

# **Low-Noise Matched Dual PNP Transistor**

MAT03

#### 1.0 **SCOPE**

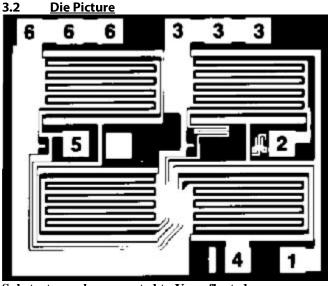
This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at http://www.analog.com/aerospace is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/MAT03

2.0 Part Number. The complete part number(s) of this specification follow:

> Part Number MAT03-000C


Description

Low-Noise Matched Dual PNP Transistor

#### 3.0 **Die Information**

#### 3.1 **Die Dimensions**

| Die Size        | Die Thickness  | Bond Pad Metalization |
|-----------------|----------------|-----------------------|
| 70 mil x 60 mil | 19 mil ± 2 mil | Al/Cu                 |



Substrate can be connected to V- or floated.

C1 1.

2. **B**1

3. E1 4. C2

5. B2

6. E2

ASD0012816

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

## **MAT03**

### 3.3 Absolute Maximum Ratings 1/

| Collector to Base Voltage (BV <sub>CBO</sub> )     | 36V             |
|----------------------------------------------------|-----------------|
| Collector to Emitter Voltage (BV <sub>CEO</sub> )  | 36V             |
| Collector to Collector Voltage (BV <sub>CC</sub> ) | 36V             |
| Emitter to Emitter Voltage (BV <sub>EE</sub> )     | 36V             |
| Collector Current (I <sub>C</sub> )                | 20mA            |
| Emitter Current (I <sub>E</sub> )                  | 20mA            |
| Junction Temperature (T <sub>J</sub> )             | +150°C          |
| Ambient Operating Temperature Range                | -55°C to +125°C |
| Storage Temperature Range                          | -65°C to +150°C |

Absolute Maximum Ratings Notes:

Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

#### 4.0 <u>Die Qualification</u>

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Sample Size and Qual Acceptance Criteria 25/2
- (b) Qual Sample Package 6 Lead Can Package (TO)
- (c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

| Table I - Dice Electrical Characteristics      |                     |                                                        |              |              |       |  |  |
|------------------------------------------------|---------------------|--------------------------------------------------------|--------------|--------------|-------|--|--|
| Parameter                                      | Symbol              | Conditions<br><u>1/</u>                                | Limit<br>Min | Limit<br>Max | Units |  |  |
|                                                |                     | $I_C = 1 \text{mA}; V_{CB} = 0 \text{V}, -36 \text{V}$ | 100          |              |       |  |  |
| Current Gain                                   |                     | I <sub>C</sub> =100μA,V <sub>CB</sub> =0V,-36V         | 90           |              |       |  |  |
|                                                |                     | I <sub>C</sub> =10μA; V <sub>CB</sub> = 0V,-36V        | 80           |              |       |  |  |
| Current Gain Match <u>2/</u>                   | •h <sub>FE</sub>    | $I_C = 100 \mu A; V_{CB} = 0V$                         |              | 3            | %     |  |  |
| Offset Voltage                                 | Vos                 | $V_{CB} = 0V$                                          |              | 100          | μV    |  |  |
| Offset Voltage Change vs. V <sub>CB</sub>      | •Vos /•VcB          | $V_{CB} = 0V, -36V$                                    |              | 150          | μV    |  |  |
| Offset Voltage Change vs. Collector<br>Current | •Vos/• <b>I</b> c   | $I_C1 = 10\mu A$ , $I_C2 = 1mA$ , $V_{CB} = 0V$        |              | 50           | μV    |  |  |
| Input Offset Current                           | los                 | $V_{CB} = 0V$ , $I_C = 100 \mu A$                      |              | 35           | nA    |  |  |
| Bulk Emitter Resistance                        | <b>r</b> be         |                                                        |              | 0.75         | Ω     |  |  |
| Collector Base Leakage Current                 | I <sub>CBO</sub>    | V <sub>CB</sub> = -36V                                 |              | 200          | рА    |  |  |
| Collector Saturation Voltage                   | V <sub>CE</sub> SAT | I <sub>C</sub> = 1mA, I <sub>B</sub> =100μA            |              | 0.1          | V     |  |  |

## Table I Notes:

1/  $V_{CB}$  = -15V,  $I_{C}$  = 10  $\mu A,~T_{A}$  = 25  $^{\circ}C,$  unless otherwise specified.

2/ Current gain match (  $\Box h_{\text{FE}}$  ) is defined as:  $\Box h_{\text{FE}} = \frac{100(\Delta I_B)h_{FE}min}{I_C}$ 

| Table II - Electrical Characteristics for Qual Samples |                                    |                                                 |            |              |              |       |  |
|--------------------------------------------------------|------------------------------------|-------------------------------------------------|------------|--------------|--------------|-------|--|
| Parameter                                              | Symbol                             | Conditions <u>1/</u>                            | Sub-groups | Limit<br>Min | Limit<br>Max | Units |  |
|                                                        |                                    | $I_{C}=1$ mA; $V_{CB}=0$ V,-36V                 | 1          | 90           |              |       |  |
|                                                        |                                    | IC - TITIA, VCB - OV, SOV                       | 2, 3       | 60           |              |       |  |
| Comment Color                                          | L.                                 | I <sub>C</sub> =100μA,V <sub>CB</sub> =0V,-36V  | 1          | 80           |              |       |  |
| Current Gain                                           | h <sub>FE</sub>                    | I <sub>C</sub> =100μA, V <sub>CB</sub> =-36V    | 2, 3       | 50           |              |       |  |
|                                                        |                                    | $I_C = 10 \mu A$ ; $V_{CB} = 0 V$ , $-36 V$     | 1          | 70           |              |       |  |
|                                                        |                                    | $I_C = 10 \mu A; V_{CB} = -36 V$                | 2, 3       | 40           |              |       |  |
| Current Gain Match <u>2/</u>                           | $\Delta h_{	extsf{FE}}$            | I <sub>C</sub> = 100μA; V <sub>CB</sub> = 0V    | 1          |              | 3            | %     |  |
| Official Value                                         | Vos                                | V <sub>CB</sub> = 0V                            | 1          |              | 120          | μV    |  |
| Offset Voltage                                         |                                    |                                                 | 2, 3       |              | 180          |       |  |
| Change in Offset Voltage vs.<br>Temperature <u>3/</u>  | TCVos                              | V <sub>CB</sub> = 0V                            |            |              | 0.5          | μV/°C |  |
| Offset Voltage Change vs. V <sub>CB</sub>              | •V <sub>Os</sub> /•V <sub>CB</sub> | V <sub>CB</sub> = 0V, -36V                      | 1          |              | 170          | μV    |  |
| Offset Voltage Change vs. Collector<br>Current         | •Vos/•Ic                           | $I_{c}1 = 10\mu A, I_{c}2 = 1mA, V_{CB} = 0V$   | 1          |              | 70           | μV    |  |
| Input Offset Current                                   | los                                | $V_{CB} = 0V, I_C = 100 \mu A$                  | 1          |              | 55           | nA    |  |
| Bulk Emitter Resistance                                | <b>r</b> BE                        |                                                 | 1          |              | 0.9          | Ω     |  |
| Collector Base Leakage Current                         | Ісво                               | V <sub>CB</sub> = -36V                          | 1          |              | 250          | рА    |  |
| Collector Saturation Voltage                           | V <sub>CE</sub> SAT                | $I_{C} = 1 \text{mA}, I_{B} = 100 \mu \text{A}$ | 1          |              | 0.1          | ٧     |  |
| Breakdown Voltage                                      | BV <sub>CEO</sub>                  |                                                 | 1          | 36           |              | V     |  |

#### Table II Notes:

 $\underline{1/}~~V_{CB}$  = -15V,  $I_{C}$  = 10  $\mu A,$  unless otherwise specified.

$$\underline{_{3'}} \;\; \text{Guaranteed by V}_{\text{OS}} \; \text{test} \left( TCV_{OS} \cong \frac{V_{OS}}{T} \; \text{for } V_{OS} << V_{BE} \;\; \right) \text{T = 298 °K for T}_{\text{A}} = \text{+25°C}.$$

|                                     | Complete I      | Sub-<br>groups | Post Burn In Limit |     | Post Life Test Limit |     | Life Test |       |
|-------------------------------------|-----------------|----------------|--------------------|-----|----------------------|-----|-----------|-------|
| Parameter                           | Symbol          |                | Min                | Max | Min                  | Max | Delta     | Units |
| Current Gain @ 1mA                  | h               | 1              | 90                 |     | 80                   |     | ±40       |       |
| Current Gain @ TinA                 | h <sub>FE</sub> | 2, 3           |                    |     | 50                   |     |           |       |
|                                     |                 | 1              | 80                 |     | 70                   |     | ±36       |       |
| Current Gain @ 100••                | h <sub>FE</sub> | 2, 3           |                    |     | 40                   |     |           |       |
| Current Gain @ 10•• h <sub>FE</sub> | her             | 1              | 70                 |     | 60                   |     | ±32       |       |
|                                     | ''FE            | 2, 3           |                    |     | 30                   |     |           |       |
| Input Offset Current Ios            | l               | 1              |                    | 55  |                      | 75  | ±20       | nA    |
|                                     | IOS             | 2, 3           |                    |     |                      |     |           | IIA   |

## 5.0 <u>Life Test/Burn-In Information</u>

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition A, B, or C.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

# MAT03

| Rev | Description of Change                                                                                   | Date          |
|-----|---------------------------------------------------------------------------------------------------------|---------------|
| Α   | Initiate                                                                                                | Feb. 28, 2002 |
| В   | Update web address. Change ΔhFE condition on table II from 10uA to 100uA.                               | Aug. 11, 2003 |
| С   | Edit pqalib ecn rev history to add "Change ΔhFE condition on table II from 10uA to 100uA."              | Oct. 20, 2003 |
| D   | Update header/footer and add to 1.0 Scope description.                                                  | Feb. 29,2008  |
| Е   | Add Junction Temperature & Ambient Operating Temperature Range to section 3.3-Absolute Maximum Ratings. | April 3, 2008 |
| F   | Updated Section 4.0c note to indicated pre-screen temp testing being performed.                         | June 5 2009   |
| G   | Updated fonts and sizes to ADI standards                                                                | Oct. 7, 2011  |



www.analog.com