Ordering number : EN7192B

LA6581T

ON Semiconductor®

http://onsemi.com

Monolithic Linear IC Fan Motor Driver BTL Driver Single-Phase Full-Wave

Overview

The LA6581T is a low-saturation BTL output linear driving motor driver for single-phase bipolar fan motors. It features quite, low power, high efficiency drive that suppresses reactive current. It is optimal for use in applications that require miniaturization and low noise, such as CPU cooling fan motors and 5 to 12V electronic game products.

Functions

- Single-phase full-wave linear drive with BTL output (gain resistance 500Ω to $284k\Omega$, 55dB): Suitable for the equipment requiring silent operation, such as game equipment, CPU cooler, etc. because of its freedom from switching noise.
- Low-voltage operation possible, with wide operable voltage range (3 to 16V)
- Low saturation output (Upper + lower saturation voltage : V_{O} sat (total) = 0.3V typ, I_{O} = 100mA) : High coil efficiency with low current drain. IC itself does not generate much heat.
- High impedance of Hall input pin
- FG output (rotation speed detection output : open collector output)
- Heat protection circuit: When the large current flows because of output short-circuit, raising the IC chip temperature above 180°C, the heat protection circuit suppresses the drive current, preventing IC burn and breakdown.
- Ultraminiature package (MSOP8: 3.0mm×4.9mm×0.93mm typ) : Small substrate while allowing larger blades.

Specifications

Absolute Maximum Ratings at Ta = 25°C

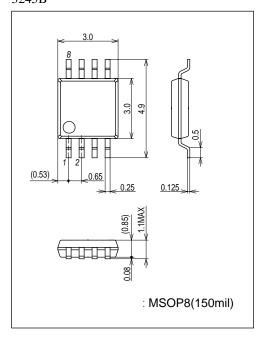
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC} max		18	V
Output current	I _{OUT} max		0.30	А
Output withstand voltage	V _{OUT} max		18	V
FG output withstand	V _{FG} max		18	V
FG output current	I _{FG} max		5	mA
Allowable power dissipation	Pd max		400	mW
Operating temperature	Topr		-20 to +90	°C
Storage temperature	Tstg		-55 to +150	°C

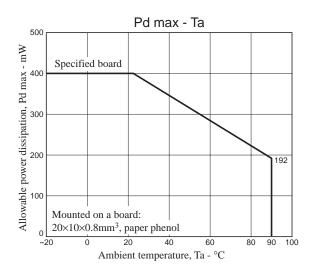
^{*} Specified board: 20.0mm × 10.1mm × 0.8mm, Paper phenol, wiring density 20%.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vcc		2.5 to 16	V
Common-phase input voltage range	VICM		0.3 to V _{CC} -1.5	V
of Hall input				

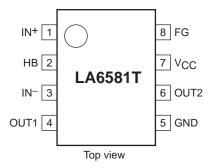

Electrical Characteristics at Ta = 25 °C, $V_{CC} = 12.0$ V, unless especially specified.

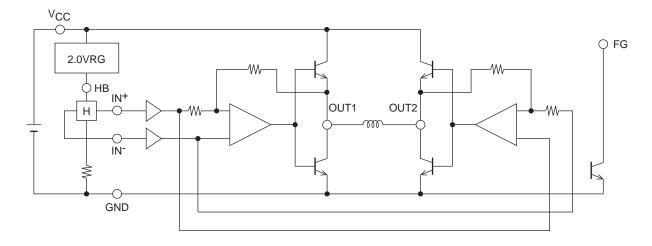

Parameter	O. was be a l	O an alitica a	Ratings			l l=it
	Symbol	Conditions	min	typ	max	Unit
Circuit current	Icc	$IN^{-} = 5.8V$, $IN^{+} = 6.0V$, $R_{L} = \infty$		14	19	mA
OUT output low voltage	V _{OL}	I _O = 100mA		0.1	0.2	V
OUT output high voltage	Vон	I _O = 100mA		0.1	0.2	V
Hall bias voltage	V _{HB}	RH = $360\Omega+91\Omega$	1.85	1.95	2.05	V
Hall amplifier gain	Vg		52	55	58	dB
Hall amplifier input current	VINR		-10	-2	10	μΑ
FG output low voltage	V _{FG}	I _{FG} = 3mA		0.2	0.3	V
FG output leakage current	I _{FGL}	V _{FG} = 7V			30	μΑ
Thermal protection circuit	Th	* Design guarantee	150	180	200	°C

^{*} Design guarantee : Design target. Measurement with a single unit not made.

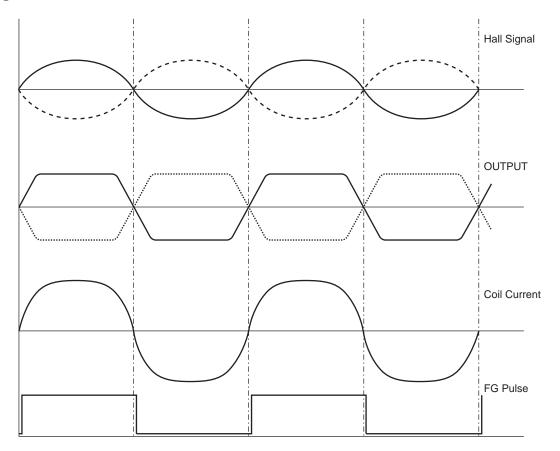
Package Dimensions

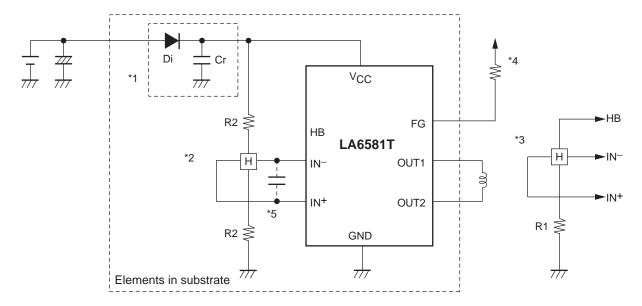
unit : mm (typ) 3245B




Truth Table

IN-	IN+	OUT1	OUT2	FG	Mode	
Н	L	Н	L	L	During retation	
L	Н	L	Н	off	During rotation	
-	_	off	off	-	During overheat protection	


Pin Assignment


Block Diagram

Timing Chart

Application Circuit Example

- *1: When Di to prevent breakdown in case of reverse connection is used, it is necessary to insert a capacitor Cr to secure the regenerative current route. Similarly, Cr is necessary to enhance the reliability when there is no capacitor near the fan power line.
- *2: To obtain Hall bias from V_{CC}, carry out 1/2 × V_{CC} bias as shown in the figure. Linear driving is made through voltage control of the coil by amplifying the Hall output. When the Hall element output is large, the startup performance and efficiency are improved. Adjustment of the Hall element can reduce the noise further.
- *3: When the Hall bias is taken from the HB pin, constant-voltage bias is made with about 2.0V. Therefore, the Hall element can provide the output satisfactory in temperature characteristics. Adjustment of the Hall output amplitude is made with R1. (When $V_{CC} = 12V$, the step *2 above proves advantageous for IC heat generation.)
- *4: Keep this open when not used.
- *5: When the wiring from the Hall output to IC Hall input is long, noise may be carried through the wiring.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa