# Switch-mode Schottky Power Rectifier TO247 Power Package This device employs the Schottky Barrier principle in a large area metal—to—silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes. #### **Features** - Highly Stable Oxide Passivated Junction - Guardring for Overvoltage Protection - Low Forward Voltage Drop - Dual Diode Construction; Terminals 1 and 3 May Be Connected for Parallel Operation at Full Rating. - Full Electrical Isolation without Additional Hardware - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant\* ### **Mechanical Characteristics** - Case: Molded Epoxy - Epoxy Meets UL 94 V-0 @ 0.125 in - Weight: 4.3 Grams (Approximately) - Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable - Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------|------| | Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage | V <sub>RRM</sub><br>V <sub>RWM</sub><br>V <sub>R</sub> | 15 | V | | Average Rectified Forward Current (At Rated $V_R$ , $T_C = 120^{\circ}C$ ) Per Leg Per Package | I <sub>O</sub> | 20<br>40 | Α | | Peak Repetitive Forward Current,<br>(At Rated $V_R$ , Square Wave,<br>20 kHz, $T_C = 95^{\circ}C$ ) Per Leg | I <sub>FRM</sub> | 40 | A | | Non–Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz) Per Package | I <sub>FSM</sub> | 120 | A | | Storage/Operating Case Temperature | T <sub>stg</sub> , T <sub>C</sub> | -55 to +150 | °C | | Operating Junction Temperature (Note 1) | $T_J$ | -55 to +150 | °C | | Voltage Rate of Change,<br>(Rated V <sub>R</sub> , T <sub>J</sub> = 25°C) | dv/dt | 10,000 | V/μs | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. \*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor® http://onsemi.com # SCHOTTKY BARRIER RECTIFIER 40 AMPERES, 15 VOLTS #### **MARKING DIAGRAM** MBR4015LWT = Specific Device Code A = Assembly Location Y = Year WW = Work Week G = Pb-Free Package # ORDERING INFORMATION | Device | Package | Shipping | |-------------|---------------------|-----------------| | MBR4015LWTG | TO-247<br>(Pb-Free) | 30 Units / Rail | Downloaded from Arrow.com. #### THERMAL CHARACTERISTICS | Rating | Symbol | Value | Unit | | |--------------------------------------|---------|----------------|------|------| | Thermal Resistance, Junction-to-Case | Per Leg | $R_{ heta JC}$ | 0.57 | °C/W | | Junction-to-Ambient | Per Leg | $R_{ hetaJA}$ | 55 | | #### **ELECTRICAL CHARACTERISTICS** | Rating | Rating Symbol Value | | Unit | | |----------------------------------------------------------------------|---------------------|-----------------------|------------------------|----| | Maximum Instantaneous Forward Voltage (Note 2), See Figure 2 Per Leg | V <sub>F</sub> | T <sub>J</sub> = 25°C | T <sub>J</sub> = 100°C | V | | (I <sub>F</sub> = 20 A)<br>(I <sub>F</sub> = 40 A) | | 0.42<br>0.50 | 0.36<br>0.48 | | | Maximum Instantaneous Reverse Current (Note 2), See Figure 4 Per Leg | I <sub>R</sub> | T <sub>J</sub> = 25°C | T <sub>J</sub> = 100°C | mA | | $(V_R = 15 \text{ V})$<br>$(V_R = 7.5 \text{ V})$ | | 5.0<br>2.7 | 530<br>370 | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. - 1. The heat generated must be less than the thermal conductivity from Junction–to–Ambient: $dP_D/dT_J < 1/R_{\theta JA}$ . - 2. Pulse Test: Pulse Width $\leq$ 250 $\mu$ s, Duty Cycle $\leq$ 2%. #### TYPICAL CHARACTERISTICS 100 T<sub>J</sub> = 100°C T<sub>J</sub> = 100°C T<sub>J</sub> = 25°C 1 Figure 1. Typical Forward Voltage Per Leg Figure 2. Maximum Forward Voltage Per Leg Figure 3. Typical Reverse Current Per Leg Figure 4. Maximum Reverse Current Per Leg #### TYPICAL CHARACTERISTICS 14 P<sub>FO</sub>, AVERAGE POWER DISSIPATION (WATTS) SQUARE dc $I_{pk}/I_0 = \pi$ WAVE 12 $I_{pk}/I_0 = 5$ $I_{pk}/I_0 = 10$ 10 $I_{pk}/I_0 = 20$ 8.0 6.0 4.0 2.0 5.0 15 35 IO, AVERAGE FORWARD CURRENT (A) Figure 5. Current Derating Per Leg Figure 6. Forward Power Dissipation Per Leg Figure 7. Capacitance Per Leg Figure 8. Typical Operating Temperature Derating Per Leg\* \*Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T<sub>J</sub> therefore must include forward and reverse power effects. The allowable operating T<sub>J</sub> may be calculated from the equation: T<sub>J</sub> = T<sub>Jmax</sub> – r(t)(Pf + Pr) where r(t) = thermal impedance under given conditions, Pf = forward power dissipation, and Pr = reverse power dissipation This graph displays the derated allowable $T_J$ due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$ , where r(t) = Rthja. For other power applications further calculations must be performed. ### **TYPICAL CHARACTERISTICS** Figure 9. Thermal Response Junction to Lead (Per Leg) Figure 10. Thermal Response Junction to Ambient (Per Leg) **DATE 17 MAR 2017** #### NOTES - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. SLOT REQUIRED, NOTCH MAY BE ROUNDED. - DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY. - LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY - ØP SHALL HAVE A MAXIMUM DRAFT ANGLE OF 1.5° TO THE TOP OF THE PART WITH A MAXIMUM DIAMETER OF 3.91. - DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED | | MILLIMETERS | | | |-----|-------------|-------|--| | DIM | MIN | MAX | | | Α | 4.70 | 5.30 | | | A1 | 2.20 | 2.60 | | | b | 1.07 | 1.33 | | | b2 | 1.65 | 2.35 | | | b4 | 2.60 | 3.40 | | | С | 0.45 | 0.68 | | | D | 20.80 | 21.34 | | | E | 15.50 | 16.25 | | | E2 | 4.32 | 5.49 | | | е | 5.45 BSC | | | | F | 2.655 | | | | L | 19.80 | 20.80 | | | L1 | 3.81 | 4.32 | | | P | 3.55 | 3.65 | | | Q | 5.40 | 6.20 | | | S | 6.15 BSC | | | ### **GENERIC MARKING DIAGRAM\*** XXXXX = Specific Device Code = Assembly Location Α Υ = Year WW = Work Week = Pb-Free Package \*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98AON16119F | Electronic versions are uncontrolled except when accessed directly from the Document Reposito<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--| | DESCRIPTION: | TO-247 | | PAGE 1 OF 1 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. # ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales