Differential-to-LVCMOS/LVTTL Fanout Buffer w/Divider and Glitchless Switch # ICS870S208 #### PRELIMINARY DATA SHEET # **General Description** The ICS870S208 is a low skew, 8 output LVCMOS / LVTTL Fanout Buffer with selectable divider. The ICS870S208 has 2 selectable inputs that accept a variety of differential input types. The device provides the capability to suppress any glitch at the outputs of the device during an input clock switch to enhance clock redundancy in fault tolerant applications. The low impedance LVCMOS outputs are designed to drive 50Ω series or parallel terminated transmission lines. The effective fanout can be increased from 8 to 16 by utilizing the ability of the outputs to drive two series terminated lines. The divide select inputs, DIV_SELA and DIV_SELB, control the output frequency of each bank. The output banks can be independently selected for $\div 1$ or $\div 2$ operation. The output enable pins assigned to each output, support enabling and disabling of each output individually. The ICS870S208 is characterized at full 3.3V and 2.5V, and mixed 3.3V/2.5V output operating supply modes. Guaranteed output and part-to-part skew characteristics make the ICS870S208 ideal for high performance, single ended applications. #### **Features** - Eight LVCMOS/LVTTL outputs, (2 banks of 4 outputs) Each output has individual synchronous output enable - Two selectable differential CLKx, nCLKx inputs - Dual differential input pairs can accept the following differential input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL - Maximum output frequency: 250MHz - Selectable ÷1 or ÷2 operation - · Glitchless output behavior during input switch - Output skew: 50ps (typical), 3.3V - Bank skew: 30ps (typical), 3.3V - Supply modes: Core/Output 3.3V/3.3V 2.5V/2.5V 3.3V/2.5V - 0°C to 70°C ambient operating temperature - Available in both standard (RoHS 5) and lead-free (RoHS 6) packages # **Block Diagram** ## **Pin Assignment** ICS870S208 32-Lead LQFP 7mm x 7mm x 1.4mm package body Y Package Top View The Preliminary Information presented herein represents a product in pre-production. The noted characteristics are based on initial product characterization and/or qualification. Integrated Device Technology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice. **Table 1. Pin Descriptions** | Number | Name | 1 | Гуре | Description | |-------------------|-----------------------|--------|----------|--| | 1 | DIV_SELB | Input | Pulldown | Controls frequency division for Bank B outputs. LVCMOS / LVTTL interface levels. | | 2 | CLK0 | Input | Pulldown | Non-inverting differential clock input. | | 3 | nCLK0 | Input | Pullup | Inverting differential clock input. | | 4 | V_{DD} | Power | | Power supply pin. | | 5 | CLK_SEL | Input | Pulldown | Clock select input. When HIGH, selects CLK1, nCLK inputs, When LOW, selects CLK0, nCLK0 inputs. LVCMOS / LVTTL interface levels. | | 6 | CLK1 | Input | Pulldown | Non-inverting differential clock input. | | 7 | nCLK1 | Input | Pullup | Inverting differential clock input. | | 8 | DIV_SELA | Input | Pulldown | Controls frequency division for Bank AB outputs. LVCMOS / LVTTL interface levels. | | 9, 16, 25, 32 | GND | Power | | Power supply ground. | | 10, 11,
30, 31 | QA0, QA1,
QA3, QA2 | Output | | Single-ended Bank A clock outputs. LVCMOS / LVTTL interface levels. | | 12, 29 | V_{DDOA} | Power | | Output supply pins for Bank A outputs. | | 13, 28 | V_{DDOB} | Power | | Output supply pins for Bank B outputs. | | 17 | OE_A0 | Input | Pullup | Output enable for QA0 output. Active HIGH. If OE pin os LOW, outputs will drive in high-impedance. See Table 3. LVCMOS / LVTTL interface levels. | | 18 | OE_A1 | Input | Pullup | Output enable for QA1 output. Active HIGH. If OE pin os LOW, outputs will drive in high-impedance. See Table 3. LVCMOS / LVTTL interface levels. | | 19 | OE_A2 | Input | Pullup | Output enable for QA2 output. Active HIGH. If OE pin os LOW, outputs will drive in high-impedance. See Table 3. LVCMOS / LVTTL interface levels. | | 20 | OE_A3 | Input | Pullup | Output enable for QA3 output. Active HIGH. If OE pin os LOW, outputs will drive in high-impedance. See Table 3. LVCMOS / LVTTL interface levels. | | 21 | OE_B0 | Input | Pullup | Output enable for QB0 output. Active HIGH. If OE pin os LOW, outputs will drive in high-impedance. See Table 3. LVCMOS / LVTTL interface levels. | | 22 | OE_B1 | Input | Pullup | Output enable for QB1 output. Active HIGH. If OE pin os LOW, outputs will drive in high-impedance. See Table 3. LVCMOS / LVTTL interface levels. | | 23 | OE_B2 | Input | Pullup | Output enable for QB2 output. Active HIGH. If OE pin os LOW, outputs will drive in high-impedance. See Table 3. LVCMOS / LVTTL interface levels. | | 24 | OE_B3 | Input | Pullup | Output enable for QB3 output. Active HIGH. If OE pin os LOW, outputs will drive in high-impedance. See Table 3. LVCMOS / LVTTL interface levels. | NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. **Table 2. Pin Characteristics** | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|--|---|---------|---------|---------------------|-------| | C _{IN} | Input Capacitance | | | 2 | | pF | | | | $V_{DD} = V_{DDOA, B} = 3.465V$ | | 11 | 2
11
51
51 | pF | | C _{PD} | Power Dissipation Capacitance (per output) | $V_{DD} = V_{DDOA, B} = 2.625V$ | | | | pF | | | (por output) | $V_{DD} = 3.465V, V_{DDOA, B} = 2.625V$ | | | al Maximum | pF | | R _{PULLUP} | Input Pullup Resistor | | | 51 | | kΩ | | R _{PULLDOWN} | Input Pulldown Resistor | | | 51 | | kΩ | | R _{OUT} | Output Impedance | | | 15 | | Ω | # **Function Tables** **Table 3. Output Enable Function Table** | Control Inputs | Outputs | |----------------|------------------| | OE[0:3] | QA[0:3], QB[0:3] | | 0 | High-Impedance | | 1 | Active | # **Function Description** #### **Two Valid Clocks** The ICS87S0208 has a glitch free input mux that is controlled by the CLK_SEL pin. It is designed to switch between 2 input clocks whether running or not. In the case where both clocks are running, when CLK_SEL changes, the output clocks go low after one cycle of the output clock (nominally). The outputs then stay low for one cycle of the new input clock (nominally) and then begin to follow the new input clock. This is shown in *Figure 1A*. Figure 1A. CLK_SEL Timing Diagram When DIV_SEL changes, the part waits for the output to complete the cycle of the selected divider then changes seamlessly to the new divider. Figure 1B. DIV_SELx Timing Diagram When an output enable pin is pulled low, the part waits for the output to complete its period, then transitions to an High-Impedance state. When output enable is asserted, the output transitions from a High-Impedance to a low state to ensure a clean rising edge of the first output clock. Figure 1C. OEx Timing Diagram #### **Bad Input Clock** An internal timer monitors the state of both input clocks. If a clock is stopped (stuck high or low for over approximately 200ns), its internal input bad flag is set and the part will perform as depicted in the following diagrams. If the clock is restored, the internal input bad detector waits for 4 full clock periods before clearing the input bad flag and returning to normal operation. If the selected input clock goes bad (stuck high or low for over approximately 200ns), an internal input bad flag is set. When the input bad flag is set, the output goes low until the next valid clock event. If the selected clock is restored, the input bad detector waits 4 full clock periods before clearing the flag and returning to normal operation. If CLK_SEL is changed to select a valid input clock, the output will stay low for one full period of the new input clock, then return to normal operation. Figure 1D. CLK_SEL with Bad Input Timing Diagram If the selected input clock goes bad (stuck high or low for over approximately 200ns), an internal input bad flag is set. When the input bad flag is set, the output goes low until the next valid clock event. If DIV_SEL is changed, the output will transition from the low state following the selected divide when a valid input clock is restored. Figure 1E. DIV SELx with Bad Input Timing Diagram If the input bad flag has been set (The input has been stuck high or low for over approximately 200ns), and OEx is pulled low, the output will immediately go to a High-Impedance state. If the clock is restored while the OEx is low, the output will transition from the High-Impedance to a low state to ensure a clean rising edge of the first output clock when the Oex is pulled high again. Figure 1F. OEx with Bad Input Timing Diagram #### **Switch During an Input Bad Detect** If a CLK_SEL, DIV_SEL, or OE event happens after a clock has stopped, but before the input bad flag has been set (during the ~200ns detect period) the output change will not take effect until the internal bad flag has been set. The output will go low after the input bad flag is set and follow the second period of the new clock input. Although no glitches will occur, due to the unknown state of the failing clock, a transition may take up to 1us to execute. Figure 1G. CLK_SEL with Bad Input Timing Diagram ## **Absolute Maximum Ratings** NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. | Item | Rating | |--|--------------------------------------| | Supply Voltage, V _{DD} | 4.6V | | Inputs, V _I | -0.5V to V _{DD} + 0.5V | | Outputs, V _O | -0.5V to V _{DDOA, B} + 0.5V | | Package Thermal Impedance, θ_{JA} | 42.7°C/W (0 mps) | | Storage Temperature, T _{STG} | -65°C to 150°C | #### **DC Electrical Characteristics** Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDOA} = V_{DDOB} = 3.3V \pm 5\%$, $T_A = 0$ °C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--|-----------------------|-----------------|---------|---------|---------|-------| | V_{DD} | Power Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{DDOA} ,
V _{DDOB} | Output Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | I _{DD} | Power Supply Current | | | 60 | | mA | | I _{DDOA,}
I _{DDOB} | Output Supply Current | No Load | | 0 | | mA | #### Table 4B. Power Supply DC Characteristics, $V_{DD} = V_{DDOA} = V_{DDOB} = 2.5V \pm 5\%$, $T_A = 0$ °C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |---|-----------------------|-----------------|---------|---------|---------|-------| | V_{DD} | Power Supply Voltage | | 2.375 | 2.5 | 2.625 | ٧ | | $V_{DDOA,} \ V_{DDOB}$ | Output Supply Voltage | | 2.375 | 2.5 | 2.625 | ٧ | | I_{DD} | Power Supply Current | | | 60 | | mA | | I _{DDOA,}
I _{DDOB} | Output Supply Current | No Load | | 0 | | mA | Table 4C. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDOA} = V_{DDOB} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |---|-----------------------|-----------------|---------|---------|---------|-------| | V_{DD} | Power Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | $V_{DDOA,} \ V_{DDOB}$ | Output Supply Voltage | | 2.375 | 2.5 | 2.625 | ٧ | | I_{DD} | Power Supply Current | | | 60 | | mA | | I _{DDOA,}
I _{DDOB} | Output Supply Current | No Load | | 0 | | mA | Table 4D. LVCMOS/LVTTL DC Characteristics, $T_A = 0$ °C to 70 °C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|---|---|--|---------|---------|-----------------------|-------| | V | Input Lligh Voltage | | $V_{DD} = 3.3V \pm 5\%$ | 2.2 | | V _{DD} + 0.3 | V | | V _{IH} | input High Voit | nput High Voltage nput Low Voltage CLK_SEL, DIV_SELA, DIV_SELB OE_A[0:3], OE_B[0:3] CLK_SEL, DIV_SELA, DIV_SELA, DIV_SELA, DIV_SELA, DIV_SELA, DIV_SELA, DIV_SELB | $V_{DD} = 2.5V \pm 5\%$ | 1.7 | | V _{DD} + 0.3 | V | | V | Input High Current DIV_SELA, DIV_SELB OE_A[0:3], OE_B[0:3] CLK_SEL, DIV_SELA, DIV_SELA, DIV_SELA, DIV_SELB | | $V_{DD} = 3.3V \pm 5\%$ | -0.3 | | 0.8 | V | | V _{IL} | | | $V_{DD} = 2.5V \pm 5\%$ | -0.3 | | 0.7 | V | | I _{IH} | | DIV_SELA, | V _{DD} = V _{IN} = 3.465V or 2.625V | | | 150 | μА | | | High Current | | V _{DD} = V _{IN} = 3.465V or 2.625V | | | 10 | μА | | I _{IL} | • | DIV_SELA, | V _{DD} = 3.465V or 2.625V, V _{IN} = 0V | -10 | | | μА | | | Low Current | | V _{DD} = 3.465V or 2.625V, V _{IN} = 0V | -150 | | | μΑ | | V | Output High Va | oltogo: NOTE 1 | V _{DDOA, B} = 3.465V | 2.6 | | | V | | V _{OH} | Output High VC | nage, NOTE T | V _{DDOA, B} = 2.375V | 1.8 | | | V | | V _{OL} | Output Low Vo | ltage; NOTE 1 | V _{DDOA, B} = 3.465V or 2.625V | | | 0.5 | V | NOTE 1: Outputs are terminated with 50Ω to $V_{DDOA,\;B}/2$. See Parameter Measurement section, *Load Test Circuit* diagrams. Table 4E. Differential DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$ | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|--------------------------|------------------|--|-----------|---------|------------------------|-------| | 1 | Input | nCLK0, nCLK1 | $V_{DD} = V_{IN} = 3.465V \text{ or } 2.625V$ | | | 10 | μΑ | | I IH | High Current | CLK0, CLK1 | V _{DD} = V _{IN} = 3.465V or 2.625V | | | | μΑ | | | Input | nCLK0, nCLK1 | V _{DD} = 3.465V or 2.625V, V _{IN} = 0V | -150 | | | μΑ | | ¹ L | Low Current | CLK0, CLK1 | V _{DD} = 3.465V or 2.625V, V _{IN} = 0V | -10 | | | μΑ | | V _{PP} | Peak-to-Peak | Voltage; NOTE 1 | | 0.15 | | 1.3 | V | | V _{CMR} | Common Mode
NOTE 1, 2 | e Input Voltage; | | GND + 0.5 | | V _{DD} – 0.85 | ٧ | NOTE 1: V_{IL} should not be less than -0.3V. NOTE 2: Common mode input voltage is defined as V_{IH} . #### **AC Electrical Characteristics** Table 5A. AC Characteristics, $V_{DD} = V_{DDOA} = V_{DDOB} = 3.3V \pm 5\% = T_A = 0$ °C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|----------------|-------------------|-----------------|---------|---------|---------|-------| | f _{MAX} | Output Freque | ency | | | | 250 | MHz | | t _{PD} | Propagation I | Delay; NOTE 1 | | | 3 | | ns | | tsk(o) | Output Skew; | NOTE 2, 3 | | | 50 | | ps | | tsk(pp) | Part-to-Part S | Skew; NOTE 3, 4 | | | | | ps | | <i>t</i> sk(b) | Bank Skew; | QA[0:3], nQA[0:3] | | | 30 | | ps | | isk(b) | NOTE 3, 5 | QB[0:3], nQB[0:3] | | | 50 | | ps | | t _R / t _F | Output Rise/F | all Time; NOTE 6 | 20% to 80% | | 350 | | ps | | t _{EN} | Output Enable | e Time; NOTE 6 | | | | 10 | ns | | t _{DIS} | Output Disabl | le Time; NOTE 6 | | | | 10 | ns | | odc | Output Duty C | Cycle | | | 50 | | % | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. NOTE 1: Measured from the differential input crossing point to $V_{DDOA,\;B}/2$ of the output. NOTE 2: Defined as between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOA, B}/2. NOTE 3: This parameter is defined in accordance with JEDEC Standard 65. NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDOA, B}/2$. NOTE 5: Defined as skew within a bank of outputs at the same voltage and with equal load conditions. NOTE 6: These parameters are guaranteed by characterization. Not tested in production. Table 5B. AC Characteristics, $V_{DD} = V_{DDOA} = V_{DDOB} = 2.5V \pm 5\%$, $T_A = 0$ °C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|----------------|-------------------|-----------------|---------|---------|---------|-------| | f _{MAX} | Output Freque | ency | | | | 250 | MHz | | t _{PD} | Propagation [| Delay; NOTE 1 | | | 3.2 | | ns | | tsk(o) | Output Skew; | NOTE 2, 3 | | | 50 | | ps | | tsk(pp) | Part-to-Part S | kew; NOTE 3, 4 | | | | | ps | | tok/b) | Bank Skew; | QA[0:3], nQA[0:3] | | | 35 | | ps | | <i>t</i> sk(b) | NOTE 3, 5 | QB[0:3], nQB[0:3] | | | 50 | | ps | | t _R / t _F | Output Rise/F | all Time; NOTE 6 | 20% to 80% | | 360 | | ps | | t _{EN} | Output Enable | e Time; NOTE 6 | | | | 10 | ns | | t _{DIS} | Output Disabl | e Time; NOTE 6 | | | | 10 | ns | | odc | Output Duty C | Cycle | | | 50 | | % | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. NOTE 1: Measured from the differential input crossing point to $V_{DDOA,\;B}/2$ of the output. NOTE 2: Defined as between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOA, B}/2. NOTE 3: This parameter is defined in accordance with JEDEC Standard 65. NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of input on each device, the output is measured at V_{DDOA} $_{B}/2$. NOTE 5: Defined as skew within a bank of outputs at the same voltage and with equal load conditions. NOTE 6: These parameters are guaranteed by characterization. Not tested in production. Table 5C. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDOA} = V_{DDOB} = 2.5V \pm 5\%$, $T_A = 0$ °C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|---|-------------------|-----------------|---------|---------|---------|-------| | f _{MAX} | Output Freque | ency | | | | 250 | MHz | | t _{PD} | Propagation [| Delay; NOTE 1 | | | 3.3 | | ns | | tsk(o) | Output Frequency Propagation Delay; NOTE 1 Output Skew; NOTE 2, 3 Part-to-Part Skew; NOTE 3, 4 Bank Skew; NOTE 3, 4 QA[0:3], nQA[0:3] QB[0:3], nQB[0:3] | | | | 60 | | ps | | tsk(pp) | Part-to-Part S | Skew; NOTE 3, 4 | | | | | ps | | tol/(b) | Bank Skew; | QA[0:3], nQA[0:3] | | | 35 | | ps | | tsk(b) | NOTE 3, 5 | QB[0:3], nQB[0:3] | | | 55 | | ps | | t _R / t _F | Output Rise/F | all Time; NOTE 6 | 20% to 80% | | 360 | | ps | | t _{EN} | Output Enable | e Time; NOTE 6 | | | | 10 | ns | | t _{DIS} | Output Disabl | le Time; NOTE 6 | | | | 10 | ns | | odc | Output Duty C | Cycle | | | 50 | | % | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. - NOTE 1: Measured from the differential input crossing point to $V_{DDOA,\ B}/2$ of the output. - NOTE 2: Defined as between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOA, B}/2. - NOTE 3: This parameter is defined in accordance with JEDEC Standard 65. - NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of input on each device, the output is measured at V_{DDOA, B}/2. - NOTE 5: Defined as skew within a bank of outputs at the same voltage and with equal load conditions. - NOTE 6: These parameters are guaranteed by characterization. Not tested in production. # **Parameter Measurement Information** 3.3V Output Load AC Test Circuit 3.3V Core/2.5V Output Load AC Test Circuit **Output Skew** 2.5V Output Load AC Test Circuit **Differential Input Level** **Part-to-Part Skew** # **Parameter Measurement Information, continued** #### **Bank Skew** Output Duty Cycle/Pulse Width/Period **Propagation Delay** **Output Rise/Fall Time** ### **Application Information** #### **Recommendations for Unused Input and Output Pins** #### Inputs: #### **CLK/nCLK Inputs** For applications not requiring the use of the differential input, both CLKx and nCLKx can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLKx to ground. #### **LVCMOS Control Pins** All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used. #### **Outputs:** #### **LVCMOS Outputs** All unused LVCMOS output can be left floating. There should be no trace attached. #### Wiring the Differential Input to Accept Single-Ended Levels Figure 2 shows how a differential input can be wired to accept single ended levels. The reference voltage $V_{REF} = V_{DD}/2$ is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the V_{REF} in the center of the input voltage swing. For example, if the input clock swing is 2.5V and $V_{DD} = 3.3V$, R1 and R2 value should be adjusted to set V_{REF} at 1.25V. The values below are for when both the single ended swing and V_{DD} are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most 50Ω applications, R3 and R4 can be 100Ω . The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however V_{IL} cannot be less than -0.3V and V_{IH} cannot be more than V_{DD} + 0.3V. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal. Figure 2. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels #### **Differential Clock Input Interface** The CLKx /nCLKx accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both signals must meet the V_{PP} and V_{CMR} input requirements. *Figures 3A to 3F* show interface examples for the CLKx/nCLKx input driven by the most common driver types. The input interfaces suggested here are examples only. Please Figure 3A. CLK/nCLK Input Driven by an IDT Open Emitter LVHSTL Driver Figure 3C. CLK/nCLK Input Driven by a 3.3V LVPECL Driver Figure 3E. CLK/nCLK Input Driven by a 3.3V HCSL Driver consult with the vendor of the driver component to confirm the driver termination requirements. For example, in Figure 3A, the input termination applies for IDT open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation. Figure 3B. CLK/nCLK Input Driven by a 3.3V LVPECL Driver Figure 3D. CLK/nCLK Input Driven by a 3.3V LVDS Driver Figure 3F. CLK/nCLK Input Driven by a 2.5V SSTL Driver #### **VFQFN EPAD Thermal Release Path** In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 4*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts. While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a quideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Leadframe Base Package, Amkor Technology. Figure 4. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale) # **Reliability Information** # Table 6. θ_{JA} vs. Air Flow Table for a 32 Lead VFQFN | θ_{JA} vs. Air Flow | | | | | | | |---|----------|----------|----------|--|--|--| | Meters per Second | 0 | 1 | 2.5 | | | | | Multi-Layer PCB, JEDEC Standard Test Boards | 42.7°C/W | 37.3°C/W | 33.5°C/W | | | | #### **Transistor Count** The transistor count for ICS870S208 is: 2788 # **Package Outline and Package Dimensions** #### Package Outline - K Suffix for 32 Lead VFQFN There are 3 methods of indicating pin 1 corner at the back of the VFQFN package are: - 1. Type A: Chamfer on the paddle (near pin 1) - 2. Type B: Dummy pad between pin 1 and N. - 3. Type C: Mouse bite on the paddle (near pin 1) **Table 7. Package Dimensions** | JEDEC Variation: VHHD-2/-4 All Dimensions in Millimeters | | | | | | | |--|------------|---------|---------|--|--|--| | Symbol | Minimum | Nominal | Maximum | | | | | N | 32 | | | | | | | Α | 0.80 | | 1.00 | | | | | A1 | 0 | | 0.05 | | | | | А3 | 0.25 Ref. | | | | | | | b | 0.18 | 0.25 | 0.30 | | | | | N _D & N _E | | | 8 | | | | | D&E | 5.00 Basic | | | | | | | D2 & E2 | 3.0 | | 3.3 | | | | | е | 0.50 Basic | | | | | | | L | 0.30 | 0.40 | 0.50 | | | | Reference Document: JEDEC Publication 95, MO-220 NOTE: The following package mechanical drawing is a generic drawing that applies to any pin count VFQFN package. This drawing is not intended to convey the actual pin count or pin layout of this device. The pin count and pinout are shown on the front page. The package dimensions are in Table 7. # **Ordering Information** #### **Table 8. Ordering Information** | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|--------------|---------------------------|--------------------|-------------| | 870S208BK | ICS870S208B | 32 Lead VFQFN | Tray | 0°C to 70°C | | 870S208BKT | ICS870S204B | 32 Lead VFQFN | 2500 Tape & Reel | 0°C to 70°C | | 870S208BKLF | ICS870S208BL | "Lead-Free" 32 Lead VFQFN | Tray | 0°C to 70°C | | 870S208BKLFT | ICS870S208BL | "Lead-Free" 32 Lead VFQFN | 2500 Tape & Reel | 0°C to 70°C | NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments. # We've Got Your Timing Solution 6024 Silver Creek Valley Road San Jose, California 95138 **aies** 00-345-7015 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT Technical Support netcom@idt.com netcom@idt.cor +480-763-2056 DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties. IDT's products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners. Copyright 2010. All rights reserved.