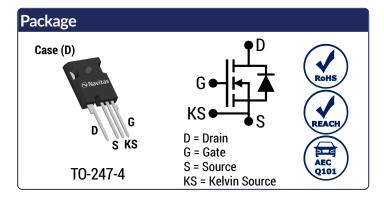


650 V 55 mΩ SiC MOSFET


Silicon Carbide MOSFET

Trench-Assisted Planar Technology

 $\begin{array}{cccc} V_{DS} & = & 650 \text{ V} \\ R_{DS(ON)}(Typ.) = & 55 \text{ m}\Omega \\ I_{D} (T_{C} = 100^{\circ}\text{C}) & = & 30 \text{ A} \end{array}$

Features

- Gen3F (3rd Generation) Technology
- Most Stable R_{DS(ON)} over Temperature
- Low Coss, Crss and Balanced Ciss/Crss
- Lower Q_{GD} and Balanced R_{G(INT)}
- Electromagnetically Optimized Design
- Robust Body Diode with Low V_F and Low Q_{RR}
- 100% Avalanche (UIL) Tested
- AEC-Q101 Qualified

Advantages

- Superior Performance and Robustness
- Lowest Conduction Losses at all Temperatures
- Lesser Switching Spikes and Lower Losses
- Faster and More Efficient Switching
- Reduced Ringing
- Ease of Paralleling without Thermal Runaway
- Excellent Power Density and System Efficiency
- Enhanced System Reliability

Applications

- xEV DC-DC
- Server & Telecom Power Supply
- Solar / PV
- Energy Storage System
- Uninterruptible Power Supply
- Class D Amplifiers

Absolute Maximum Ratings (At $T_C = 25^{\circ}C$ Unl	ess Otherwise Sta	ated)			
Parameter	Symbol	Conditions	Values	Unit	Note
Drain-Source Voltage	$V_{DS(max)}$	V_{GS} = 0 V, I_D = 100 μA	650	V	
Gate-Source Voltage (Dynamic)	$V_{GS(max)}$		-10 / +22	V	
Gate-Source Voltage (Static)	$V_{GS(op)-ON}$	Recommended Operation	15 to 18	٧	Note 1
Gate-Source voltage (Static)	V _{GS(op)-OFF}	necommended operation	-5 to -3	V	Note i
		$T_C = 25^{\circ}C$, $V_{GS} = -5 / +18 V$	42		
Continuous Drain Current	I_{D}	$T_C = 100$ °C, $V_{GS} = -5 / +18 V$	30	Α	Fig. 16
		$T_C = 135^{\circ}C$, $V_{GS} = -5 / +18 V$	22		
Pulsed Drain Current	I _{D(pulse)}	$t_P \le 3\mu s$, $D \le 1\%$, $V_{GS} = 18~V$	75	Α	Note 2
Power Dissipation	P_D	$T_c = 25^{\circ}C$	140	W	Fig. 17
Non-Repetitive Avalanche Energy	E _{AS}	$L = 36 \text{ mH}, I_{AV} = 3 \text{ A}$	162	mJ	
Operating Junction and Storage Temperature	T_j , T_{stg}		-55 to 175	°C	

Note 1: This product can support 0V turn-off gate drive voltage with optimized PCB layout and gate drive circuit configuration.

Note 2: Pulse Width t_P Limited by T_{j(max)}

SEE IMPORTANT NOTICES AND DISCLAIMERS AT THE END OF THIS DATA SHEET REGARDING THE INFORMATION IN THIS DATA SHEET, THE USE OF OUR PRODUCTS, AND YOUR RESPONSIBILITIES RELATING TO SUCH USE.

Rev 24/Aug Page 1 of 14

Electrical Characteristics (At	T _C = 25°C Unle	ess Otherwise Stated)						
Parameter	Symbol	Conditions	Values			Unit	Note	
			Min.	Тур.	Max.			
Drain-Source Breakdown Voltage	V _{DSS}	$V_{GS} = 0 \text{ V, } I_D = 100 \mu\text{A}$ 650		V				
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 650 V, V _{GS} = 0 V		1	50	μΑ		
Gate Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = 22 V			100	nA		
	1000	$V_{DS} = 0 \text{ V, } V_{GS} = -10 \text{ V}$	-100		-100			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 7 \text{ mA}$	2.2	2.7	4.3	V	Note 3	
Transconductance	G fs	$V_{DS} = 10 \text{ V, } I_D = 15 \text{ A}$	7.8			S	Fig. 5	
		$V_{DS} = 10 \text{ V, } I_D = 15 \text{ A, } T_j = 175 ^{\circ}\text{C}$	7.9				1 lg. 5	
		$V_{GS} = 18 \text{ V, } I_D = 15 \text{ A}$		55	75			
Drain-Source On-State Resistance	R _{DS(ON)}	$V_{GS} = 18 \text{ V}, I_D = 15 \text{ A}, T_j = 175 ^{\circ}\text{C}$		78 68			Fig. 5-9	
Brain Gource on Grate Resistance	T TD3(OIN)	$V_{GS} = 15 \text{ V}, I_D = 15 \text{ A}$						
		$V_{GS} = 15 \text{ V}, I_D = 15 \text{ A}, T_j = 175 ^{\circ}\text{C}$		83				
Input Capacitance	Ciss			1322				
Output Capacitance	Coss			90		pF	Fig. 12	
Reverse Transfer Capacitance	C _{rss}	_		4.5				
Coss Stored Energy	E _{oss}	- V _{DS} = 400 V, V _{GS} = 0 V	Vro = 400 V Vro = 0 V			μJ	Fig. 13	
Coss Stored Charge	Q_{oss}	f = 500 KHz, V _{AC} = 25mV		57		nC		
Effective Output Capacitance (Energy Related)	C _{o(er)}		100		— pF	Nata 4		
Effective Output Capacitance (Time Related)	C _{o(tr)}					Note 4		
Gate-Source Charge	\mathbf{Q}_{gs}	$V_{DS} = 400 \text{ V}, V_{GS} = -5 / +18 \text{ V}$		11				
Gate-Drain Charge	Q_{gd}	I _D = 15 A	13		nC	Fig. 11		
Total Gate Charge	Q_g	Per JEDEC JEP-192	45		45			
Internal Gate Resistance	R _{G(int)}	V _{GS} = 18 V, f = 1 MHz, V _{AC} = 25 mV		1.8		Ω		
Turn-On Switching Energy (Body Diode)	E _{On}	T _j = 25°C, V _{GS} = -5/+18V, R _{G(ext)} = 6.8 Ω, L		55		1	Fin 04 07	
Turn-Off Switching Energy (Body Diode)	E _{Off}	= 80.0 μH, I _D = 15 A, V _{DD} = 400 V	29		μJ	Fig. 24-27		
Turn-On Delay Time	t _{d(on)}			24				
Rise Time	t _r	$V_{DD} = 400 \text{ V}, V_{GS} = -5/+18 \text{ V}$	8			E. 00		
Turn-Off Delay Time	t _{d(off)}	$R_{G(ext)} = 6.8 \Omega$, L = 80.0 μH, $I_D = 15 A$ Timing relative to V_{DS} , Inductive load		ns		ns	Fig. 26	
Fall Time	t _f	— Tilling relative to VDS, inductive load -		7				

Note 3: Tested after applying 30ms pulse at Vgs= +25V

Note 4: $C_{O(er)}$, a lumped capacitance that gives same stored energy as C_{OSS} while V_{DS} is rising from 0 to 400V. $C_{O(tr)}$, a lumped capacitance that gives same charging times as C_{OSS} while V_{DS} is rising from 0 to 400V.

Rev 24/Aug Page 2 of 14

Reverse Diode Characteristics							
O mahal	Conditions		Values		Unit	Note	
Symbol	Conditions	Min.	Тур.	Max.	Unit	Note	
Von	$V_{GS} = -5 \text{ V, } I_{SD} = 7 \text{ A}$		4.4		V	Fig. 18-19	
VSD	V_{GS} = -5 V, I_{SD} = 7 A, T_j = 175°C		3.9		V	Fly. 10-19	
l _o	$V_{GS} = -5 \text{ V, } T_c = 25^{\circ}\text{C}$			23	Λ.		
ış	$V_{GS} = -5 \text{ V, } T_c = 100^{\circ}\text{C}$			13	A		
I _{S(pulse)}	V_{GS} = -5 V		52		Α	Note 2	
t _{rr}	V 5VI 15AV 400V		5.9		ns		
Qrr			61		nC		
I _{rrm}	uii/ut = 0000 A/μs, 1] = 23 C		12		Α		
t _{rr}			7		ns		
Qrr	•		116		nC		
I _{rrm}	uii/ut - 0000 A/μs, 1 _j - 175 C		17.5		Α		
	Symbol VsD Is Is(pulse) trr Qrr Irrm trr	$ \begin{array}{c} \text{Symbol} & \text{Conditions} \\ \\ V_{SD} & V_{GS} = -5 \text{ V, } I_{SD} = 7 \text{ A} \\ V_{GS} = -5 \text{ V, } I_{SD} = 7 \text{ A, } T_j = 175^{\circ}\text{C} \\ \\ I_{S} & V_{GS} = -5 \text{ V, } T_{c} = 25^{\circ}\text{C} \\ V_{GS} = -5 \text{ V, } T_{c} = 100^{\circ}\text{C} \\ \\ I_{S(pulse)} & V_{GS} = -5 \text{ V} \\ \\ \hline t_{rr} & \\ \hline Q_{rr} & \\ \hline I_{rrm} & \\ \hline I_{rrm} & \\ \hline t_{rr} & \\ \hline Q_{rr} & \\ \hline I_{rrm} & \\ \hline V_{GS} = -5 \text{ V, } I_{SD} = 15 \text{ A, } V_{R} = 400 \text{ V} \\ \hline dif/dt = 6000 \text{ A/}\mu\text{s, } T_{j} = 25^{\circ}\text{C} \\ \hline \\ v_{GS} = -5 \text{ V, } I_{SD} = 15 \text{ A, } V_{R} = 400 \text{ V} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 15 \text{ A, } V_{R} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 15 \text{ A, } V_{R} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 15 \text{ A, } V_{R} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 15 \text{ A, } V_{R} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 15 \text{ A, } V_{R} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 15 \text{ A, } V_{R} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 15 \text{ A, } V_{R} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 15 \text{ A, } V_{R} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 15 \text{ A, } V_{R} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 15 \text{ A, } V_{R} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 15 \text{ A, } V_{R} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 15 \text{ A, } V_{R} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 15 \text{ A, } V_{R} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 100^{\circ}\text{C} \\ \hline v_{GS} = -5 \text{ V, } I_{SD} = 100^{$	$\begin{tabular}{c ccccc} Symbol & Conditions & \hline & Min. \\ \hline V_{SD} & $V_{GS} = -5 \ V, \ I_{SD} = 7 \ A$ \\ \hline $V_{GS} = -5 \ V, \ I_{SD} = 7 \ A, \ T_j = 175 \ ^\circ C$ \\ \hline I_{S} & $V_{GS} = -5 \ V, \ T_c = 25 \ ^\circ C$ \\ \hline $V_{GS} = -5 \ V, \ T_c = 100 \ ^\circ C$ \\ \hline \hline $I_{S(pulse)}$ & $V_{GS} = -5 \ V$ \\ \hline \hline t_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 15 \ A, \ V_R = 400 \ V$ \\ \hline \hline I_{rrm} & $V_{GS} = -5 \ V, \ I_{SD} = 15 \ A, \ V_R = 400 \ V$ \\ \hline \hline t_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 15 \ A, \ V_R = 400 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 15 \ A, \ V_R = 400 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 15 \ A, \ V_R = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 15 \ A, \ V_R = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 15 \ A, \ V_R = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 15 \ A, \ V_R = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 15 \ A, \ V_R = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 15 \ A, \ V_R = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 15 \ A, \ V_R = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 15 \ A, \ V_R = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 15 \ A, \ V_R = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 15 \ A, \ V_R = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 15 \ A, \ V_{R} = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 100 \ V$ \\ \hline \hline d_{rr} & $V_{GS} = -5 \ V, \ I_{SD} = 100 \ V$ \\ \hline \hline d_{rr} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Package Characteristics					
Parameter	Symbol	Conditions	Values	Unit	Note
Max Thermal Resistance, Junction - Case	R _{thJC-Max}	Maximum	1.07	°C/W	Fig. 14
Weight	W_{T}		6.2	g	
Moisture Sensitivity Level	MSL		N/A		
EMC Material Group			II		
Max Mounting Torque	T _M	Screws to Heatsink	1.1	Nm	

Rev 24/Aug Page 3 of 14

Fig 1: Typical Output Characteristics ($T_j = 25$ °C)

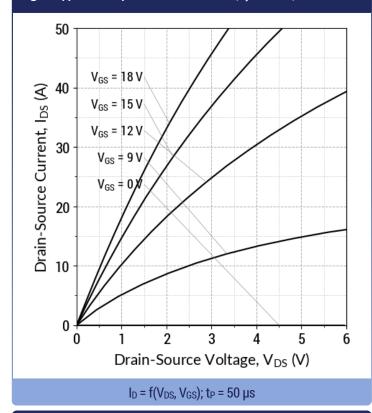
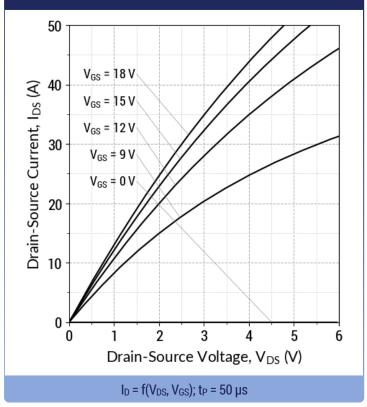



Fig 2: Typical Output Characteristics (T_j = 175°C)

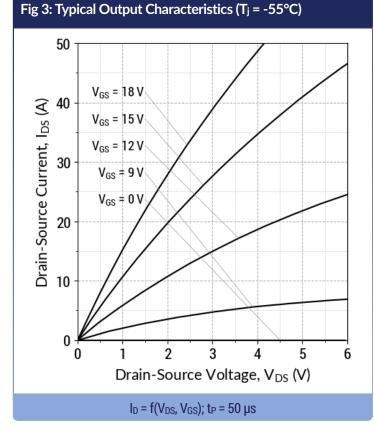
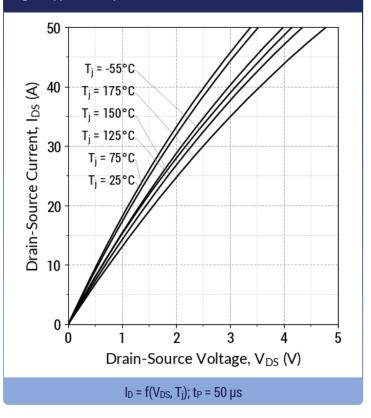
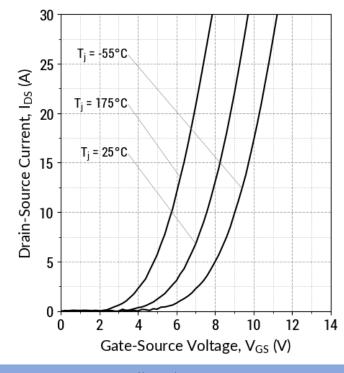




Fig 4: Typical Output Characteristics (V_{GS} = 18 V)

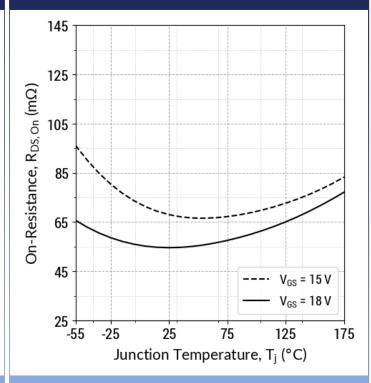

Rev 24/Aug Page 4 of 14

Fig 5: Typical Transfer Characteristics (V_{DS} = 10 V)

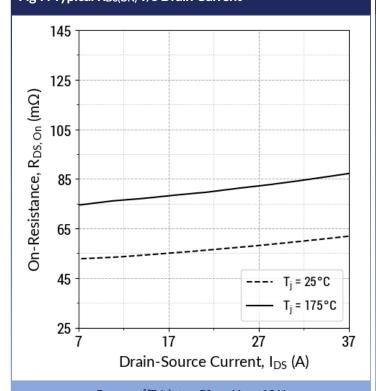

 $I_D = f(V_{GS}, T_j); t_P = 100 \mu s$

Fig 6: Typical R_{DS(ON)} v/s Temperature

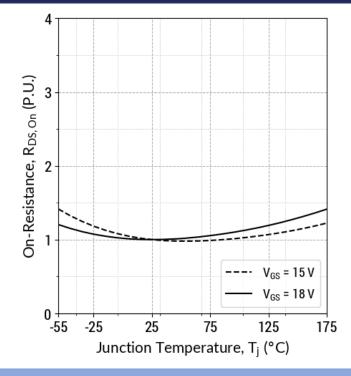
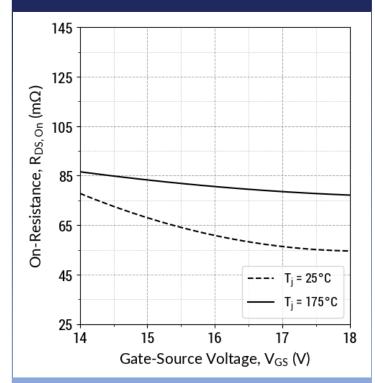
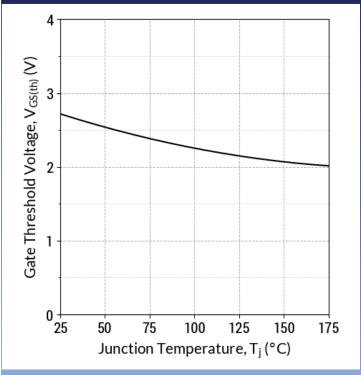

 $R_{DS(ON)} = f(T_j, V_{GS}); t_P = 50 \mu s; I_D = 15 A$

Fig 7: Typical RDS(ON) v/s Drain Current

 $R_{DS(ON)} = f(T_j,I_D); t_P = 50 \mu s; V_{GS} = 18 \text{ V}$


Fig 8: Typical Normalized RDS(ON) v/s Temperature

 $R_{DS(ON)} = f(T_j); t_P = 50 \ \mu s; I_D = 15 \ A$


Rev 24/Aug Page 5 of 14

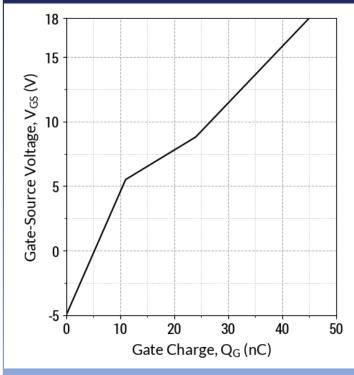

 $R_{DS(ON)} = f(T_i, V_{GS}); t_P = 50 \mu s; I_D = 15 A$

Fig 10: Typical Threshold Voltage Characteristics

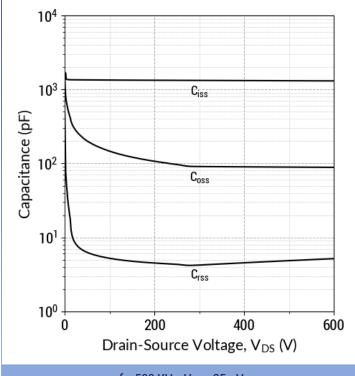

 $V_{GS(th)} = f(T_j)$; $V_{DS} = V_{GS}$; $I_D = 7 \text{ mA}$

Fig 11: Typical Gate Charge Characteristics

 $I_D = 15 A$; $V_{DS} = 400 V$; $T_c = 25$ °C

Fig 12: Typical Capacitance v/s Drain-Source Voltage

 $f = 500 \text{ KHz}; V_{AC} = 25 \text{mV}$

Rev 24/Aug Page 6 of 14

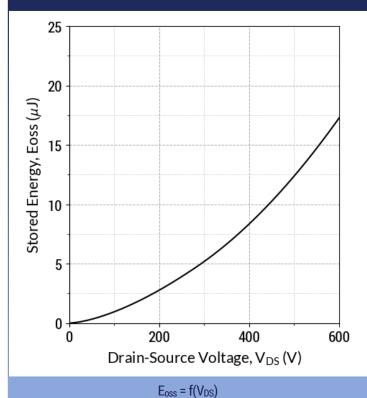
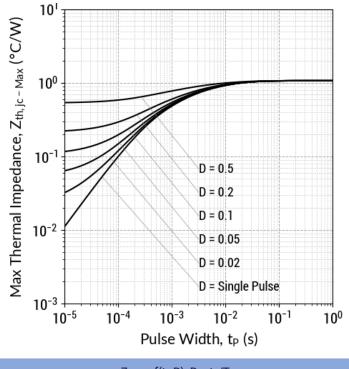



Fig 14: Max. Transient Thermal Impedance

 $Z_{th,ic} = f(t_P,D); D = t_P/T$

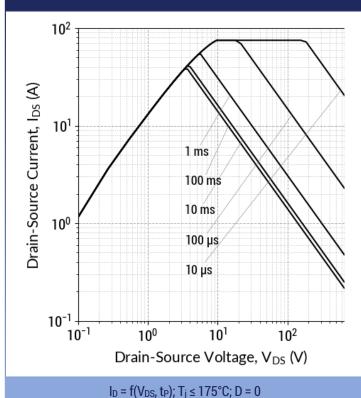
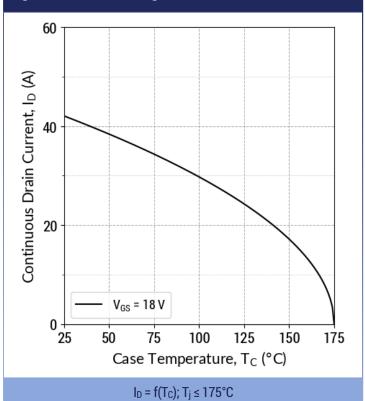
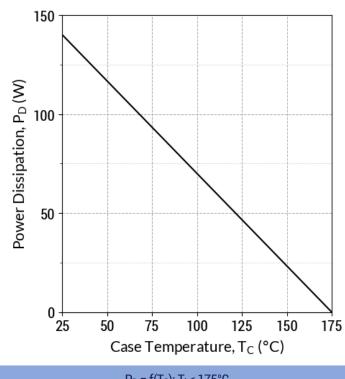




Fig 16: Current De-rating Curve

Rev 24/Aug Page 7 of 14

 $P_D = f(T_C); T_j \le 175^{\circ}C$

Fig 18: Typical Body Diode Characteristics ($T_j = 25$ °C)

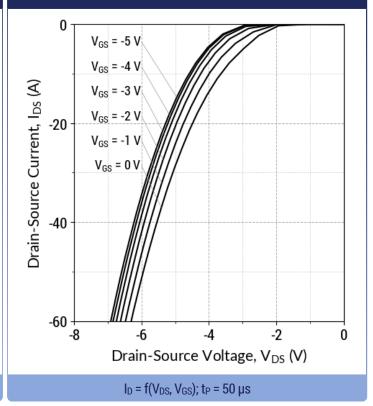


Fig 19: Typical Body Diode Characteristics ($T_j = 175$ °C)

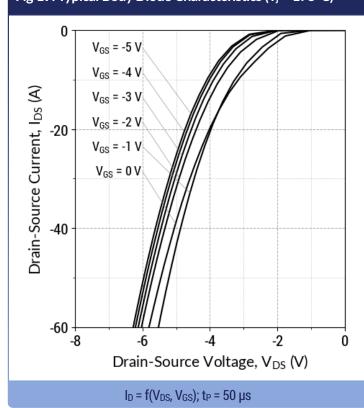
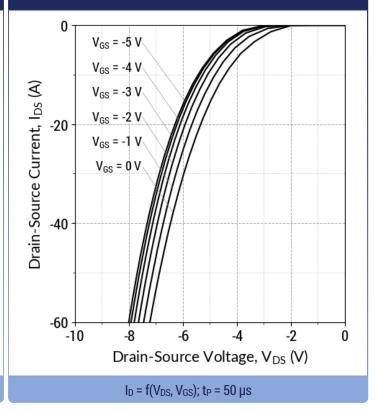



Fig 20: Typical Body Diode Characteristics ($T_j = -55$ °C)

Rev 24/Aug Page 8 of 14

Fig 21: Typical Third Quadrant Characteristics ($T_j = 25$ °C)

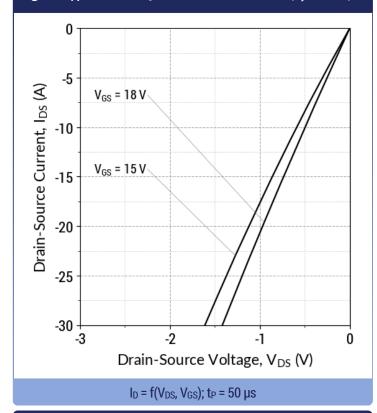


Fig 22: Typical Third Quadrant Characteristics (T_j = 175°C)

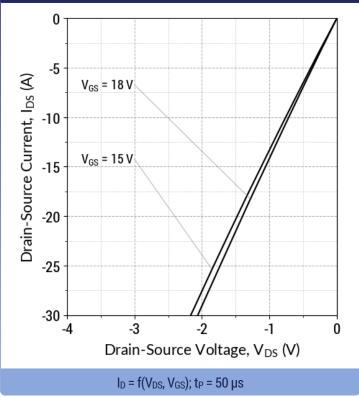
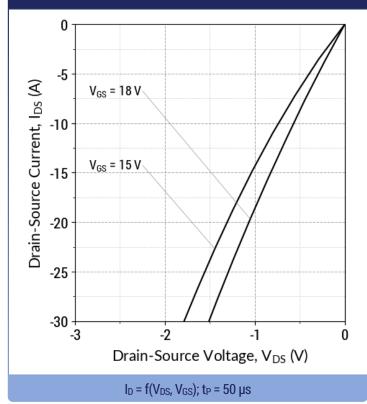
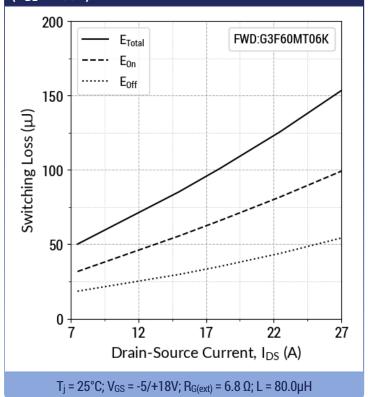
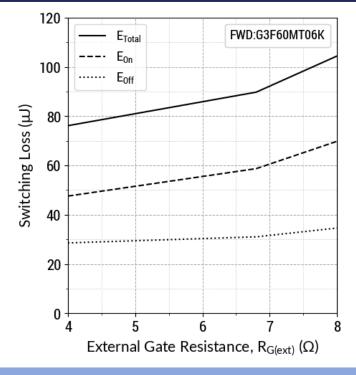
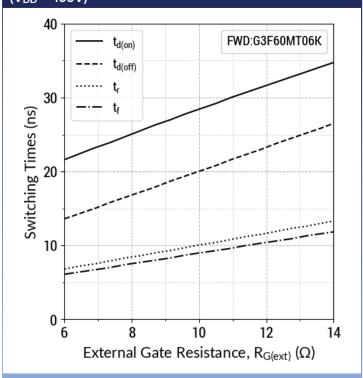


Fig 23: Typical Third Quadrant Characteristics ($T_j = -55$ °C)


Fig 24: Inductive Switching Energy v/s Drain Current $(V_{DD} = 400V)$

Rev 24/Aug Page 9 of 14



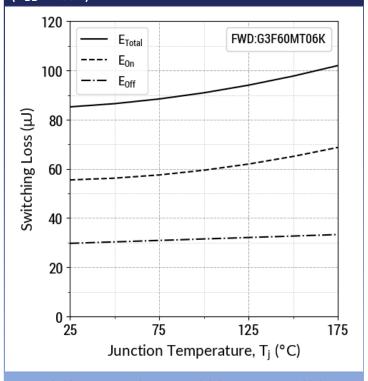
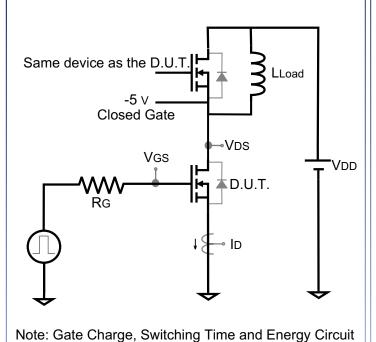

 $T_i = 25$ °C; $V_{GS} = -5/+18V$; $I_{DS} = 15$ A; $L = 80.0 \mu H$

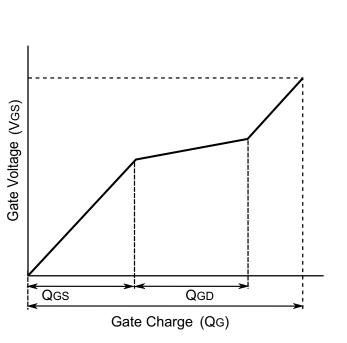
Fig 26: Switching Time v/s $R_{G(ext)}$ ($V_{DD} = 400V$)

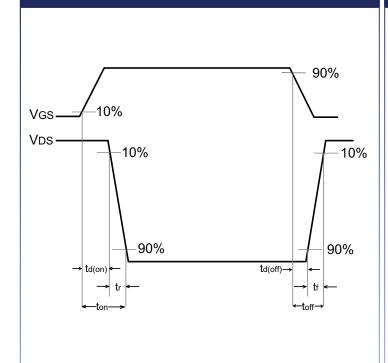
 $T_i = 25$ °C; $V_{GS} = -5/+18V$; $I_{DS} = 15$ A; $L = 80.0 \mu H$

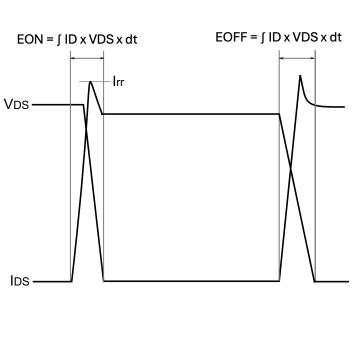
Fig 27: Inductive Switching Energy v/s Temperature $(V_{DD} = 400V)$


 T_j = 25°C; V_{GS} = -5/+18V; $R_{G(ext)}$ = 6.8 Ω ; I_{DS} = 15 A; L = 80.0 μ H

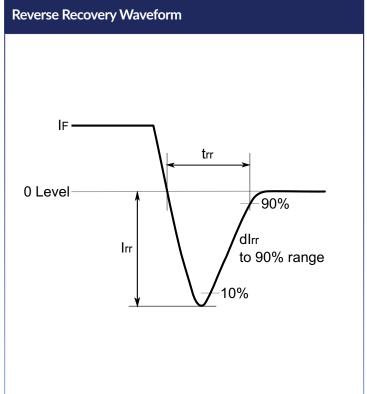
Rev 24/Aug Page 10 of 14




Dynamic Test Circuit

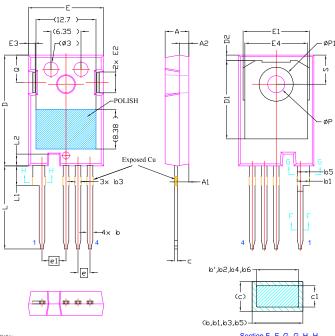

Gate Charge Waveform

Switching Time Waveform



Switching Energy Waveform

Rev 24/Aug Page 11 of 14


Rev 24/Aug Page 12 of 14

Package Dimensions

TO-247-4 Package Outline

Section F--F, G-G, H--H

Note:

J. All Dimensions Are In mm.
Slot Required, Notch May Be Rounded
Dimension D & E Do Not Indude Mold Flash. Mold Flash Shall Not Exceed O.12mm Pre Side. These Dimensions Are Measured At The Outermost Extreme Of The Plastic Body.
Themal Pad Contour Optional Within Dimension D1 & E1.
Lead Finish Uncontrolled In L1.
DP To Have A Draft Angle Of 1.5° (REF.) To The Top Of The Part With Hole Diameter Of 3.91mm (REF.).

	[DIMENSIONS				
SYMBOL	MIN.	NOM.	MAX.			
Α	4.83	5.02	5.21			
A1	2,29	2.41	2.54			
A2	1,91	2.00	2.16			
b'	1.07	1.20	1.28			
b	1.07	1.20	1.33			
b1	2.39	2.67	2.94			
b2	2.39	2.67	2.84			
b3	1.07	1.30	1.60			
b4	1.07	1.30	1.50			
b5	2.39	2.53	2.69			
b6	2.39	2.53	2.64			
С	0.55	0.60	0.68			
c1	0.55	0.60	0.65			
D	23.30	23.45	23.60			
D1	16.25	16.55	17.65			
D2	0.95	1.19	1.25			
Е	15.75	15.94	16.13			
E1	13.10	14.02	14.15			
E2	3.68	4.40	5.10			
E3	1.00	1.45	1.90			
E4	12,38	13,26	13.43			
е		2.54 BSC				
e1		5.08 BSC				
L	17.31	17.57	17.82			
L1	3.97	4.19	4.37			
L2	2.35	2.50	2.65			
ØP	3.51	3.61	3.65			
ØP1	7.19 REF.					
Q	5.49	5.79	6.00			
S	6.04	6.17	6.30			

NOTE

- 1. CONTROLLED DIMENSION IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS.
- 3. THE SOURCE AND KELVIN-SOURCE PINS ARE NOT INTERCHANGABLE. THEIR EXCHANGE MIGHT LEAD TO MALFUNCTION.

Rev 24/Aug Page 13 of 14

Revision History

Rev 24/Aug: Initial Release (Rev 1.0)

IMPORTANT NOTICES AND DISCLAIMERS

EXCEPT TO THE EXTENT THAT INFORMATION IN THIS DATA SHEET IS EXPRESSLY AND SPECIFICALLY WARRANTED IN WRITING BY NAVITAS SEMICONDUCTOR ("NAVITAS"), EITHER PURSUANT TO THE TERMS AND CONDITIONS OF THE LIMITED WARRANTY CONTAINED IN NAVITAS' STANDARD TERMS AND CONDITIONS OF SALE OR A WRITTEN AGREEMENT SIGNED BY AN AUTHORIZED NAVITAS REPRESENTATIVE, (1) ALL INFORMATION IN THIS DATA SHEET OR OTHER RELIABILITY AND TECHNICAL DATA, AND ANY OTHER DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE OR TOOLS, SAFETY INFORMATION AND OTHER RESOURCES, ARE PROVIDED "AS IS" AND WITH ALL FAULTS; AND (2) NAVITAS MAKES NO WARRANTIES OR REPRESENTATIONS AS TO ANY SUCH INFORMATION OR RESOURCES, IN THIS DATA SHEET OR OTHERWISE, AND HEREBY DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

CUSTOMER RESPONSIBILITIES. This data sheet and other design resources and information provided by Navitas are intended only for technically trained and skilled developers designing with Navitas- or GeneSiC-branded products ("Products"). Performance specifications and the operating parameters of Products described herein are determined in the independent state and may not perform the same way when installed in customer products. The customer (or other user of this data sheet) is solely responsible for (a) designing, validating and testing the products and systems in which Products are incorporated; (b) designing, validating and testing the application in which Products are incorporated; (c) ensuring the application meets applicable standards and any safety, security, regulatory or other requirements; (d) evaluating the suitability of Products for the intended application and the completeness of the information in this data sheet with respect to such application; (e) procuring and/or developing production firmware, if applicable; and (f) completing system qualification, compliance and safety testing, EMC testing, and any automotive, high-reliability or other system qualifications that apply.

NON-AUTHORIZED USES OF PRODUCTS. Except to the extent expressly provided in a writing signed by an authorized Navitas representative, Products are not designed, authorized or warranted for use in extreme or hazardous conditions; aircraft navigation, communication or control systems; aircraft power and propulsion systems; air traffic control systems; military, weapons, space-based or nuclear applications; life-support devices or systems, including but not limited to devices implanted into the human body and emergency medical equipment; or applications where product failure could lead to death, personal injury or severe property or environmental damage. The customer or other persons using Products in such applications without Navitas' agreement or acknowledgement, as set forth in a writing signed by an authorized Navitas representative, do so entirely at their own risk and agree to fully indemnify Navitas for any damages resulting from such improper use. In order to minimize risks associated with such applications, you should provide adequate design and operating safeguards.

CHANGES TO, AND USE OF, THIS DATA SHEET. This data sheet and accompanying information and resources are subject to change without notice. Navitas grants you permission to use this data sheet and accompanying resources only for the development of an application that uses the Products described herein and subject to the notices and disclaimers set forth above. Any other use, reproduction or display of this data sheet or accompanying resources and information is prohibited. No license is granted to any Navitas intellectual property right or to any third-party intellectual property right. Navitas disclaims any responsibility for, and you will fully indemnify Navitas and its representatives against, any claims, damages, costs, losses and liabilities arising out of your use of this data sheet and any accompanying resources and information.

TERMS AND CONDITIONS. All purchases and sales of Products are subject to <u>Navitas' Standard Terms and Conditions of Sale</u>, including the limited warranty contained therein, unless other terms and conditions have been agreed in a writing signed by an authorized Navitas representative. This data sheet, and Navitas' provision of this data sheet or other information and resources, do not expand or otherwise alter those terms and conditions.

Navitas, GeneSiC, the Navitas and GeneSiC logos, GaNFast, GaNSafe, SICPAK and other Navitas marks used herein are trademarks or registered trademarks of Navitas Semiconductor Limited or its affiliates. Other trademarks used herein are the property of their respective owners.

Copyright © 2024 Navitas Semiconductor Limited and affiliates. All rights reserved.

Rev 24/Aug Page 14 of 14