IGBT - Field Stop II / 4 Lead

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Field Stop II Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss. In addition, this new device is packaged in a TO–247–4L package that provides significant reduction in E_{on} Losses compared to standard TO–247–3L package. The IGBT is well suited for UPS and solar applications. Incorporated into the device is a soft and fast co–packaged free wheeling diode with a low forward voltage.

Features

- Extremely Efficient Trench with Field Stop Technology
- $T_{Jmax} = 175^{\circ}C$
- Improved Gate Control Lowers Switching Losses
- Separate Emitter Drive Pin
- TO-247-4L for Minimal E_{on} Losses
- Optimized for High Speed Switching
- This is a Pb-Free Device

Typical Applications

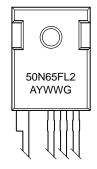
- Solar Inverters
- Uninterruptible Power Supplies (UPS)
- Neutral Point Clamp Topology

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	V _{CES}	650	V
Collector current @ Tc = 25°C @ Tc = 100°C	I _C	160 50	A
Diode Forward Current @ Tc = 25°C @ Tc = 100°C	I _F	160 50	A
Diode Pulsed Current T _{PULSE} Limited by T _J Max	I _{FM}	160	Α
Pulsed collector current, T _{pulse} limited by T _{Jmax}	I _{CM}	160	А
Gate-emitter voltage	V_{GE}	±20	V
Transient gate-emitter voltage (T _{PULSE} = 5 μ s, D < 0.10)		±30	
Power Dissipation @ Tc = 25°C @ Tc = 100°C	P _D	417 208	W
Operating junction temperature range	T_J	-55 to +175	°C
Storage temperature range	T _{stg}	-55 to +175	°C
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®


www.onsemi.com

50 A, 650 V V_{CEsat} = 1.8 V E_{on} = 0.48 mJ

MARKING DIAGRAM

50N65FL2 = Specific Device Code

A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NGTB50N65FL2WAG	TO-247 (Pb-Free)	30 Units / Rail

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ heta JC}$	0.36	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ heta JC}$	0.62	°C/W
Thermal resistance junction-to-ambient	$R_{ heta JA}$	40	°C/W

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions Symbol N		Min	Min Typ		Unit
STATIC CHARACTERISTIC	•			•		
Collector–emitter breakdown voltage, gate–emitter short–circuited	$V_{GE} = 0 \text{ V, I}_{C} = 500 \mu\text{A}$	V _{(BR)CES}	650	_	-	V
Collector–emitter saturation voltage	V _{GE} = 15 V, I _C = 50 A V _{GE} = 15 V, I _C = 50 A, T _J = 175°C	V _{CEsat}	_ _	1.80 2.17	2.00	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_{C} = 350 \mu A$	V _{GE(th)}	4.5	5.5	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	$V_{GE} = 0 \text{ V}, V_{CE} = 650 \text{ V}$ $V_{GE} = 0 \text{ V}, V_{CE} = 650 \text{ V}, T_{J=175^{\circ}\text{C}}$	I _{CES}	_ _	_ 5.5	0.3 -	mA
Gate leakage current, collector–emitter short–circuited	V _{GE} = 20 V , V _{CE} = 0 V	I _{GES}	-	_	200	nA
DYNAMIC CHARACTERISTIC				•	-	-
Input capacitance		C _{ies}	-	5160	_	pF
Output capacitance	$V_{CE} = 20 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	C _{oes}	-	244	-	1
Reverse transfer capacitance	1	C _{res}	-	141	-	1
Gate charge total		Qg	-	215	-	nC
Gate to emitter charge	$V_{CE} = 480 \text{ V}, I_{C} = 50 \text{ A}, V_{GE} = 15 \text{ V}$	Q _{ge}	-	48	-	1
Gate to collector charge	1	Q _{gc}	-	116	-	1
SWITCHING CHARACTERISTIC, INDUC	TIVE LOAD			•	•	
Turn-on delay time		t _{d(on)}	_	23	_	ns
Rise time	1	t _r	_	35	_	1
Turn-off delay time	T _{.1} = 25°C	t _{d(off)}	_	123	-	
Fall time	$V_{CC} = 400 \text{ V}, I_{C} = 50 \text{ A}$ $R_{g} = 10 \Omega$	t _f	_	54	-	
Turn-on switching loss	$V_{GE} = 15 \text{ V}$	E _{on}	_	0.42	-	mJ
Turn-off switching loss	1	E _{off}	_	0.55	_	
Total switching loss	1	E _{ts}	_	0.97	_	
Turn-on delay time		t _{d(on)}	-	22	-	ns
Rise time	1	t _r	-	38	-	1
Turn-off delay time	T _J = 175°C	t _{d(off)}	-	130	-	1
Fall time	$V_{CC} = 400 \text{ V}, I_{C} = 50 \text{ A}$ $R_{g} = 10 \Omega$	t _f	-	93	-	1
Turn-on switching loss	$V_{GE} = 15 \text{ V}$	E _{on}	-	0.58	-	mJ
Turn-off switching loss	1	E _{off}	-	0.92	-	1
Total switching loss	1	E _{ts}	-	1.50	-	1
DIODE CHARACTERISTIC	•					
Forward voltage	$V_{GE} = 0 \text{ V, } I_F = 50 \text{ A}$ $V_{GE} = 0 \text{ V, } I_F = 50 \text{ A, } T_J = 175^{\circ}\text{C}$	V _F	- -	2.10 2.20	2.60 -	V
Reverse recovery time	T _J = 25°C I _F = 50 A, V _R = 400 V	t _{rr}	-	94	-	ns
Reverse recovery charge		Q _{rr}	_	0.36	_	μС
Reverse recovery current	di _F /dt = 200 A/μs	I _{rrm}	_	6.5	_	Α
Reverse recovery time	T _{.1} = 175°C	t _{rr}	_	170	_	ns
Reverse recovery charge	$I_F = 50^{\circ} A$, $V_R = 400^{\circ} V$	Q _{rr}	_	1.40	_	μС
Reverse recovery current	di _F /dt = 200 A/μs	I _{rrm}	_	13	_	Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.



Figure 1. Output Characteristics

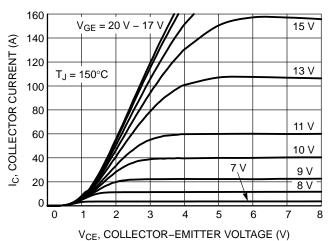


Figure 2. Output Characteristics

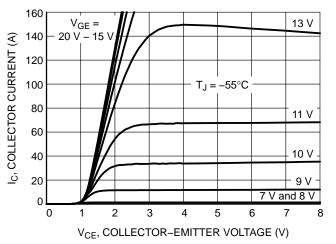


Figure 3. Output Characteristics

Figure 4. Output Characteristics

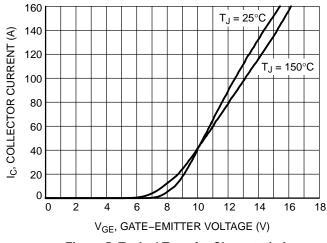


Figure 5. Typical Transfer Characteristics

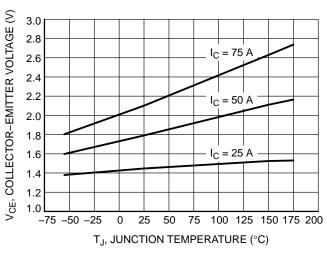


Figure 6. V_{CE(sat)} vs. T_J

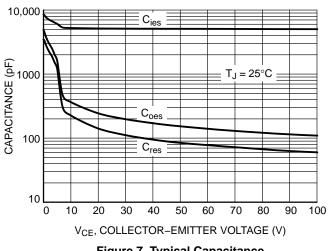


Figure 7. Typical Capacitance

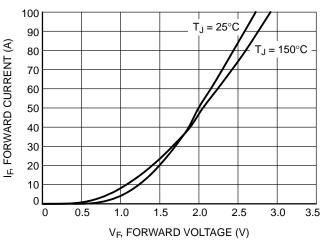


Figure 8. Diode Forward Characteristics

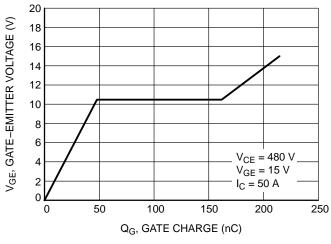


Figure 9. Typical Gate Charge

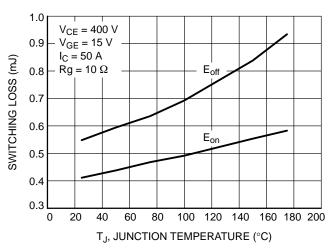


Figure 10. Switching Loss vs. Temperature

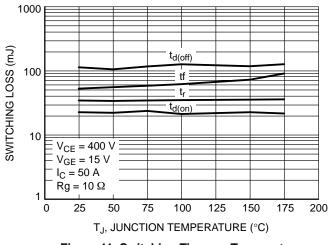


Figure 11. Switching Time vs. Temperature

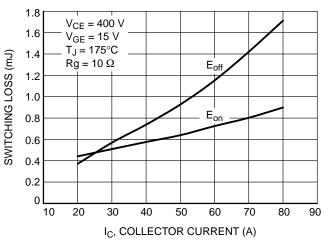


Figure 12. Switching Loss vs. IC

TYPICAL CHARACTERISTICS

SWITCHING LOSS (mJ)

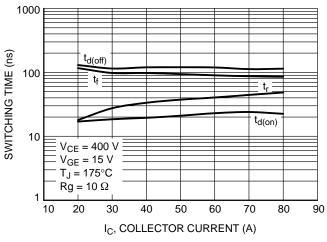


Figure 13. Switching Time vs. IC

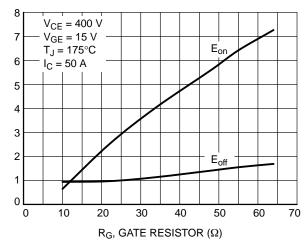


Figure 14. Switching Loss vs. R_G

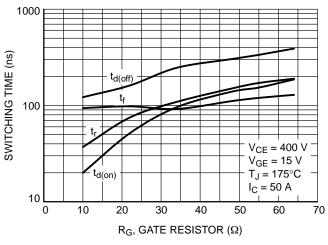


Figure 15. Switching Time vs. R_G

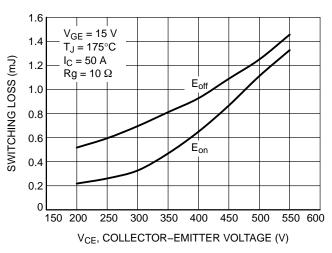


Figure 16. Switching Loss vs. V_{CE}

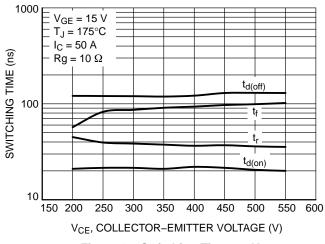
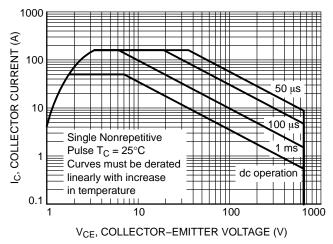
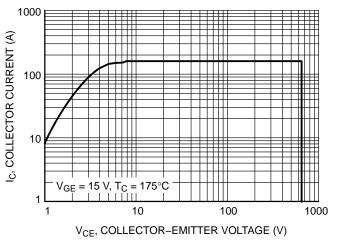
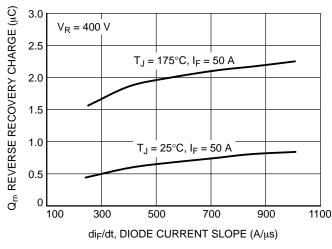


