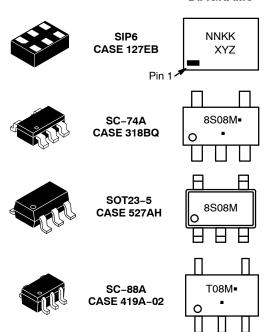


TinyLogic HST 2-Input AND Gate

NC7ST08

Description

The NC7ST08 is a single 2–Input high performance CMOS AND Gate, with TTL–compatible inputs. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation. ESD protection diodes inherently guard both inputs and output with respect to the V_{CC} and GND rails. High gain circuitry offers high noise immunity and reduced sensitivity to input edge rate. The TTL–compatible inputs facilitate TTL to NMOS / CMOS interfacing. Device performance is similar to MM74HCT but with 1/2 the output current drive of HC / HCT.


Features

- Space Saving SOT23-5, SC-74A and SC-88A 5-Lead Package
- Ultra Small MicroPak™ Leadless Package
- High Speed: $t_{PD} = 6 \text{ ns (Typ)}, V_{CC} = 5 \text{ V}, C_L = 15 \text{ pF}, T_A = 25^{\circ}\text{C}$
- Low Quiescent Power: $I_{CC} < 1 \mu A$ Typ, $V_{CC} = 5.5 V$
- Balanced Output Drive: 2 mA I_{OL}, -2 mA I_{OH}
- TTL-compatible Inputs
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Logic Symbol

MARKING DIAGRAMS

NN, 8S08, T08 = Specific Device Code

KK = 2-Digit Lot Run Traceability Code

XY = 2-Digit Date Code Format Z = Assembly Plant Code

M = Date Code*

*Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 4 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 4.

NC7ST08

Pin Configurations

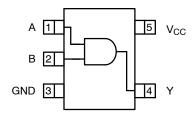


Figure 2. SOT23-5, SC-88A and SC-74A (Top View)

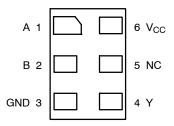


Figure 3. MicroPak (Top Through View)

PIN DESCRIPTION

Pin Names	Description
A, B	Inputs
Y	Output
NC	No Connect

FUNCTION TABLE (Y = AB)

Inp	Output	
Α	В	Υ
L	L	L
L	Н	L
Н	L	L
Н	Н	Н

H = HIGH Logic Level L = LOW Logic Level

ABSOLUTE MAXIMUM RATINGS

Symbol	Paramete	r	Min	Max	Unit
V _{CC}	Supply Voltage		-0.5	6.5	V
I _{IK}	DC Input Diode Current	V _{IN} < 0 V	-	-20	mA
		V _{IN} > V _{CC}	-	+20	
V _{IN}	DC Input Voltage		-0.5	V _{CC} + 0.5	V
l _{ok}	DC Output Diode Current	V _{OUT} < 0 V	-	-20	mA
		V _{OUT} > V _{CC}	-	+20	
V _{OUT}	Output Voltage		-0.5	V _{CC} + 0.5	V
I _{OUT}	DC Output Source or Sink Current		-	±12.5	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Supply Pin		-	±25	mA
T _{STG}	Storage Temperature		-65	+150	°C
TJ	Junction Temperature		-	+150	°C
TL	Lead Temperature (Soldering, 10 Seconds)		-	+260	°C
P_{D}	Power Dissipation in Still Air	SC-74A / SOT23-5	-	390	mW
		SC-88A	-	332	
		MicroPak-6	-	812	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

NC7ST08

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply Voltage		4.5	5.5	V
V_{IN}	Input Voltage		0	V _{CC}	V
V _{OUT}	Output Voltage		0	V _{CC}	V
T _A	Operating Temperature		-40	+85	°C
t _r , t _f	Input Rise and Fall Time	V _{CC} = 5.0 V	0	10	ns/V
$\theta_{\sf JA}$	Thermal Resistance	SC-74A / SOT23-5	-	320	°C/W
		SC-88A	-	377	
		MicroPak-6	-	154	

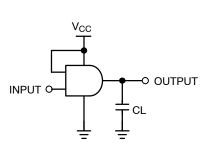
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTICAL CHARACTERISTICS

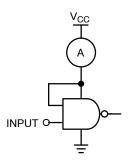
				-	Γ _A = +25°C	;	T _A = -40	to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage	4.5 – 5.5		2.0	-	-	2.0	-	V
V _{IL}	LOW Level Input Voltage	4.5 – 5.5		-	-	0.8	_	8.0	V
V _{OH}	HIGH Level Output Voltage	4.5 4.5	$I_{OH} = -20 \mu A$ $I_{OH} = -2 mA$ $V_{IN} = V_{IH}$	4.4 4.18	4.5 4.35	-	4.4 4.13	-	V
V _{OL}	LOW Level Output Voltage	4.5 4.5	$\begin{split} I_{OL} &= 20 \; \mu\text{A} \\ I_{OL} &= 2 \; \text{mA} \\ V_{IN} &= V_{IL} \end{split}$	-	0 0.10	0.1 0.26	-	0.1 0.33	٧
I _{IN}	Input Leakage Current	5.5	$0 \leq V_{IN} \leq 5.5 \ V$	-	-	±0.1	_	±1.0	μΑ
I _{CC}	Quiescent Supply Current	5.5	V _{IN} = V _{CC} or GND	-	_	1.0	_	10.0	μΑ
I _{CCT}	I _{CC} per Input	5.5	One Input V_{IN} = 0.5 V or 2.4 V, Other Input V_{CC} or GND	ı	ı	2.0	-	2.9	mA

AC ELECTRICAL CHARACTERISTICS

				-	Γ _A = +25°C		T _A = -40	to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay (Figure 4, 6)	5.0	C _L = 15 pF	=	4	12	_	-	ns
				=	6	17	_	-	
		4.5	C _L = 50 pF	-	6	16	_	20	
				_	12	27	_	31	
		5.5		_	5	14	_	18	
				=	11	26	_	30	
t _{TLH} , t _{THL}	Output Transition Time	5.0	C _L = 15 pF	=	4	10	_	-	ns
	(Figure 4, 6)	4.5	C _L = 50 pF	=	11	25	_	31	
		5.5		=	10	21	_	26	
C _{IN}	Input Capacitance	Open		-	-	10	_	-	pF
C _{PD}	Power Dissipation Capacitance (Figure 5)	5.0	(Note 2)	-	6	-	-	-	pF


^{2.} C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current. Current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 5) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC}static).

^{1.} Unused inputs must be held HIGH or LOW. They may not float.


NC7ST08

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz, $t_W = 500 \ \text{ns}$

Figure 4. AC Test Circuit

Input = AC Waveform;

PRR = Variable; Duty Cycle = 50%.

Figure 5. I_{CCD} Test Circuit

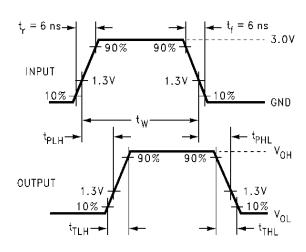


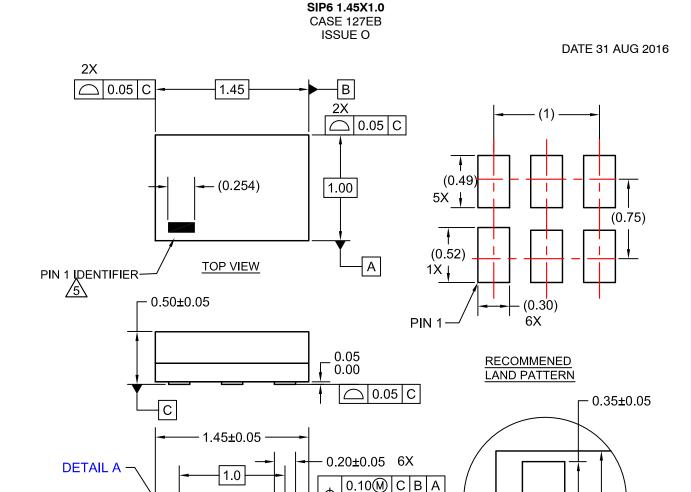
Figure 6. AC Waveforms

DEVICE ORDERING INFORMATION

Device	Top Mark	Packages	Shipping [†]
NC7ST08M5X	8S08	SC-74A	3000 / Tape & Reel
NC7ST08P5X	T08	SC-88A	3000 / Tape & Reel
NC7ST08L6X	NN	SIP6, MicroPak	5000 / Tape & Reel

DISCONTINUED (Note 3)

NC7ST08M5X-L22090	8S08	SOT23-5	3000 / Tape & Reel
NC7ST08P5X-L22057	T08	SC-88A	3000 / Tape & Reel
NC7ST08L6X-L22175	NN	SIP6, MicroPak	5000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MicroPak is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

^{3.} **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com.

0.05(M)

0.30±0.05 5X

0.35±0.05 5X

(0.125)

4X

NOTES:

1.00±0.05

(0.050)

6X

1. CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD

0.5

- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-2009

BOTTOM VIEW

- 4.PIN ONE IDENTIFIER IS 2X LENGTH OF ANY
 - OTHER LINE IN THE MARK CODE LAYOUT.

DOCUMENT NUMBER:	98AON13590G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SIP6 1.45X1.0		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

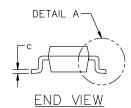
0.40±0.05

PIN 1 TERMINAL

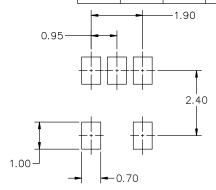
DETAIL A

0.075 X 45°

CHAMFER

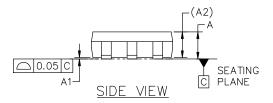


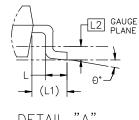
SC-74A-5 3.00x1.50x0.95, 0.95P CASE 318BQ ISSUE C


DATE 26 FEB 2024

NOTES:

- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
- 2. ALL DIMENSION ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OF GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.


DIM	М	ILLIMETER	RS
DIIVI	MIN.	NOM.	MAX.
Α	0.90	1.00	1.10
A1	0.01	0.18	0.10
A2	(0.95 REF	
b	0.25	0.37	0.50
С	0.10	0.18	0.26
D	2.85	3.00	3.15
Е	:	2.75 BSC	;
E1	1.35	1.50	1.65
е	(0.95 BSC)
L	0.20	0.40	0.60
L1	0.62 REF.		
L2	0.25 BSC		
Θ	0,	5*	10°



RECOMMENDED MOUNTING FOOTPRINT*

* FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DETAIL "A" SCALE 2:1

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

M = Date Code = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

DESCRIPTION:	SC-74A-5 3.00x1.50x0.95,	0.95P	PAGE 1 OF 1
DOCUMENT NUMBER:	98AON66279G	Electronic versions are uncontrolled except when accessed directly fron Printed versions are uncontrolled except when stamped "CONTROLLEI	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE M

DATE 11 APR 2023

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETERS
- 419A-01 DBSDLETE, NEW STANDARD 419A-02
- 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.MOLD FLASH, PROTRUSIONS,

DIM	MILLIMETERS			
ابالط	MIN.	N□M.	MAX.	
А	0.80	0.95	1.10	
A1			0.10	
A3		0.20 REF	•	
b	0.10	0.20	0.30	
C	0.10		0.25	
D	1.80	2.00	2,20	
Е	2.00	2.10	2.20	
E1	1.15	1.25	1.35	
е	0.65 BSC			
L	0.10	0.15	0.30	

OR GATE BURRS SHALL NOT EXCEED 0.1016MM PER SIDE.

	L -
Ţ ^{0.40}	0.65

5X b

⊕ 0.2 M B M

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC MARKING DIAGRAM*

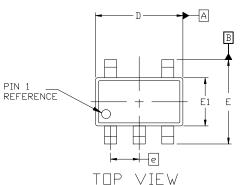
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

XXX = Specific Device Code

= Date Code

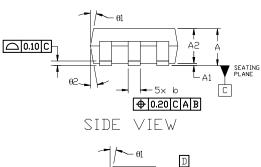
= Pb-Free Package

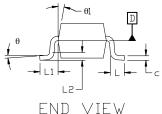
(Note: Microdot may be in either location)


STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE 1	PIN 1. SOURCE 1	PIN 1. CATHODE
2. EMITTER	EMITTER	2. N/C	2. DRAIN 1/2	2. COMMON ANODE
3. BASE	3. BASE	3. ANODE 2	SOURCE 1	3. CATHODE 2
4. COLLECTOR	COLLECTOR	CATHODE 2	4. GATE 1	4. CATHODE 3
COLLECTOR	CATHODE	CATHODE 1	5. GATE 2	5. CATHODE 4
STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 5. COLLECTOR 2/BASE 1	STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER	STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE	Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42984B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-88A (SC-70-5/SOT-353)		PAGE 1 OF 1	

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

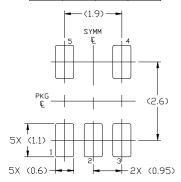



SOT-23, 5 Lead CASE 527AH ISSUE A

DATE 09 JUN 2021

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 19894
- CONTROLLING DIMENSION: MILLIMETERS
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
- 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS, MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED O. 25 PER SIDE. D AND E1 DIMENSIONS ARE DETERMINED AT DATUM D.
- 5. DIMENSION '6' DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF THE '6' DIMENSION AT MAXIMUM MATERIAL CONDITION. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD SHALL NOT BE LESS THAN 0.07mm.


GENERIC MARKING DIAGRAM*

XXX = Specific Device Code M = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	0.90	_	1.45	
A1	0.00	_	0.15	
A2	0.90	1.15	1.30	
b	0.30	_	0.50	
С	0.08	_	0.22	
D	2.90 BSC			
Ε	2.80 BSC			
E1	1.60 BSC			
е	0.95 BSC			
L	0.30	0.45	0.60	
L1	0.60 REF			
L2	0.25 REF			
θ	0°	4°	8°	
θ1	0°	10°	15°	
θ2	0°	10°	15°	

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

DOCUMENT NUMBER	98AON34320E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION	: SOT-23, 5 LEAD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales