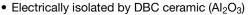
Vishay Semiconductors

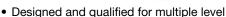
COMPLIANT

Thyristor/Thyristor, 160 A (INT-A-PAK Power Modules)



INT-A-PAK

PRIMARY CHARACTERISTICS				
I _{T(AV)}	160 A			
Type	Modules - thyristor, standard			
Package	INT-A-PAK			


FEATURES

· High voltage

- · Industrial standard package
- · High surge capability
- Glass passivated chips
- Modules uses high voltage power thyristor/diodes in three basic configurations
- Simple mounting
- UL approved file E78996

 Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- · DC motor control and drives
- Battery charges
- Welders
- Power converters
- · Lighting control
- Heat and temperature control

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
I _{T(AV)}	85 °C	160				
I _{T(RMS)}		355	^			
,	50 Hz	4870	Α Α			
I _{TSM}	60 Hz	5100				
I ² t	50 Hz	119	kA ² s			
1-1	60 Hz	108	KA-S			
I ² √t		1190	kA ² √s			
V _{RRM}	Range	1200, 1600	V			
T _{.1}	Range	-40 to +125	°C			

ELECTRICAL SPECIFICATIONS

VOLTAGE	VOLTAGE RATINGS								
TYPE NUMBER	VOLTAGE CODE	PEAK REVERSE VOLTAGE PEAK REVERSE VOLTAGE		I _{RRM} /I _{DRM} AT 125 °C mA					
VS-VSK.162	12	1200	1300	50					
V3-V3N.102	16	1600	1700	50					

ON-STATE CONDUCTION						
PARAMETER	SYMBOL		TEST COND	ITIONS	VALUES	UNITS
Maximum average on-state current		100° conduction half sine ways		190° conduction, half sine ways		А
at case temperature	I _{T(AV)}	160 CONG	180° conduction, half sine wave		85	°C
Maximum RMS on-state current	I _{T(RMS)}	As AC swit	tch		355	
Marian and a same also		t = 10 ms	No voltage		4870	
Maximum peak, one-cycle on-state, non-repetitive	l	t = 8.3 ms	reapplied		5100	Α
surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}	Ciaa halfa.	4100	
cargo carroni		t = 8.3 ms	reapplied	Sine half wave, initial T _{.l} =	4300	
		t = 10 ms	No voltage	T _J maximum	119	
Maximum I ² t for fusing	l ² t	t = 8.3 ms	reapplied	1 J maximum	108	— kA ² s
Maximum 1-t for fusing		t = 10 ms	100 % V _{RRM}		84	
		t = 8.3 ms	reapplied		76.7	
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms	to 10 ms, no vo	oltage reapplied	1190	kA²√s
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x 1	$\pi \times I_{T(AV)} < I < \pi$	x I _{T(AV)}), T _J maximum	0.8	V
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(A)})$	_{V)}), T _J maximun	ı	0.98	7 V
Low level value on-state slope resistance	r _{t1}	(16.7 % x 1	(16.7 % x π x $I_{T(AV)}$ < I < π x $I_{T(AV)}$), T_J maximum		1.67	mΩ
High level value on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)})$, T_J maximum			1.38	11152
Maximum on-state voltage drop	V_{TM}	$I_{TM} = \pi \times I_{T(AV)}$, $T_J = 25$ °C, 180° conduction		1.54	V	
Maximum forward voltage drop	V_{FM}	$I_{TM} = \pi \times I_{T}$	$I_{TM} = \pi \times I_{T(AV)}$, $T_J = 25$ °C, 180° conduction		1.54	V
Maximum holding current	I _H	Anode sup	ply = 6 V initial	$I_T = 30 \text{ A}, T_J = 25 ^{\circ}\text{C}$	200	
Maximum latching current	ΙL		pply = 6 V resist e: 10 V, 100 μs,		400	mA

SWITCHING					
PARAMETER	SYMBOL		TEST CONDITIONS	VALUES	UNITS
Typical delay time	t _{gd}	T 25 °C	Gate current = 1 A, $dl_g/dt = 1 A/\mu s$ $V_d = 0.67 \% V_{DRM}$	1	
Typical rise time	t _{gr}	1J=25 C	V _d = 0.67 % V _{DRM}	2	μs
Typical turn-off time	t _q	I_{TM} = 300 A, - dl/dt = 15 A/ μ s; T_J = T_J maximum V_R = 50 V; dV/dt = 20 V/ μ s; gate 0 V, 100 Ω		50 to 200	μο

BLOCKING						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	T _J = 125 °C	50	mA		
RMS insulation voltage	V _{INS}	50 Hz, circuit to base, all terminals shorted, t = 1 s	3500	V		
Critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum, exponential to 67 % rated V_{DRM}	1000	V/µs		

