IGBT - Field Stop, Trench

650 V, 50 A

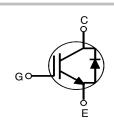
FGH50T65UPD

Description

Using innovative field stop trench IGBT technology, ON Semiconductor's new series of field-stop trench IGBTs offer optimum performance for solar inverter, UPS, welder, and digital power generator where low conduction and switching losses are essential.

Features

- Maximum Junction Temperature: $T_J = 175$ °C
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(sat)} = 1.65 \text{ V(Typ.)}$ @ $I_C = 50 \text{ A}$
- 100% of Parts Tested I_{LM} (Note 2)
- High Input Impedance
- Tightened Parameter Distribution
- Short Circuit Ruggedness > 5 μs @ 25°C
- This Device is Pb-Free and is RoHS Compliant


Applications

- Solar Inverter, UPS, Welder, Digital Power Generator
- Telecom, ESS

ON Semiconductor®

www.onsemi.com

TO-247-3LD CASE 340CK

MARKING DIAGRAMS

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Numeric Date Code &K = Lot Code

FGH50T65UPD = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS

Descriptio	Symbol	Ratings	Unit	
Collector to Emitter Voltage	Emitter Voltage			V
Gate to Emitter Voltage		V _{GES}	±20	V
Transient Gate to Emitter Voltage		1 i	±25	V
Collector Current	T _C = 25°C	I _C	100	Α
Collector Current	T _C = 100°C	1 i	50	Α
Pulsed Collector Current (Note 1)		I _{CM}	150	Α
Clamped Inductive Load Current (Note 2)	T _C = 25°C	I _{LM}	150	Α
Diode Forward Current	T _C = 25°C	I _F	60	Α
Diode Forward Current	T _C = 100°C	1 i	30	Α
Pulsed Diode Maximum Forward Current (No	ote 1)	I _{FM}	150	Α
Maximum Power Dissipation	T _C = 25°C	P _D	340	W
Maximum Power Dissipation	T _C = 100°C	1 i	170	W
Short Circuit Withstand Time	T _C = 25°C	SCWT	5	μs
Operating Junction Temperature		TJ	−55 to +175	°C
Storage Temperature Range		T _{stg}	-55 to +175	°C
Maximum Lead Temp. for Soldering Purpose	s, 1/8" from Case for 5 Seconds	T_L	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Repetitive rating: Pulse width limited by max. junction temperature.

- 2. Ic = 150 A, Vce = 400 V, Rg = 10 Ω

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction to Case (IGBT)	$R_{ heta JC}$	0.44	°C/W
Thermal Resistance, Junction to Case (Diode)	$R_{ heta JC}$	1.2	°C/W
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	40	°C/W

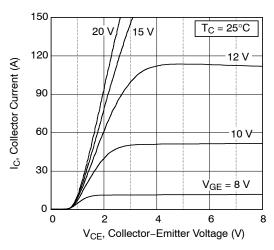
PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FGH50T65UPD	FGH50T65UPD	TO-247-3LD	Tube	N/A	N/A	30

ELECTRICAL CHARACTERISTICS OF THE IGBT (T_C = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS	-		-	-	-	-
Collector to Emitter Breakdown Voltage	BV _{CES}	V _{GE} = 0 V, I _C = 1 mA	650	-	-	V
Temperature Coefficient of Breakdown Voltage	$\Delta BV_{CES} / \Delta T_{J}$	$V_{GE} = 0 \text{ V, } I_{C} = 250 \mu\text{A}$		0.65		V/°C
Collector Cut-Off Current	I _{CES}	V _{CE} = V _{CES} , V _{GE} = 0 V	-	-	250	μΑ
G-E Leakage Current	I _{GES}	V _{GE} = V _{GES} , V _{CE} = 0 V	_	_	±400	nA
ON CHARACTERISTICS						
G-E Threshold Voltage	$V_{GE(th)}$	I_C = 50 mA, V_{CE} = V_{GE}	4.0	6.0	7.5	V
Collector to Emitter Saturation Voltage	V _{CE(sat)}	I _C = 50 A, V _{GE} = 15 V	_	1.65	2.3	V
		I _C = 50 A, V _{GE} = 15 V, T _C = 175°C	_	2.1	-	V

ELECTRICAL CHARACTERISTICS OF THE IGBT ($T_C = 25^{\circ}C$ unless otherwise noted) (continued)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{ies}	V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz	-	3450	4710	pF
Output Capacitance	C _{oes}	1	-	110	146	pF
Reverse Transfer Capacitance	C _{res}	1	-	60	90	pF
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(on)}	V _{CC} = 400 V, I _C = 50 A,	-	32	41	ns
Rise Time	t _r	$R_G = 6.0 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 25^{\circ}C$	-	59	77	ns
Turn-Off Delay Time	t _{d(off)}	1	-	160	208	ns
Fall Time	t _f	1	-	22	29	ns
Turn-On Switching Loss	E _{on}		-	2.7	3.5	mJ
Turn-Off Switching Loss	E _{off}		-	0.74	0.96	mJ
Total Switching Loss	E _{ts}		-	3.44	4.46	mJ
Turn-On Delay Time	t _{d(on)}	V _{CC} = 400 V, I _C = 50 A,	-	29	-	ns
Rise Time	t _r	$R_G = 6.0 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 175^{\circ}C$	-	72	_	ns
Turn-Off Delay Time	t _{d(off)}	1	-	166	-	ns
Fall Time	t _f	1	-	19	-	ns
Turn-On Switching Loss	E _{on}	1	-	3.5	-	mJ
Turn-Off Switching Loss	E _{off}	1	-	1.2	-	mJ
Total Switching Loss	E _{ts}	1	-	4.7	-	mJ
Short Circuit Withstand Time	Tsc	$V_{GE} = 15 \text{ V}, V_{CC} = 400 \text{ V}, Rg = 10 \Omega$	5	-	-	μs
Total Gate Charge	Qg	V _{CE} = 400 V, I _C = 50 A, V _{GE} = 15 V	-	230	345	nC
Gate to Emitter Charge	Q _{ge}	1	-	31	47	nC
Gate to Collector Charge	Q _{gc}	1	-	130	195	nC

ELECTRICAL CHARACTERISTICS OF THE DIODE ($T_C = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Condit	ions	Min	Тур	Max	Unit
Diode Forward Voltage	V_{FM}	I _F = 30 A	T _C = 25°C	_	2.1	2.7	V
			T _C = 175°C	_	1.78	_	
Reverse Recovery Energy	E _{rec}	I _F = 30 A,	T _C = 175°C	_	46	_	μJ
Diode Reverse Recovery Time	t _{rr}	- di _F /dt = 200 A/μs	T _C = 25°C	_	41	53	ns
			T _C = 175°C	_	144	_	
Diode Reverse Recovery Charge	Q _{rr}		T _C = 25°C	_	76	106	nC
			T _C = 175°C	-	486	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Typical Output Characteristics

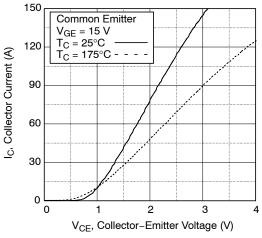


Figure 3. Typical Saturation Voltage Characteristics

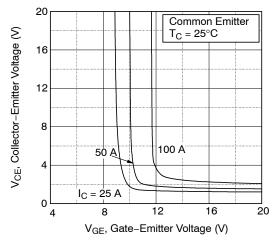


Figure 5. Saturation Voltage vs. V_{GE}

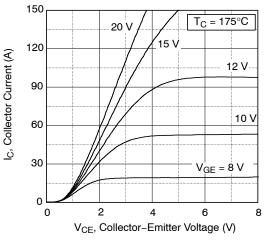


Figure 2. Typical Output Characteristics

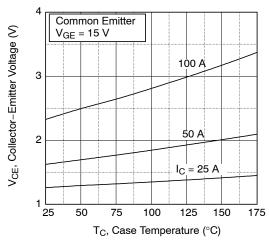


Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level

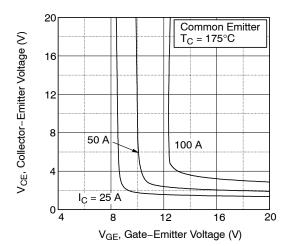


Figure 6. Saturation Voltage vs. V_{GE}

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

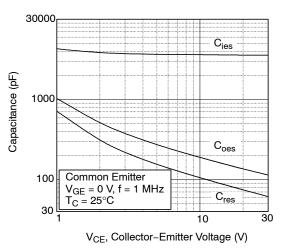


Figure 7. Capacitance Characteristics

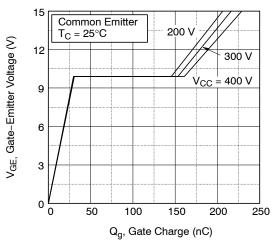


Figure 8. Gate Charge Characteristics

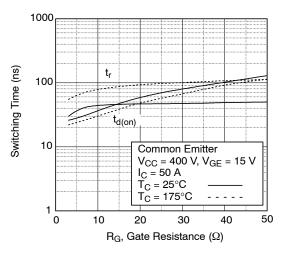


Figure 9. Turn-On Characteristics vs. Gate Resistance

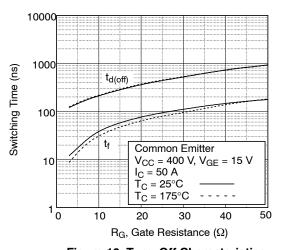


Figure 10. Turn-Off Characteristics vs. Gate Resistance

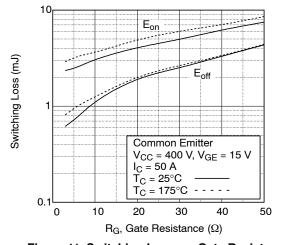


Figure 11. Switching Loss vs. Gate Resistance

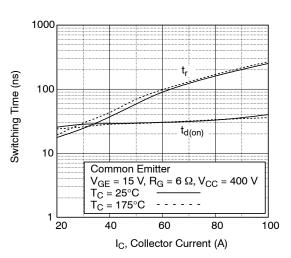


Figure 12. Turn-On Characteristics vs. Collector Current

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

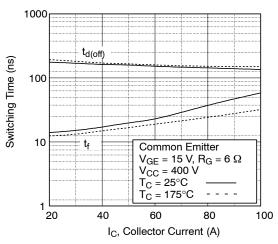


Figure 13. Turn-Off Characteristics vs. Collector Current

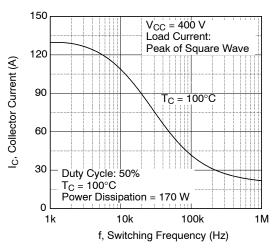


Figure 15. Load Current vs. Frequency

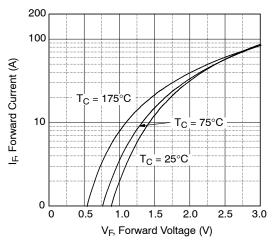


Figure 17. Forward Characteristics

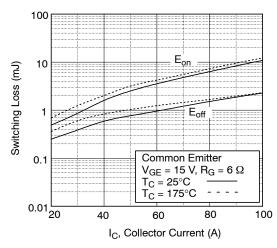


Figure 14. Switching Loss vs. Collector Current

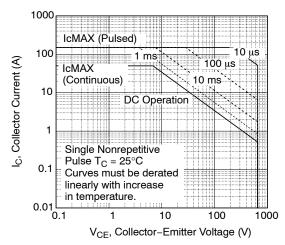


Figure 16. SOA Characteristics

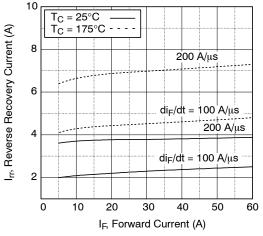


Figure 18. Reverse Recovery Current

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

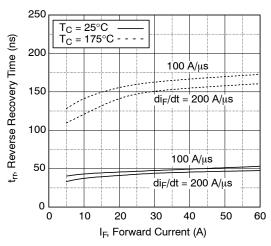


Figure 19. Reverse Recovery Time

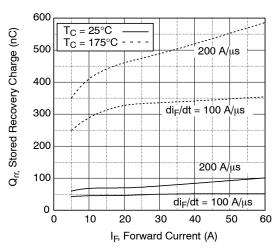


Figure 20. Stored Charge

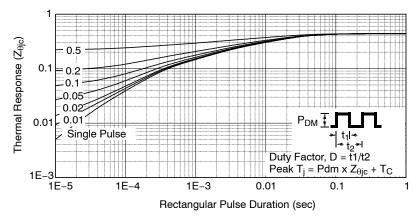


Figure 21. Transient Thermal Impedance of IGBT

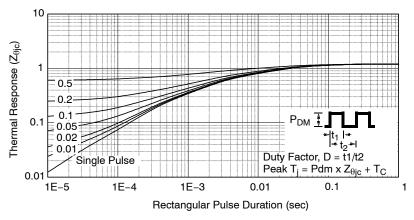
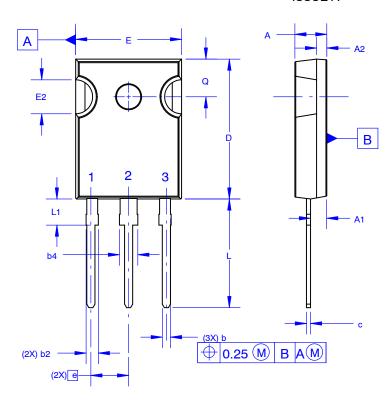



Figure 22. Transient Thermal Impedance of Diode

TO-247-3LD SHORT LEAD

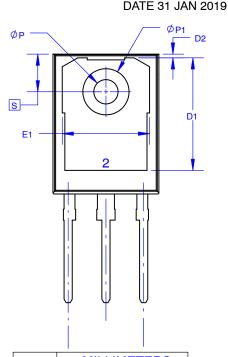
CASE 340CK ISSUE A

NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code


A = Assembly Location

Y = Year

WW = Work Week

ZZ = Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DIM	MILLIMETERS				
DIIVI	MIN	NOM	MAX		
Α	4.58	4.70	4.82		
A1	2.20	2.40	2.60		
A2	1.40	1.50	1.60		
b	1.17	1.26	1.35		
b2	1.53	1.65	1.77		
b4	2.42	2.54	2.66		
С	0.51	0.61	0.71		
D	20.32	20.57	20.82		
D1	13.08	~	~		
D2	0.51	0.93	1.35		
E	15.37	15.62	15.87		
E1	12.81	?	~		
E2	4.96	5.08	5.20		
е	~	5.56	~		
L	15.75	16.00	16.25		
L1	3.69	3.81	3.93		
ØΡ	3.51	3.58	3.65		
ØP1	6.60	6.80	7.00		
Q	5.34	5.46	5.58		
S	5.34	5.46	5.58		

DOCUMENT NUMBER:	98AON13851G	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD SHORT LEAD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales