smiths interconnect

cPCI Series

Ruggedized cPCI (2 mm) Connectors

Hypertac® Hyperboloid Technology

Smiths Interconnect offers an extensive range of superior contact technologies suitable for standard and custom solutions. Hypertac® (HYPERboloid conTACt) is the original superior performing hyperboloid contact technology designed for use in all applications and in harsh and demanding environments where high reliability and safety are critical. The inherent electrical and mechanical characteristics of the Hypertac hyperboloid contact ensures unrivalled performance in terms of reliability, number of mating cycles, low contact force and minimal contact resistance. The shape of the contact sleeve is formed by hyperbolically arranged contact wires, which align themselves elastically as contact lines around the pin, providing

Features

Low insertion/extraction forces

a number of linear contact paths.

The angle of the socket wires allows tight control of the pin insertion and extraction forces. The spring wires are smoothly deflected to make line contact with the pin.

Long contact life

The smooth and light wiping action minimizes wear on the contact surfaces. Contacts perform up to 100,000 insertion/extraction cycles with minimal degradation in performance.

Lower contact resistance

The design provides a far greater contact area and the wiping action of the wires insures a clean and polished contact surface. Our contact technology has about half the resistance of conventional contact designs.

Higher current ratings

The design parameters of the contact (e.g., the number, diameter and angle of the wires) may be modified for any requirement. The number of wires can be increased so the contact area is distributed over a larger surface. Thus, the high current carried by each wire because of its intimate line contact, can be multiplied many times.

Immunity to shock and vibration

The low mass and resultant low inertia of the wires enable them to follow the most abrupt or extreme excursions of the pin without loss of contact. The contact area extends 360° around the pin and is uniform over its entire length. The 3 dimensional symmetry of the Hypertac contact design guarantees electrical continuity in all circumstances.

Benefits

High density interconnect systems

Significant reductions in size and weight of sub-system designs. No additional hardware is required to overcome mating and unmating forces.

Low cost of ownership

The Hypertac contact technology will surpass most product requirements, thus eliminating the burden and cost of having to replace the connector or the entire subsystem.

Low power consumption

The lower contact resistance of our technology results in a lower voltage drop across the connector reducing the power consumption and heat generation within the system.

Maximum contact performance

The lower contact resistance of the Hypertac contact reduces heat build-up; therefore Hypertac contacts are able to handle far greater current in smaller contact assemblies without the detrimental effects of high temperature.

Reliability under harsh environments

Harsh environmental conditions require connectors that will sustain their electrical integrity even under the most demanding conditions such as shock and vibration. The Hypertac contact provides unmatched stability in demanding environments when failure is not an option.

cPCI Connector Series

Smiths Interconnect' ruggedized 2 mm cPCI Series addresses the market need for a high reliability connector solution which meets the mechanical footprint and electrical performance of the Compact PCI specification. Highly optimized for durability and high speed performance, the cPCI connectors utilize the superior Hypertac hyperboloid contact technology. The 0.4 mm Hypertac contacts in the backplane provide a current rating of 1 A and data rate performance up to 3.125 Gbps with less than 8 m Ω contact resistance. This combined with optimized lead traces provides exception performance in high speed signal applications.

Our connectors have completed and exceeded rigorous testing from NASA for extreme environmental conditions, including thermal excursions, corrosive atmospheres, excessive shock and vibration and contact engagement/separation cycling. As a result, NASA released specification S-311-P-822 naming Smiths Connectors | Hypertac's 2 mm cPCI as the mandated Compact PCI connector in all NASA space flights.

The 2 mm cPCI Series are the high reliability connectors essential in any mission critical applications that are fully interchangeable with Compact PCI COTS systems and IEC 1076-4-101 compliant.

Rugged 2 mmfootprint cPCl connectors fully interchangeable with compact PCl COTS systems

Features and Benefits

- Rugged implementation of the Compact PCI Standard
 - Fully interchangeable with COTS systems
 - Reverse gender of commercial 2 mm products
 - Physical hole pattern in accordance with cPCI PICMG 2.0
 - Contact identification in accordance with IEC 1076-4 101
- Reliable Hypertac® contact technology
- Qualification testing
 - cPCI Series meets applicable performance requirements of MIL-DTL-55302, EEE-INST-002, GEVS-SE Rev. A and NASA GSFC S-311-P822 specifications.
- Meets cPCI mechanical footprint and electrical performance specifications.
- Modular design for standard 3U/6U configurations
- Highly optimized connector design for high speed data rates, impedance matching, and minimal losses
- Durability
 - Field proven immunity to shock and vibration
 - Hyperboloid contact enables 360° self-wiping action
 - Resistant to fretting corrosion
 - EMI/RFI shielding
- Superior lead traces provide excellent performance in high speed signal applications
- Compatible with standard reflow soldering processes
- Delivers the high reliability essential in military/ aerospace applications
- Solder tail and press-fit terminations available

Technical Characteristics

3U/6U form factor	P1/P4	P2/P5	Р3	J1/J4	J2/J5	J3
Part Number	K2A110FMD	K2B110FMD	K2B095FMD	K2A110FFD	K2B110FFD	K2B095FFD
Design Criteria	IEC 1076-4 101					
Quality Conformance Inspections	K2 Series: MIL-DTL-55302 311P Series: NASA GSFC S-311-P-822 ⁽¹⁾					
Contact Gender	Male Pin Female Socket					
Contact Spacing (mm [in.])	2.00 [0.079]					
Number of Contacts	110 signal, 95 signal, 22 ground 19 ground			ignal, round	95 signal, 19 ground	
Max. Allowable Gap Between Mating Connectors (mm [in.])	1.00 [0.039]					
Suggested PCB Hole Diameter ⁽²⁾	Solder Tail: Solder Tail: 0.71 [0.028] ±0.05 [0.002] after plating 0.60 [0.023] ±0.05 [0.002] after plat Press Fit: Press Fit: 0.65 [0.026] ±0.05 [0.002] after plating 0.60 [0.023] ±0.05 [0.002] after plat		lating			
(mm [in.])			Press Fit: 0.60 [0.023] ±0.05 [0.002] after plating			

Materials

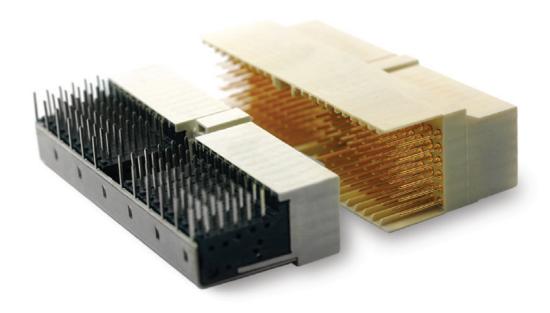
Contact Termination (Solder tail)	63/37 tin lead plated	Gold or 63/37 tin lead dipped	
Contact Termination (Press fit)	90/10 tin lead per MIL-P-81728		
Insulation	30% glass-filled LCP (meets NASA outgassing specification)		
Contact	Beryllium copper	Beryllium copper socket wires, brass body	
Mating Contact	50 μin gold/50 μin nickel min.		

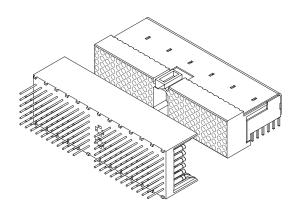
Mechanical and Environmental

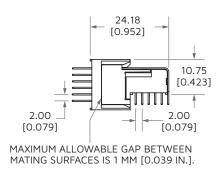
Temperature Range	−55°C to 125°C			
Flammability Range	94 V-O			
Weight (Solder tail) (g [oz.])	15.6 [0.55]. 15.0 [0.53] 10.8 [0.38] 10.8 [0.38] 12.67 [0.45] 8.8 [0.31]			8.8 [0.31]
Mating Force (N [lb.])	73 [16.28]/59 [13.2] average per mating connect pair			
Contact Life Cycle	> 4,000 per mated connector pair			
Vibration (Sinusoidal)	Frequency 10 Hz to 2,000 Hz at 15 G (MIL-DTL-55302)(NASA GSFC S311-P-822)			
Vibration (Random)	Fight chassis unit level vibration (NASA Goddard SE Rev 1)			
Mechanical Shock	100 G peak value (NASA GSFC S311-8220)			

Electrical

Insulation Resistance	>5,000 MΩ	
Resistance at Rated Current (CRD)	4.85 mΩ	
Low Level Contact Resistance (LLCR)	7.20 mΩ average	
Dielectric Withstanding Voltage (DWV)	1,000 V RMS	

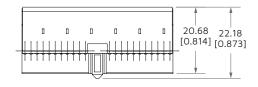

(1) K2 Series: Standard cPCI, Standard and Press-fit cPCI

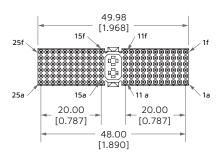

311P Series: NASA Goddard cPCI (2) See *Application guide S5089*

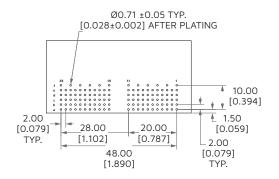


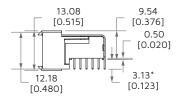
Dimensions

Mated Pair

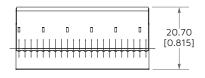


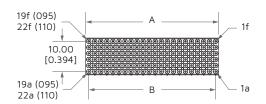


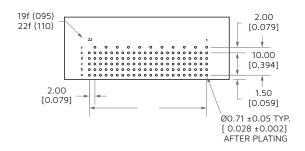



K2A Daughtercard Connectors (Male)

Part number K2A110FMDTBH



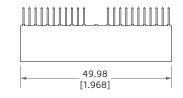


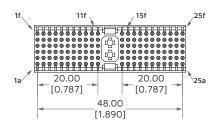


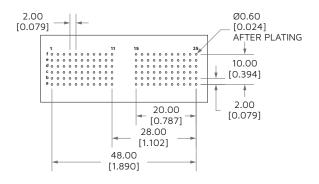
Component side of PCB

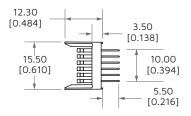
Part Numbers K2B095FMD and K2B110FMD

Component side of PCB

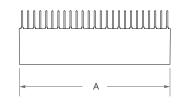

Part number	Α	В
K2B095FMD	37.98 [1.495]	36.00 [1.417]
K2B110FMD	43.98 [1.731]	42.00 [1.654]

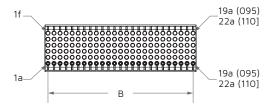

Note Reference ordering information for additional termination length options

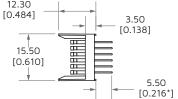



K2A Backplane Connectors (Female)

Part number K2A110FFDTABH

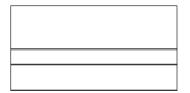




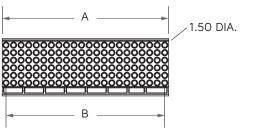

Component side of PCB

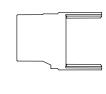
Part Numbers K2B095FFD and K2B110FFD

19 (095) 22 (110). Ø0.60 [0.024] AFTER PLATING 10.00 [0.394] 2.00 [0.079] B

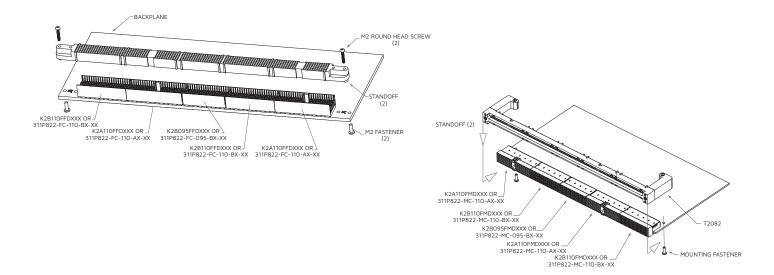

Component side of PCB

Part number	Α	В
K2B095FFD	37.98 [1.495]	36.00 [1.417]
K2B110FFD	43.98 [1.731]	42.00 [1.654]

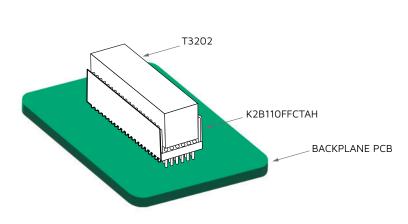

Note Reference ordering information for additional termination length options

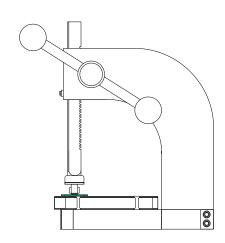

Adapters and Fixtures

ZK2 Backplane Solder Fixtures



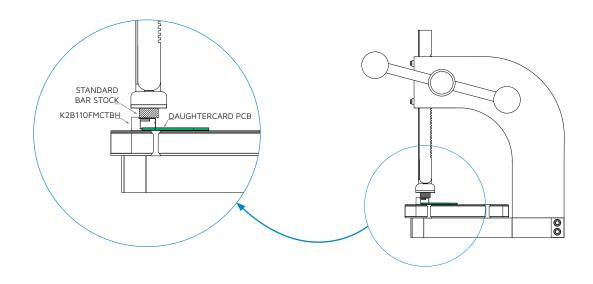
FIXTURE NUMBER	PART NUMBER	Α	В
ZK2095-005	K2B095FFDTABH	37.98 [1.495]	36.00 [1.417]
ZK2110-006	K2B110FFDTABH	43.98 [1.731]	42.00 [1.654]
ZK2110-007	K2A110FFDTABH	49.98 [1.968]	48.00 [1.890]


3U and 6U Solder Alignment Tooling


Alignment tool	Description	Work instructions
T3042	Standard 3U cPCI backplane	S50678
T3043	Standard 3U cPCI daughtercard	S50569
T2066	Standard 6U cPCI backplane	S50475
T2082	Standard 6U cPCI daughtercard	S50476

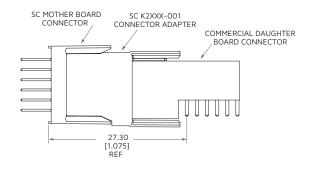
Backplane Press-fit Installation Tooling

The press-fit tooling provides an economical method for stabilizing and evenly distributing forces on the socket contacts while pressing the backplane connectors. See *Application guide S50894* for specifics installation instructions

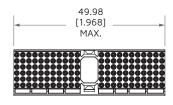


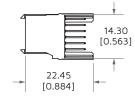
FIXTURE NUMBER	PART NUMBER
T3201	K2A110FFCTAH
T3202	K2B110FFCTAH
T3203	K2B095FFCTAH
T3204	K2C055FFCTAH

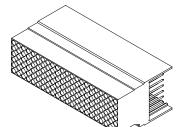
Daughtercard Press-Fit Installation Tooling


The daughtercard connectors can be installed in a similar fashion as above using the backplane installation tooling, listed above, or a piece of bar stock and a press. See *Application guide S50894* for specifics installation instructions.

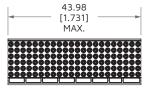
K2 Mated Test Adapter

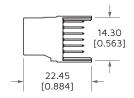

Part Number K2XXX-0001

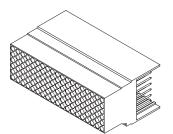

Designed to mate a COTS daughter board connector to a Smiths Connectors' mother board connector.



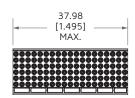
K2A110-0001

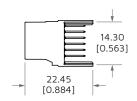


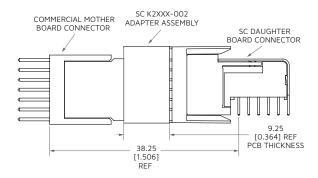


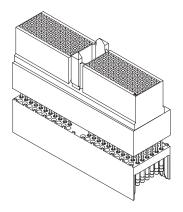


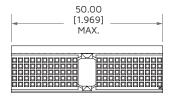
42.00

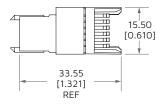

K2B110-0001

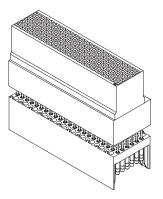




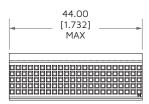

K2 Mated Test Adapter

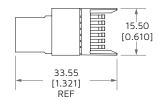

Part Number K2XXX-0002

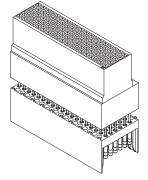

Designed to mate a COTS motherboard connector to a Smiths Connectors' daughter board connector.

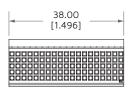


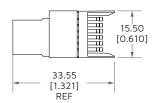
K2A110-0002



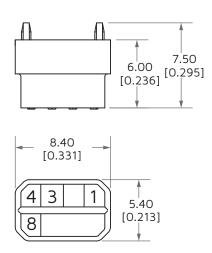




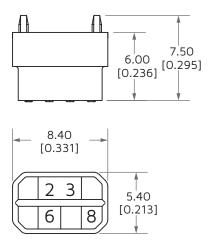

K2B110-0002



K2B095-0002


Dimensions are in inches [mm]

Keying Option

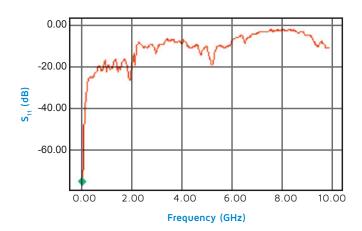

Multi-Purpose Centre Keying

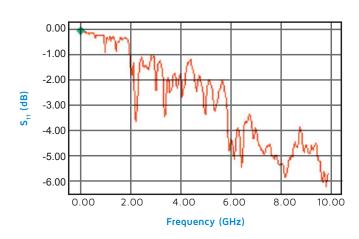
Material:30% glass-filled LCP (meets NASA outgassing requirements)

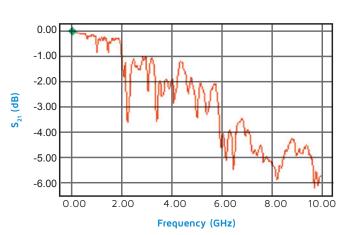
Color: Natural

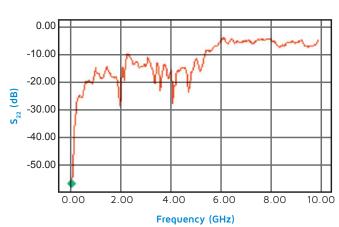
Example for code 1348

Example for code 2368

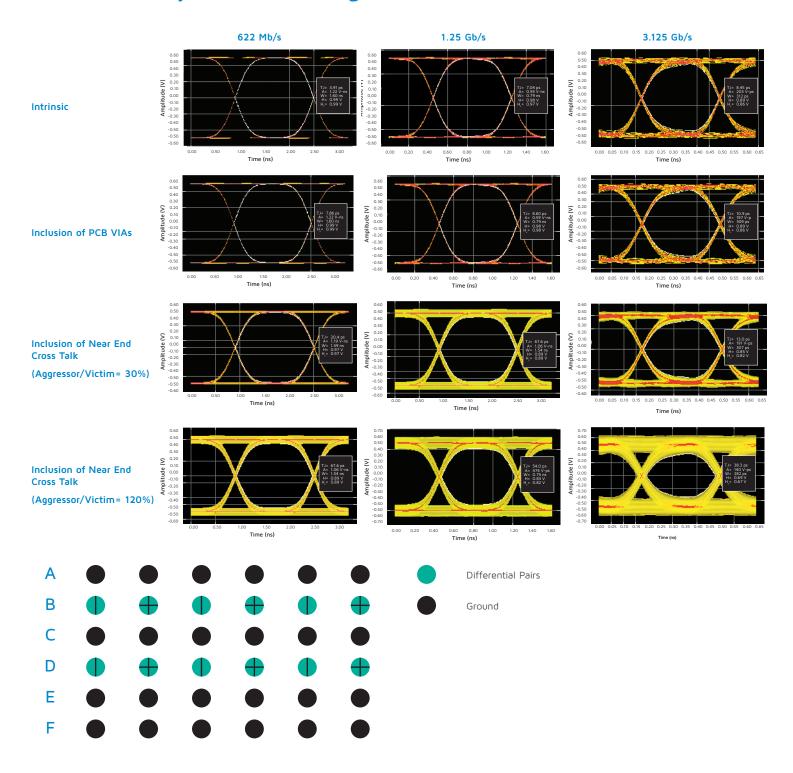

Male PCB matching codes	MPC key part number
1234	ZK2000-002-01
1236	ZK2000-002-03
1237	ZK2000-002-04
1238	ZK2000-002-05
1246	ZK2000-002-07
1247	ZK2000-002-08
1268	ZK2000-002-14
1345	ZK2000-002-16
1348	ZK2000-002-19
1357	ZK2000-002-21
1358	ZK2000-002-22
1378	ZK2000-002-25
1457	ZK2000-002-27
1467	ZK2000-002-29
1478	ZK2000-002-31
1568	ZK2000-002-33
1678	ZK2000-002-35
2346	ZK2000-002-37
3467	ZK2000-002-59
3478	ZK2000-002-61
4678	ZK2000-002-69


Intermates	with
	_


Female backplane matching codes	MPC key part number
5678	ZK2000-001-01
4578	ZK2000-001-03
4568	ZK2000-001-04
4567	ZK2000-001-05
3578	ZK2000-001-07
3568	ZK2000-001-08
3457	ZK2000-001-14
2678	ZK2000-001-16
2567	ZK2000-001-19
2468	ZK2000-001-21
2467	ZK2000-001-22
2456	ZK2000-001-25
2368	ZK2000-001-27
2358	ZK2000-001-29
2356	ZK2000-001-31
2347	ZK2000-001-33
2345	ZK2000-001-35
1578	ZK2000-001-37
1258	ZK2000-001-59
1256	ZK2000-001-61
1235	ZK2000-001-69


Performance

Differential S-Parameter(1)(2)



Propagation Delay and Skew

Parameter	Connector row								
	Α	В		С		D		Е	
Propagation Delay (ps)	68	90		112		134		156	
Skew (ps)	22		22		22		22		
Maximum Data Rate ²	3.125 Gb/s								

- (1) Pattern illustrated in the figure on next page was used in the S-parameter and cross talk measurements.
- (2) Please refer to the full characterization test report for details.

Connector Eye Pattern Diagram⁽¹⁾⁽²⁾

- (1) Pattern illustrated in the figure on next page was used in the S-parameter and cross talk measurements.
- (2) Please refer to the full characterization test report for details.

