onsemi

Low Supply Signal Bypass IC

Product Preview **FSA557**

The FSA557 integrates 0.3 Ω depletion and enhancement mode switches to provide a signal bypass solution when batteries of wireless devices are low or have no charge left. In addition, an optional slow gradual transition is included to suppress any undesirable artifacts (ex: click and pop) when switching between signal sources. The depletion technology allows the device to conduct signals when there is no V_{DD} available and to isolate signals when V_{DD} is present. The FSA557 is 5.5 V tolerant and can pass or isolate negative signal swings down to -1.5 V.

Features

- Dual Depletion Switches
 - Normally Closed when $V_{DD} < 0.5 V$
 - ◆ V_{SW}: −1.5 V to +5.5 V
 - R_{ON}: 220 mΩ (Typical)
 - ◆ THD+N: −110 dB (Typical)
- Dual Enhancement Switches
 - ◆ V_{SW}: −1.5 V to +5.5 V
 - R_{ON}: 290 mΩ (Typical)
 - ◆ THD+N: −113 dB (Typical)

Typical Applications

- Battery Powered Devices
- Wireless Headphones

Figure 1. Application Schematic

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

WLCSP 12 UCX SUFFIX CASE 567ZW

MARKING DIAGRAM

- VT = Specific Device Code
- ZZ = 2-digit Lot Run Code
- A = Assembly Location Code
- YY = 2-digit Year Code
- WW = Weekly Date Code (1 to 52)

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 7 of this data sheet.

Table 1. PIN FUNCTION DESCRIPTION

Pin No. WLCSP12	Pin Name	Description
A1	L1	Low Supply Signal Path 1
A2	VDD	Power Supply or Select Signal from Host GPIO
A3	L2	Low Supply Signal Path 2
B1	COM1	Common Port 1
B2	NC	No Connect
B3	COM2	Common Port 2
C1	H1	High Supply Signal Path 1
C2	EN_N	Path enable (active low)
C3	H2	High Supply Signal Path 2
D1	C_EXT	Capacitor Reference (Floating disables slow gradual transition)
D2	GND	Ground
D3	SEL	Path Select (Grounding forces VDD to determine path selection)

Table 2. SWITCH TRUTH TABLE

VDD	EN_N	SEL	Switch State	Notes
Low or FLOAT	Х	Х	COMM1/2 = L1/2	Dead battery
High	LOW OR FLOAT	LOW OR FLOAT	COMM1/2 = H1/2	Good battery
Х	LOW OR FLOAT	HIGH	COMM1/2 = L1/2	Low battery
HIGH	HIGH	Х	Hi–Z	Both paths disabled

NOTE: Click and pop suppression active during any switch state transition that occurs with VDD at an active HIGH level

Table 3. APPLICATION CIRCUIT COMPONENTS

Component	Manufacturer	Part Number	Value	Case Size	Voltage Rating
C _{REF}			40 nF		

Figure 2. Functional Diagram

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{DD}	Supply Voltage	Slew Rate 2V/µs (rising), 1V/µs (falling)	-0.5		6.0	V
V _{SW(ON)}	Switch Voltage Range; L#, H#,	Switch Conducting/Isolating	-2.0		6.0	V
V _{SW(OFF)}	- COM#	Switch Isolating	-2.0		6.0	1
I _{SW}	Maximum DC Switch I/O Current				350	mA
V _{CNTRL}	Control Input Voltage; SEL, EN_N		-0.3		6.0	V
TJ	Junction Temperature		-40		+150	°C
T _{STG}	Storage Temp		-65		+150	°C
ΤL	Soldering Temp (10 Seconds)				+260	°C
ESD _{HBM}	Electrostatic Discharge Protection	Human Body Model		4.0		kV
ESD _{CDM}	- Level	Charged Device Model		2.0		1
ESD _{IEC}		IEC 61000-4-2 System (Contact)		8		
		IEC 61000-4-2 System (Air Gap)		15		1
Latchup	Latchup Current	JEDEC Standard: JESD78		100		mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 5. THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, WLCSP-9 Thermal Resistance, Junction-to-Air (Note 1)	R _{θJA}	48	°C/W

1. JEDEC Standard, Still Air, 4-layer board with vias

Table 6. RECOMMENDED OPERATING RANGES

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{DD(L#)}	Supply Voltage Range	Low Supply Path Conducting	0.0		5.5	V
V _{DD(H#)}		High Supply Path Conducting	1.65		5.5	1
V _{SW(ON)}	Switch Voltage Range; L#, H#, COM#	Switch Conducting	-1.5		5.5	V
V _{SW(OFF)}		Switch Isolating	-1.5		5.5	1
V _{CNTRL}	Control Input Voltage; SEL, EN_N, NC		0.0		5.5	V
T _A	Operating Ambient Temperature		-40		+85	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
OFF	1					
I _{OFF (H#)}	Switch Off Leakage Current	V _{DD} = 0 V, High Supply Path Isolating; COM1/2 = GND; H1/2 = 5.5 V		0.01	0.50	μA
I _{OFF (L#)}	-	V _{DD} = 5.5 V, Low Supply Path Isolating; COM1/2 = GND; L1/2 = 5.5 V		0.2	4.5	
R _{ON} *		L	1			1
R _{ON (H#)}	Switch On Resis- tance	High Supply Path Conducting; I_{SW} =100 mA, V_{SW} = -1.5 V to +5.5 V		290	500	mΩ
R _{ON (L#)}	-	Low Supply Path Conducting; I_{SW} = 100 mA, V_{SW} = -1.5 V to +5.5 V		220	500	
∆R _{ON}	1					
ΔR _{ON (H#)}	Switch On Resis- tance Matching	High Supply Path Conducting; I_{SW} = 100 mA, V_{SW} = -1.5 V to +5.5 V		15		mΩ
ΔR _{ON (L#)}	1	Low Supply Path Conducting; I_{SW} =100 mA, V_{SW} = -1.5 V to +5.5 V		15		
THD+N				•		
THD+N(H#) 1kHz	Total Harmonic Dis- tortion + Noise	High Supply Path Conducting; $R_L = 32 \Omega$; $V_{SW} = 1 V_{RMS}$; f = 1 kHz		-113		dB
THD+N(L#) 1kHz		Low Supply Path Conducting; $R_L = 32 \Omega$; $V_{SW} = 1 V_{RMS}$; f = 1 kHz		-110		
OIRR						
OIRR(H#) 1kHz	Off Isolation Rejec- tion Ratio	High Supply Path Isolating; R _L = 32 Ω ; VSW = 1 V _{RMS} ; f = 1 kHz		-117		dB
OIRR(H#) 20kHz		High Supply Path Isolating; R _L = 32 Ω ; V _{SW} = 1 V _{RMS} ; f = 20 kHz		-96		
OIRR(L#) 1kHz		Low Supply Path Isolating; R _L = 32 Ω ; V _{SW} = 1 V _{RMS} ; f = 1 kHz		-107		
OIRR(L#) 20kHz		Low Supply Path Isolating; $R_L = 32 \Omega$; $V_{SW} = 1 V_{RMS}$; f = 20 kHz		-88		
XTALK						
XTALK(H#) 1 kHz	Crosstalk	Low Supply Path Conducting; $R_L = 32 \Omega$; $V_{SW} = 1 V_{RMS}$; f = 1 kHz; Measure COM2/H1 & COM1/H2		-120		dB
XTALK(L#) 1 kHz		High Supply Path Conducting; $R_L = 32 \Omega$; $V_{SW} = 1 V_{RM}$ S; f = 1 kHz; Measure COM2/L1 & COM1/L2		-120		
BW						•
BW(H#)	Bandwidth	High Supply Path Conducting; $R_S = 50 \Omega$; $R_L = 50 \Omega$; $V_{SW} = 70.7 mV_{RMS}$		175		MHz
BW(L#)	-	Low Supply Path Conducting; $R_S = 50 \Omega$; $R_L = 50 \Omega$; $V_{SW} = 70.7 mV_{RMS}$		155		
PSRR	-	•	-	-	-	4
PSRR(H#) 217 Hz	Power Supply Rejec- tion Ratio	High Supply Path Conducting; $R_L = 32 \Omega$; $V_DD = 3.3 V_{DC} + 100 \text{ mVAC,pk}$; f = 217 Hz		-112		dB
PSRR(H#) 1 kHz		High Supply Path Conducting; $R_L = 32 \Omega$; $V_{DD} = 3.3 V_{DC} + 100 mVAC, pk; f = 1 kHz$	1	-112		
PSRR(H#) 20 kHz		High Supply Path Conducting; $R_L = 32 \Omega$; $V_{DD} = 3.3 V_{DC} + 100 \text{ mVAC,pk}$; f = 20 kHz		-92		1
DD	1					4
I _{DDT}	Peak Startup Supply Current	V _{DD} = 0 V to 5.5 V		2.5		mA

Table 7. ELECTRICAL CHAR	ACTERISTICS Unless otherwise specific	ed, typical values are for T _A =	= 25°C, V _{DD} = 0 V or 3.3 V.
--------------------------	---------------------------------------	---	---

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{DD}						
I _{DD}	Quiescent Current	High Supply Path Conducting		65		μA
I _{SD}	Shutdown Current	Low Supply Path Conducting, V_{DD} = 3.3 V		1.25		μA
I _{DIS}	Disbale Current	Low Supply Path Conducting; V_{DD} = 0.2 V		0.05	1.0	μA

\mathbf{R}_{PD}

R _{PD (VDD)}	V _{DD} Pull-Down Re- sistance	$V_{DD} \le 0.8 \text{ V}$	5.8	MΩ
R _{PD (VCNTRL)}	Pull-Down Resis- tance on SEL, EN_N	V _{CNTRL} ≤ 5.5 V	5.0	MΩ
R _{PD (NC)}	Pull-Down Resis- tance on NC	$V_{DD} = V_{NC} \le 5.5 \text{ V}$	100	kΩ

V_{TH}

- 18						
V _{DDH}	V _{DD} High Voltage Threshold				1.65	V
V _{DDL}	V _{DD} Low Voltage Threshold		0.5			V
V _{DD_HYST}	V _{DD} Hysteresis			160		mV
V _{IH}	Input High Voltage Threshold	SEL, EN_N			1.5	V
V _{IL}	Input Low Voltage Threshold	SEL, EN_N	0.5			V
V _{HYST}	Input Hysteresis	SEL, EN_N		80		mV

t_{ON}

t _{ON (L#)}	Switch Path Turn On Time		0.3	ms
		V_{DD} = 3.3 V; R _L = 32 Ω ; C _L = 10 pF; V _{SW} = 1.414 V; SEL = 0.0 V to 3.3 V; C_EXT = 20 nF	50	
		V_{DD} = 3.3 V; R _L = 32 Ω ; C _L = 10 pF; V _{SW} = 1.414 V; SEL = 0.0 V to 3.3 V; C_EXT = 40 nF	100	
t _{ON (H#)}		V_{DD} = 3.3 V; R _L = 32 Ω ; C _L = 10 pF; V _{SW} = 1.414 V; SEL = 3.3 V to 0.0 V; C_EXT = FLOAT	3.5	
		V_{DD} = 3.3 V; R _L = 32 Ω ; C _L = 10 pF; V _{SW} = 1.414 V; SEL = 3.3 to 0.0 V; C_EXT = 20 nF	50	
		$ V_{DD} = 3.3 \text{ V}; \text{ R}_{L} = 32 \Omega; \text{ C}_{L} = 10 \text{ pF}; \text{ V}_{SW} = 1.414 \text{ V}; \\ \text{SEL} = 3.3 \text{ V} \text{ to } 0.0 \text{ V}; \text{ C}_{EXT} = 40 \text{ nF} $	100	

t_{OFF}

-OFF				
t _{OFF (L#)} Switch Path Turn Off Time			0.6	ms
		$ V_{DD} = 3.3 \text{ V}; \text{ R}_L = 32 \ \Omega; \text{ C}_L = 10 \text{ pF}; \text{ V}_{SW} = 1.414 \text{ V}; \\ \text{SEL} = 3.3 \text{ V} \text{ to } 0.0 \text{ V}; \text{ C}_\text{EXT} = 20 \text{ nF} $	30	
		$ V_{DD} = 3.3 \text{ V}; \text{ R}_L = 32 \ \Omega; \text{ C}_L = 10 \text{ pF}; \text{ V}_{SW} = 1.414 \text{ V}; \\ \text{SEL} = 3.3 \text{ V} \text{ to } 0.0 \text{ V}; \text{ C}_\text{EXT} = 40 \text{ nF} $	60	
t _{OFF (H#)}	Switch Path Turn Off Time	V_{DD} = 3.3 V; R _L = 32 Ω ; C _L = 10 pF; V _{SW} = 1.414 V; SEL = 0.0 V to 3.3 V; C_EXT = FLOAT	0.1	ms
			30	
		$ V_{DD} = 3.3 \text{ V}; \text{ R}_{L} = 32 \Omega; \text{ C}_{L} = 10 \text{ pF}; \text{ V}_{SW} = 1.414 \text{ V}; \\ \text{SEL} = 0.0 \text{ V} \text{ to } 3.3 \text{ V}; \text{ C}_{EXT} = 40 \text{ nF} $	60	

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{BBM}							
t _{BBM (L#)}	Break Before Make Time	V_{DD} = 3.3 V; R _L = 32 Ω ; C _L = 10 pF; V _{SW} = 1.414 V; SEL = 0.0 to 3.3 V; C_EXT = FLOAT		0.2		ms	
				20			
		V_{DD} = 3.3 V; R _L = 32 Ω ; C _L = 10 pF; V _{SW} = 1.414 V; SEL = 0.0 V to 3.3 V; C_EXT = 40 nF		40			
t _{BBM (H#)}				3			
				20			
				40			

Table 7. ELECTRICAL CHARACTERISTICS Unless otherwise specified, typical values are for T_A = 25°C, V_{DD} = 0 V or 3.3 V.

CON

CON				
C _{ON (H#)}	On Capacitance	High Supply Path Conducting; V _{SW} = 100 mVDC + 100 mVAC,pk; f = 1 MHz;	45	pF
C _{ON (L#)}		Low Supply Path Conducting; V _{SW} = 100 mVDC + 100 mVAC,pk; f = 1 MHz	35	

COFF

C _{OFF (H#)}	Off Capacitance	High Supply Path Isolating; V _{SW} = 100 mVDC + 100 mVAC,pk; f = 1 MHz; Measure H#;	1	0	pF
C _{OFF (L#)}		Low Supply Path Isolating; V _{SW} = 100 mVDC + 100 mVAC,pk; f = 1 MHz; Measure L#;	3	80	
C _{OFF (COM#)}		Both Paths Isolating; V _{SW} = 100 mVDC + 100 mVAC,pk; f = 1 MHz; Measure COM#;	2	10	
C _{VDD}	Supply Capacitance	V_{DD} = 3.3 V_{DC} + 100 mVAC,pk; f = 1 MHz	1	5	pF
fosc	On-Chip Oscillator Frequency	Note (For Reference Only)	5	70	kHz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
FSA557UCX	VT	WLCSP–12 0.40 mm Pitch 1.62 x 1.635 x 0.457 mm (Nominal)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

onsemi. OnSemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries. LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