Microchip Filter specification TFS 256A 1/5

Measurement condition

Ambient temperature: 23 °C Input power level: 0 dBm

source impedance (single ended): 50 Ω load impedance (single ended): 50 Ω

Terminating impedance: *

Input: 160 Ω || -6.4 pF Output: 160 Ω || -6.6 pF

Characteristics

Remark:

The reference level for the relative attenuation a_{rel} of the TFS256A is the minimum of the pass band attenuation. This value is defined as the insertion loss a_e . The nominal frequency f_N is fixed at 256 MHz without any tolerance. The values of relative attenuation a_{rel} are guaranteed for the whole operating temperature range. The frequency shift of the filter in the operating temperature range is included in the production tolerance scheme.

Data				typ.	value	toler	ance / I	imit
Insertion loss (reference level	l)		a _e	15	dB	max.	17	dB
Nominal frequ	ency		f _N				256	MHz
Passband			РВ	90	MHz	f _N ±	42,5	MHz
Pass band ripple				0,5	dB	max.	1	dB
Relative attenu	uation		a _{rel}					
f_N	f _N ±	42,5	MHz	0,5	dB	max.	1	dB
f _N - 170	MHz f _N -	120	MHz	48	dB	min.	45	dB
f _N - 120	MHz f _N -	65	MHz	43	dB	min.	40	dB
f _N - 65	MHz f _N -	59,9	MHz	42	dB	min.	40	dB
f _N - 59,9	MHz f _N -	57,4	MHz	39	dB	min.	35	dB
f _N + 57,4	MHz f _N +	59,9	MHz	42	dB	min.	35	dB
f _N + 59,9	MHz f _N +	65	MHz	42	dB	min.	40	dB
f _N + 65	MHz f _N +	90	MHz	43	dB	min.	40	dB
f _N + 90	MHz f _N +	170	MHz	48	dB	min.	45	dB
Input power le	vel					max.	10	dBm
Operating tem	perature range		OTR			- 30 °C	. + 80°C	
Storage tempe	erature range					- 45 °C	. + 85°C	
Temperature c	oefficient of freque	ncy	TC _f *	-92	ppm/K			

^{*)} $\Delta f_{C}(Hz) = Tc_{f}(ppm/K) x (T - T_{o}) x f_{CAT} (MHz).$

Generated:		

Checked / Approved:

Microchip Frequency Technology GmbH Potsdamer Straße 18 D 14 513 TELTOW / Germany Tel: (+49) 3328 4784-0 / Fax: (+49) 3328 4784-30

Microchip

Filter specification

TFS 256A

2/5

Filter characteristic

Construction and pin connection

(All dimensions in mm)

2 Ground 3 Ground 4 Output 5 Ground 6 Output RF Return 7 Ground 8 Ground 9 Ground 10 Input 11 Ground 12 Input RF Return / Ground	1	Ground
4 Output 5 Ground 6 Output RF Return 7 Ground 8 Ground 9 Ground 10 Input 11 Ground		Ground
5 Ground 6 Output RF Return 7 Ground 8 Ground 9 Ground 10 Input 11 Ground	3	Ground
6 Output RF Return 7 Ground 8 Ground 9 Ground 10 Input 11 Ground	4	Output
7 Ground 8 Ground 9 Ground 10 Input 11 Ground	5	Ground
8 Ground 9 Ground 10 Input 11 Ground	6	Output RF Return
9 Ground 10 Input 11 Ground	7	Ground
10 Input 11 Ground	8	Ground
11 Ground	9	Ground
	10	Input
12 Input RF Return / Ground	11	Ground
	12	Input RF Return / Ground

Date code: Year + week
C 2012
D 2013
E 2014
....

50 Ohm Test circuit

Microchip Frequency Technology GmbH Potsdamer Straße 18 D 14 513 TELTOW / Germany Tel: (+49) 3328 4784-0 / Fax: (+49) 3328 4784-30

TFS 256A Microchip Filter specification 3/5

Stability characteristics, reliability

After the following tests the filter shall meet the whole specification:

1. Shock: 500g, 1 ms, half sine wave, 3 shocks each plane;

DIN IEC 68 T2 - 27

2. Vibration: 10 Hz to 500 Hz, 0,35 mm or 5 g respectively, 1 octave per min, 10 cycles per plane, 3 planes;

DIN IEC 68 T2 - 6

3. Change of

temperature: -55 °C to 125°C / 30 min. each / 10 cycles

DIN IEC 68 part 2 - 14 Test N

4. Resistance to

solder heat (reflow): reflow possible: three times max.;

for temperature conditions refer to the attached "Air reflow temperature conditions" on page 4;

5. ESD MIL-STD-883E using coupling network of ISO 10605 and EN 6100-4-2

HBM:250V;

This filter is RoHS compliant (2002/95/EG, 2005/618/EG)

Packing

Tape & Reel: IEC 286 – 3, with exception of value for N and minimum bending radius;

tape type II, embossed carrier tape with top cover tape on the upper side;

max. pieces of filters per reel: 3000 reel of empty components at start: min. 300 mm reel of empty components at start including leader: min. 500 mm min. 300 mm trailer:

Pull Off Direction

Tape (all dimensions in mm) W 16,00 +0,3/-0,1 4,00 ± 0,1 1,50 +0,1/-0 Po Do Е $1,75 \pm 0,1$ $7,50 \pm 0,1$ G(min) P2 P1 $2,00 \pm 0,1$ $8,00 \pm 0,1$ D1(min) 1,50 $5,40 \pm 0,1$ Αo $7,60 \pm 0,1$ Во

Reel (all dimensions in mm)

13,3 ± 0,1

:330 16,4 +2/-0 W2(max) 22,4

N(min) 50 13,0 +0,5/-0,2

The minimum bending radius is 45 mm.

Microchip Frequency Technology GmbH Potsdamer Straße 18 D 14 513 TELTOW / Germany Tel: (+49) 3328 4784-0 / Fax: (+49) 3328 4784-30

Filter specification

TFS 256A

4/5

Air reflow temperature conditions

Microchip

Conditions	Exposure
Average ramp-up rate (30°C to 217°C)	less than 3°C/second
> 100°C	between 300 and 600 seconds
> 150°C	between 240 and 500 seconds
> 217°C	between 30 and 150 seconds
Peak temperature	max. 260°C
Time within 5°C of actual peak temperature	between 10 and 30 seconds
Cool-down rate (Peak to 50°C)	less than 6°C/second
Time from 30°C to Peak temperature	no greater than 300 seconds

Chip-mount air reflow profile

Microchip Frequency Technology GmbH Potsdamer Straße 18 D 14 513 TELTOW / Germany Tel: (+49) 3328 4784-0 / Fax: (+49) 3328 4784-30

Microchip Filter specification TFS 256A 5/5

History

Version **Reason of Changes** Name Date 1.0 - Generation of development specification Chilla 03.04.2012 2.0 - Created filter specification Chilla 27.09.2012 - Added terminating impedance - Added typical values - Added filter characteristics - Added test circuit

Microchip Frequency Technology GmbH Potsdamer Straße 18 D 14 513 TELTOW / Germany Tel: (+49) 3328 4784-0 / Fax: (+49) 3328 4784-30