Part Numbers

	S-311-P-822 P/N	Standard P/N	Press-Fit P/N	Number of	MPC Polarization	Tail Length ⁽³⁾
	Solder Tail Termination ⁽¹⁾		Press-Fit Termination(2)	Contacts	Feature	mm [in.]
Backplane	-	K2C055EFD4TABH	K2C055FFCTAH	55	-	-
	311P822-FC-095-BS-D	K2B095FFDTABH	Karanta	95	-	5.50 [0.216]
	311P822-FC-095-BS-D4	K2B095FFD4TABH	K2B095FFCTAH		-	4.22 [0.166]
	311P822-FC-110-AS-D	K2A110FFDTABH	K2 A 110 FF CT A LI	110	Included ⁽⁴⁾	5.50 [0.216]
	311P822-FC-110-AS-D4	K2A110FFD4TABH	K2A110FFCTAH			4.22 [0.166]
	311P822-FC-110-BS-D	K2B110FFDTABH	KAR110FFCTALL		-	5.50 [0.216]
	311P822-FC-110-BS-D4	K2B110FFD4TABH	K2B110FFCTAH		-	4.22 [0.166]
	-	K2C055EMD4TBH	K2C055FMCTBH	55	-	-
Daughtercard	311P822-MC-095-BS-D	K2B095FMDTBH		95	-	3.12 [0.123]
	311P822-MC-095-BS-D4	K2B095FMD4TBH	K2B095FMCTBH		-	4.20 [0.166]
	311P822-MC-110-AS-D	K2A110FMDTBH	I/2 A 110 FM CTPLI	110	Included ⁽⁴⁾	3.12 [0.123]
	311P822-MC-110-AS-D4	K2A110FMD4TBH	K2A110FMCTBH			4.20 [0.166]
	311P822-MC-110-BS-D	K2B110FMDTBH	K2D110EMCTDLL		-	3.12 [0.123]
	311P822-MC-110-BS-D4	K2B110FMD4TBH	K2B110FMCTBH		-	4.20 [0.166]

- (1) Solder Tail termination:50 µin gold over nickel (mating surface only) with tin/lead (63/67) over nickel on solder tail terminations; Other surfaces gold flash (5 µin) over nickel.
- (2) Press Fit termination: 50 µin gold over nickel (mating surface only) with tin/lead (90/10) over nickel, per MIL-P-81728, on compliant terminations.
- (3) Only applies to solder tail terminations.
- (4) The Multi-purpose center (MPC) key is not included and needs to be ordered separately.

Worldwide Support

Connectors

Americas

Sales

connectors.uscsr@smithsinterconnect.com

Technical Support

connectors.ustechsupport@smithsinterconnect.com

Europe

Sales

connectors.emeacsr@smithsinterconnect.com

Technical Support

connectors.emeate chsupport@smiths interconnect.com

Asia

Sales

asiacsr@smithsinterconnect.com

Technical Support

asiatechsupport@smithsinterconnect.com

Fiber Optics & RF Components

Americas

Sales

focom.uscsr@smithsinterconnect.com

Technical Support

focom.techsupport@smithsinterconnect.com

Europe

Sales

focom.emeacsr@smithsinterconnect.com

Technical Support

focom.tech support@smiths interconnect.com

Asia

Sales

focom.asiacsr@smithsinterconnect.com

Technical Support

focom.tech support@smiths interconnect.com

Semiconductor Test

Americas

Sales

semi.uscsr@smithsinterconnect.com

Technical Support

semi.techsupport@smithsinterconnect.com

Europe

Sales

semi.emeacsr@smithsinterconnect.com

Technical Support

semi.techsupport@smithsinterconnect.com

Asia

Sales

semi.asiacsr@smithsinterconnect.com

Technical Support

semi.techsupport@smithsinterconnect.com

RF/MW Subsystems

Americas, Europe & Asia

Sales

subsystems.csr@smithsinterconnect.com

Technical Support

subsystems. tech support@smiths interconnect.com

Connecting Global Markets

smithsinterconnect.com

Copyright© 2024 Smiths Interconnect | All rights reserved | Version 1.3

The information contained within this document is subject at all times to applicable Export Control regulations and legal requirements.