Figure 17. Switching Time vs. V_{CE}


Figure 18. Safe Operating Area

160 T_J = 175°C, I_F = 50 A V_R = 400 V t_{rr}, REVERSE RECOVERY TIME (ns) 140 120 100 80 $T_J = 25^{\circ}C$, $I_F = 50 \text{ A}$ 60 40 300 500 700 900 1100 100 di_F/dt , DIODE CURRENT SLOPE (A/ μ s)

Figure 19. Reverse Bias Safe Operating Area

Figure 20. t_{rr} vs. di_F/dt

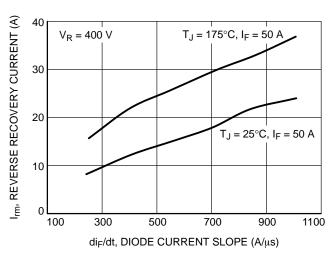


Figure 21. Q_{rr} vs. di_F/dt

Figure 22. I_{rm} vs. di_F/dt

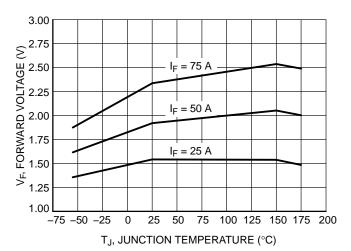


Figure 23. V_F vs. T_J

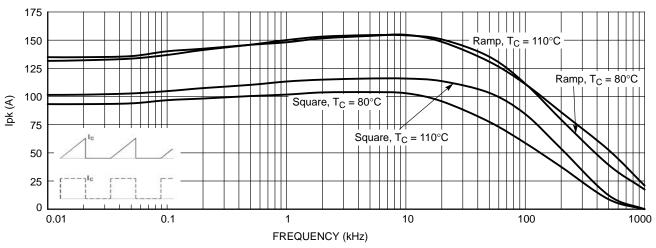


Figure 24. Collector Current vs. Switching Frequency

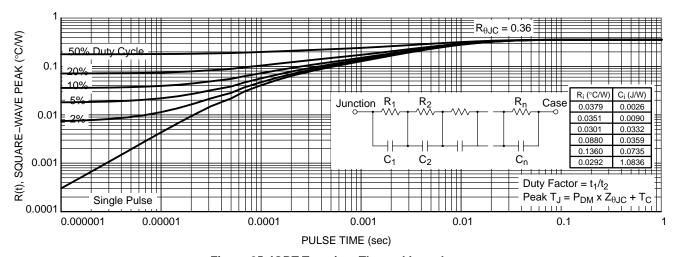


Figure 25. IGBT Transient Thermal Impedance

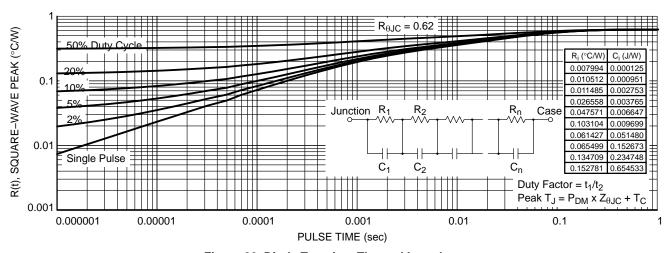


Figure 26. Diode Transient Thermal Impedance

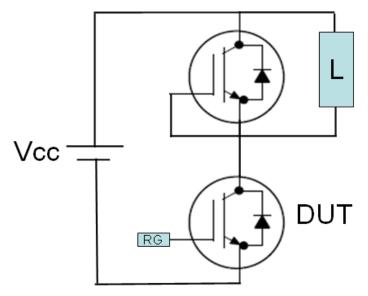


Figure 27. Test Circuit for Switching Characteristics

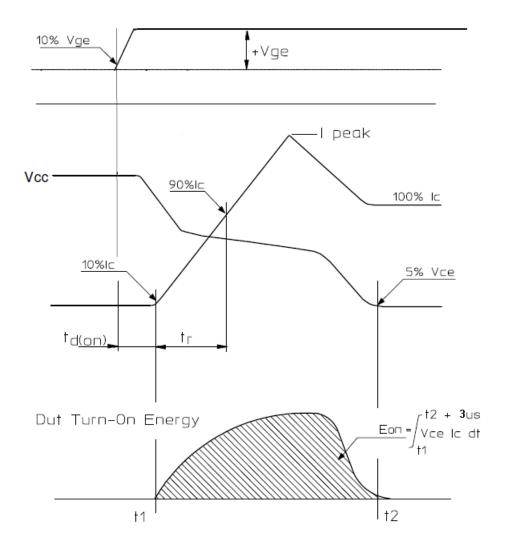


Figure 28. Definition of Turn On Waveform

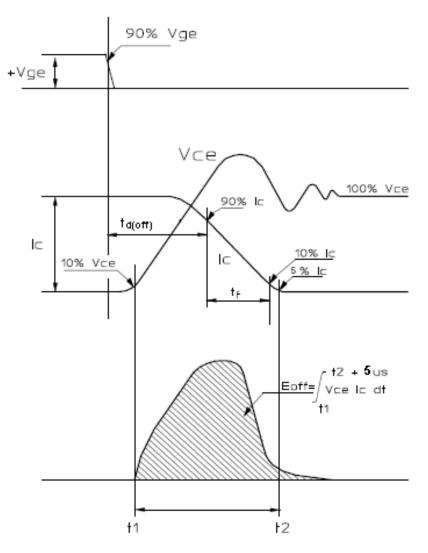
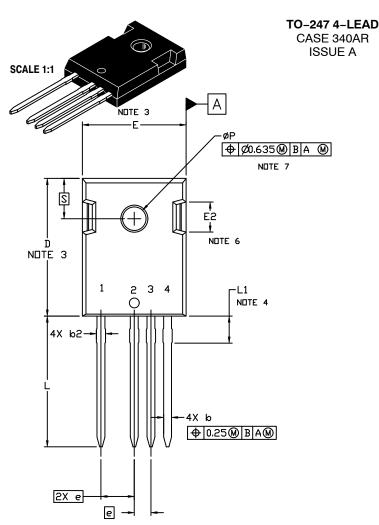
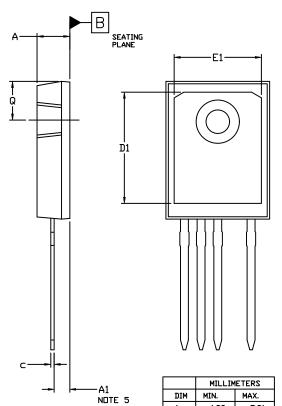
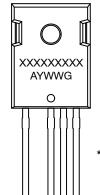




Figure 29. Definition of Turn Off Waveform


DATE 07 MAY 2020

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH.
 MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE
 DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME
 OF THE PLASTIC BODY.
- 4. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.
- 5. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- 6. NOTCHES ARE REQUIRED BUT THEIR SHAPE IS OPTIONAL.
- 7. DIAMETER P SHALL HAVE A MAXIMUM DRAFT ANGLE OF 3.5° TO THE TOP OF THE PART WITH A MAXIMUM DIAMETER OF 4.20.

GENERIC MARKING DIAGRAM*

Α	4.83	5.21	
A1	2.29	2.54	
ø	1.10	1.30	
b2	1.30	1.50	
L	0.50	0.70	
D	20.80	21.10	
D1	16.25	17.65	
Ε	15.75	16.13	
E1	13.06	13.46	
E2	4.32	4.83	
е	2.54 BSC		
٦	19.90	20.30	
L1	4.00	4.40	
Р	3.50	3.70	
Q	5.59	6.20	
S	6.15 BSC		

XXXXX = Specific Device Code A = Assembly Location

Y = Year WW = Work Week

G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON97044F	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247 4-LEAD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

