

HiPerFET[™]Power MOSFETs ISOPLUS247[™]

IXFR 4N100Q

$V_{DSS} = 1000 V$ $I_{D25} = 3.5 A$

$R_{DS(on)} = 3.0 \Omega$

t_{rr} ≤ 200ns

(Electrically Isolated Backside)

N-Channel Enhancement Mode Avalanche Rated, Low Q_q, High dv/dt

Preliminary Data

Symbol	Test Conditions	Maximum Ratings		
V _{DSS} V _{DGR}	$T_J = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$ $T_J = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}; R_{GS} = 1 \text{ M}\Omega$	1000 1000	V	
V _{GS}	Continuous Transient	±20 ±30	V V	
I _{D25} I _{DM}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$, Note 1 $T_{c} = 25^{\circ}C$	3.5 16 4	A A A	
E _{AR} E _{AS}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$	20 700	mJ mJ	
dv/dt	$\begin{array}{l} I_{_{S}} & \leq I_{_{DM}}, di/dt \leq 100 A/\mu s, V_{_{DD}} \leq V_{_{DSS}} \\ T_{_{J}} & \leq 150^{\circ} C, R_{_{G}} = 2 \Omega \end{array}$	5	V/ns	
P_{D}	T _c = 25°C	80	W	
T _J		-55 + 150	°C	
T _{JM} T _{stg}		150 -55 +150	°C °C	
$\overline{\mathbf{T}_{\!\scriptscriptstyle L}}$	1.6 mm (0.063 in.) from case for 10 s	300	°C	
V _{ISOL}	50/60 Hz, RMS t = 1 min	2500	V~	
Weight		5	g	

E153432	
S	Isolated backside*

G = Gate	D = Drain
S = Source	

^{*} Patent pending

Features

- Silicon chip on Direct-Copper-Bond substrate
- High power dissipation
- Isolated mounting surface
- 2500V electrical isolation
- Low drain to tab capacitance(<30pF)
- $^{\bullet} \ \mathsf{Low} \ \mathsf{R}_{^{\mathsf{DS}} \ \mathsf{(on)}} \ \mathsf{HDMOS^{\mathsf{TM}}} \ \mathsf{process}$
- Rugged polysilicon gate cell structure
- Rated for Unclamped Inductive Load Switching (UIS)
- Fast intrinsic Rectifier

Symbol	Test Conditions	$(T_J = 25^{\circ}C, \text{ unless of } $	ristic Values se specified) max.
V _{DSS}	V _{GS} = 0 V, I _D = 1mA	1000	V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1.5 \text{ mA}$	3.0	5.0 V
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$		±100 nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	50 μA 1 mA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = I_{T}$		3.0 Ω

Applications

- DC-DC converters
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- AC motor control

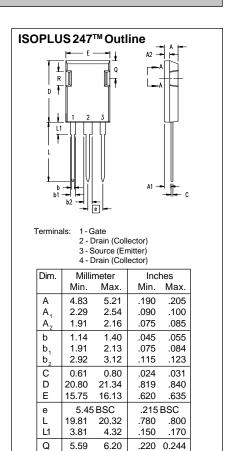
Advantages

- Easy assembly
- Space savings
- High power density

Notes 2, 3

Symbol	Test Conditions	(T _J = 25°C, 1			istic Values se specified) max.
g_{fs}	$V_{DS} = 10 \text{ V}; I_{D} = I_{T}$	Notes 2, 3	1.5	2.5	S
C _{iss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25$	V, f = 1 MHz		1050 120	pF pF
C _{rss}) GS DS	,		30	pF
t _{d(on)} t _r t _{d(off)}	$\begin{cases} V_{GS} = 10 \text{ V}, V_{DS} = 0. \\ R_{G} = 2 \Omega \text{ (External)}, \end{cases}$	200 2 .		17 15 32 18	ns ns ns
$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	$\begin{cases} V_{GS} = 10 \text{ V}, V_{DS} = 0. \\ \text{Notes } 2, 3 \end{cases}$	$5 \bullet V_{DSS}, I_{D} = I_{T}$		39 9 22	nC nC nC
R _{thJC}					1.57 K/W
R _{thCK}				0.15	K/W

Source-Drain Diod	_


Characteristic Values

 $(T_{J} = 25^{\circ}C, \text{ unless otherwise specified})$

Symbol	Test Conditions n	nin.	typ.	max.	
I _s	V _{GS} = 0 V			4	Α
I _{SM}	Repetitive; Note 1			16	Α
V _{SD}	$I_{F} = I_{S}, V_{GS} = 0 \text{ V, Notes } 2, 3$			1.5	V
t _{rr})			250	ns
$\mathbf{Q}_{_{\mathbf{RM}}}$	$I_{\rm F} = 50 \text{A}, -\text{di/dt} = 100 \text{ A/}\mu\text{s}, V_{\rm R} = 100 \text{ V}$		0.52		μС
I _{RM}) I _F = 307, 31/4t = 100 74 pts, 7 _R = 100 7		1.8		Α

Note: 1. Pulse width limited by T $_{\text{JM}}$ 2. Pulse test, t \leq 300 μ s, duty cycle d \leq 2 %

3. $I_T = 2 A$

See IXFH4N100Q data sheet for Characterisitic curves.

4.83

.170

.190

4.32

R

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.