1. 05	0. 034	0. 037	0. 041
Η _E	2. 50	2. 75	3. 00	0. 099	0. 108	0. 118
L	0. 20	0. 40	0. 60	0. 008	0. 016	0. 024
М	0*		10°	0*		10*

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code


M = Date Code

CTVLE O

= Pb-Free Package
 (Note: Microdot may be in either location)

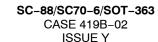
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

CTVI F O

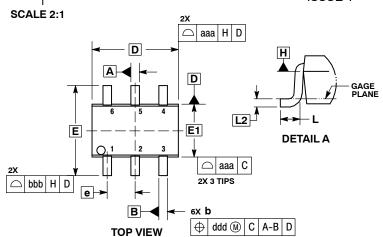
For additional information on our Pb-Free strategy and soldering details, please download the UN Seniconductor Soldering and Mounting Techniques Reference Manual, SULDERRM/D.

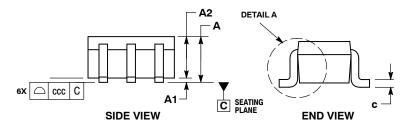
SOLDERING FOOTPRINT

PIN 1. CATHODE 2. ANODE	PIN 1. NO CONNECTION 2. COLLECTOR	PIN 1. EMITTER 1 2. BASE 1	PIN 1. COLLECTOR 2 2. EMITTER 1/EMITTER 2	PIN 1. CHANNEL 1 2. ANODE	PIN 1. CATHODE 2. ANODE
3. CATHODE 4. CATHODE 5. ANODE	3. EMITTER 4. NO CONNECTION 5. COLLECTOR	3. COLLECTOR 2 4. EMITTER 2 5. BASE 2	3. COLLECTOR 1 4. EMITTER 3 5. BASE 1/BASE 2/COLLECTOR 3	3. CHANNEL 2 4. CHANNEL 3 5. CATHODE	3. CATHODE 4. CATHODE 5. CATHODE
6. CATHODE	6. BASE	6. COLLECTOR 1	6. BASE 3	6. CHANNEL 4	6. CATHODE
STYLE 7: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1	STYLE 8: PIN 1. EMITTER 1 2. BASE 2 3. COLLECTOR 2 4. EMITTER 2 5. BASE 1 6. COLLECTOR 1	STYLE 9: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 10: PIN 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE	STYLE 11: PIN 1. EMITTER 2. BASE 3. ANODE/CATHODE 4. ANODE 5. CATHODE 6. COLLECTOR	≣


CTVLE 4.

DOCUMENT NUMBER:	98ASB42973B	the Document Repository. COPY" in red.	
DESCRIPTION:	SC-74		PAGE 1 OF 1


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


CTVLE 1.

DATE 11 DEC 2012

NOTES:

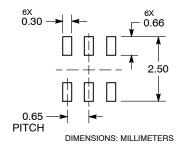
- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. DIMENSIONS b AND B ARE DETERMINED AT DATUM H. DIMENSIONS b AND C APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.

- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.00		0.10	0.000		0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
С	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
E	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
е	0.65 BSC		0.026 BSC			
L	0.26	0.36	0.46	0.010	0.014	0.018
L2	0.15 BSC			0.006 BSC		
aaa		0.15			0.006	
bbb	0.30		0.012			
ccc	0.10			0.004		
ddd		0.10			0.004	

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code


= Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

- *Date Code orientation and/or position may vary depending upon manufacturing location.
- *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42985B Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED CONTROLLED		
DESCRIPTION:	SC-88/SC70-6/SOT-363		PAGE 1 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SC-88/SC70-6/SOT-363 CASE 419B-02 ISSUE Y

DATE 11 DEC 2012

STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N/C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2	STYLE 8: CANCELLED	STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2	STYLE 10: PIN 1. SOURCE 2 2. SOURCE 1 3. GATE 1 4. DRAIN 1 5. DRAIN 2 6. GATE 2	STYLE 11: PIN 1. CATHODE 2 2. CATHODE 2 3. ANODE 1 4. CATHODE 1 5. CATHODE 1 6. ANODE 2	STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2
STYLE 13: PIN 1. ANODE 2. N/C 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 14: PIN 1. VREF 2. GND 3. GND 4. IOUT 5. VEN 6. VCC	STYLE 15: PIN 1. ANODE 1 2. ANODE 2 3. ANODE 3 4. CATHODE 3 5. CATHODE 2 6. CATHODE 1	STYLE 16: PIN 1. BASE 1 2. EMITTER 2 3. COLLECTOR 2 4. BASE 2 5. EMITTER 1 6. COLLECTOR 1	STYLE 17: PIN 1. BASE 1 2. EMITTER 1 3. COLLECTOR 2 4. BASE 2 5. EMITTER 2 6. COLLECTOR 1	STYLE 18: PIN 1. VIN1 2. VCC 3. VOUT2 4. VIN2 5. GND 6. VOUT1
STYLE 19: PIN 1. I OUT 2. GND 3. GND 4. V CC 5. V EN 6. V REF	STYLE 20: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR	STYLE 21: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. N/C 6. CATHODE 1	STYLE 22: PIN 1. D1 (i) 2. GND 3. D2 (i) 4. D2 (c) 5. VBUS 6. D1 (c)	STYLE 23: PIN 1. Vn 2. CH1 3. Vp 4. N/C 5. CH2 6. N/C	STYLE 24: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE
STYLE 25: PIN 1. BASE 1 2. CATHODE 3. COLLECTOR 2 4. BASE 2 5. EMITTER 6. COLLECTOR 1	STYLE 26: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1	STYLE 27: PIN 1. BASE 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. EMITTER 2 6. COLLECTOR 2	STYLE 28: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 29: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE/ANODE 6. CATHODE	STYLE 30: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER: 98ASB42985B		Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-88/SC70-6/SOT-363		PAGE 2 OF 2	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