Vishay Semiconductors

TRIGGERING					
PARAMETER	SYMBOL	TEST CO	NDITIONS	VALUES	UNITS
Maximum peak gate power	P _{GM}	$t_p \le 5 \text{ ms}, T_J = T_J \text{ maxir}$	num	12	w
Maximum average gate power	P _{G(AV)}	$f = 50 Hz, T_J = T_J maxir$	num	3	VV
Maximum peak gate current	I _{GM}			3	Α
Maximum peak negative gate voltage	- V _{GT}	$t_p \le 5$ ms, $T_J = T_J$ maxir	num	10	
		T _J = - 40 °C	T _J = - 40 °C		V
Maximum required DC gate voltage to trigger	V_{GT}	T _J = 25 °C		2.5	
gate voltage to trigger		$T_J = T_J$ maximum	$T_J = T_J$ maximum Anode supply = 6 V,		
Marian and include		T _J = - 40 °C	resistive load; $R_a = 1 \Omega$	270	
Maximum required DC gate current to trigger	I_{GT}	$T_J = 25 ^{\circ}C$	T _J = 25 °C		mA
gate carrent to trigger		$T_J = T_J$ maximum		80	
Maximum gate voltage that will not trigger	V_{GD}	T _J = T _J maximum, rated V _{DRM} applied		0.3	V
Maximum gate current that will not trigger	I _{GD}			10	mA
Maximum rate of rise of turned-on current	dl/dt	$T_J = T_J$ maximum, $I_{TM} =$	400 A rated V _{DRM} applied	300	A/µs

THERMAL AND MECHANI	THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum junction operating temperature range	TJ		-40 to +125	သိ			
Maximum storage temperature range	T _{Stg}		-40 to +150				
Maximum thermal resistance, junction to case per junction	R _{thJC}	DC operation	0.16	K/W			
Maximum thermal resistance, case to heat sink per module	R _{thCS}	Mounting surface, smooth, flat and greased	0.05	T N W			
Mounting IAP to heat sink torque ± 10 % busbar to IAP		A mounting compound is recommended and the torque should be rechecked after a period of	4 to 6	Nm			
Approximate weight		3 hours to allow for the spread of the compound.	200	g			
Approximate weight		Lubricated threads.	7.1	OZ.			
Case style			INT-A-PAK				

△R CONDUCTION PER JUNCTION											
DEVICES		SINUSOIDAL CONDUCTION AT T _J MAXIMUM				RECTANGULAR CONDUCTION AT T _J MAXIMUM				UNITS	
	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	
VS-VSK.162	0.0030	0.0031	0.0032	0.0033	0.0034	0.0029	0.0036	0.0039	0.0041	0.0040	K/W

Note

Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

www.vishay.com

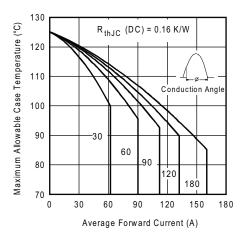


Fig. 1 - Current Ratings Characteristics

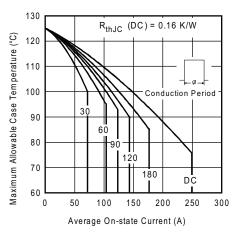


Fig. 2 - Current Ratings Characteristics

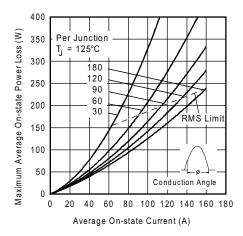


Fig. 3 - On-State Power Loss Characteristics

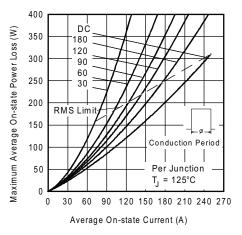


Fig. 4 - On-State Power Loss Characteristics

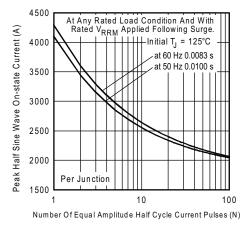


Fig. 5 - Maximum Non-Repetitive Surge Current

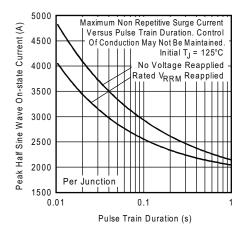


Fig. 6 - Maximum Non-Repetitive Surge Current

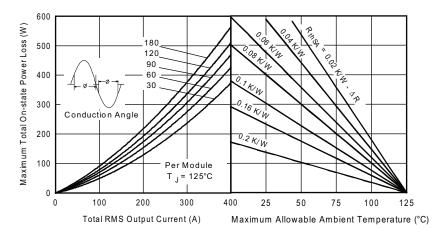


Fig. 7 - On-State Power Loss Characteristics

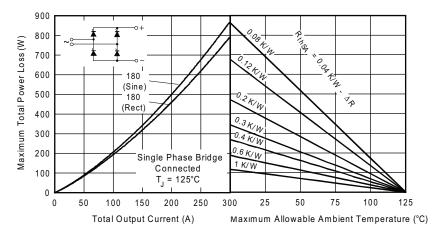


Fig. 8 - On-State Power Loss Characteristics

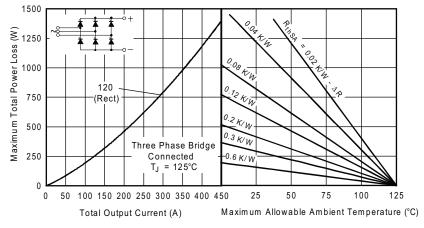


Fig. 9 - On-State Power Loss Characteristics

Vishay Semiconductors

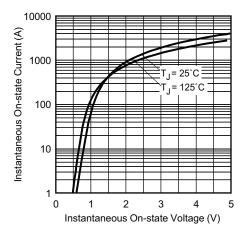


Fig. 10 - On-State Voltage Drop Characteristics

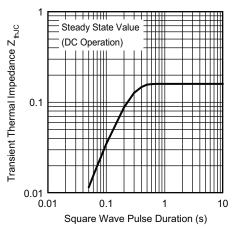


Fig. 11 - Thermal Impedance ZthJC Characteristics

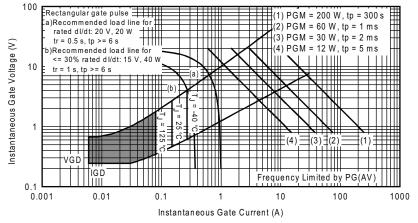
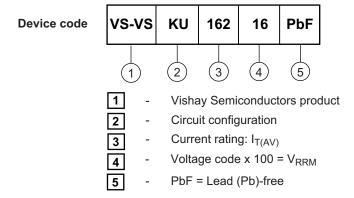



Fig. 12 - Gate Characteristics

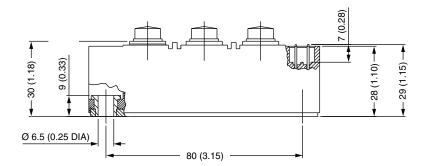
ORDERING INFORMATION TABLE

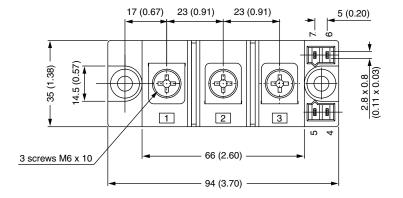
Note

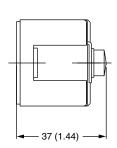
• To order the optional hardware go to www.vishay.com/doc?95172

www.vishay.com

CIRCUIT CONFIGURATION		
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING
Two SCRs common cathodes	U	VSKU 1 2 (1) (2) (2) (2) (3) (3) (6) (1) (1) (1) (2) (2) (3) (3) (4) (5) (6) (7) (7) (8) (8) (9) (1) (1) (1) (1) (2) (2) (3) (3) (4) (5) (6) (7) (7) (8) (8) (9) (1) (1) (1) (1) (2) (2) (3) (4) (5) (6) (7) (7) (8) (8) (9) (9) (1) (1) (1) (1) (2) (2) (3) (4) (5) (6) (7) (7) (8) (8) (9) (9) (9) (9) (1) (1) (1) (1
Two SCRs common anodes	V	VSKV 1 2 (1) (1) (2) (2) (3) (3) (3) (3) (4) (5) (6) (7) (7) (8) (9) (1) (1) (1) (1) (2) (2) (3) (3) (3) (4) (5) (6) (7) (8) (8) (9) (1) (1) (1) (1) (2) (3) (4) (5) (6) (7) (8) (9) (1) (1) (1) (1) (2) (2) (3) (3) (4) (5) (6) (7) (8) (8) (9) (9) (1) (1) (1) (1) (2) (2) (3) (4) (5) (6) (7) (7) (8) (8) (9) (9) (9) (1) (1) (1) (1) (1


LINKS TO RELATED DOCUMENTS			
Dimensions	www.vishay.com/doc?95067		




Vishay Semiconductors

INT-A-PAK IGBT/Thyristor

DIMENSIONS in millimeters (inches)

Document Number: 95067 Revision: 15-Feb-08

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED