

NTC thermistors for temperature measurement

Probe assemblies

Series/Type: B57301K
Date: January 2018

© EPCOS AG 2018. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

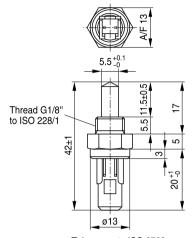
Temperature measurement	B3/301K
Probe assemblies	K301-A003

Applications

■ Immersion probe for water boilers

Features

- Nickel-plated brass housing
- Compact design
- Fast and easy mounting
- G1/8" thread to ISO 228/1
- Minimodul connector, lead spacing 2.5 mm


Options

Alternative resistance ratings, rated temperatures and resistance tolerances available on request.

Delivery mode

Bulk

Dimensional drawing

Tolerances to ISO 2768-m unless otherwise specified. TNT0471-A-E

Dimensions in mm Approx. weight 10 g

General technical data

Climatic category	(IEC 60068-1)		30/110/56	
Maximum operating temperature		$T_{op,max}$	110	°C
Max. power	(at 25 °C)	P ₂₅	375	mW
Resistance tolerance		$\Delta R_R/R_R$	±3	%
Rated temperature		T_R	25	°C
Thermal time constant	(in water)	τ_{a}	approx. 5	s
Insulation resistance	(V = 500 V DC)	R _{ins}	> 100	$M\Omega$
Test voltage	(t = 1 s)	V_{test}	2500	V AC

Electrical specification and ordering codes

R_{25} Ω	No. of R/T characteristic	B _{25/100} K	Ordering code
10000	8016	3988 ±1%	B57301K0103A003

Temperature measurement	B57301K
Probe assemblies	K301-A003

Reliability data

Test	Standard	Test conditions	$\Delta R_{25}/R_{25}$ (typical)	Remarks
Storage in dry heat	IEC 60068-2-2	Storage at maximum operating temperature T: 110 °C t: 1000 h	< 2%	No visible damage
Storage in damp heat, steady state	IEC 60068-2-78	Temperature of air: 40 °C Relative humidity of air: 93% Duration: 56 days	< 2%	No visible damage
Rapid temperature cycling	IEC 60068-2-14	Lower test temperature: 20 °C Upper test temperature: 90 °C Dwell time: 15 s Time to change from lower to upper temperature: approx. 5 s Number of cycles: 60000 Medium: ethyleneglycol/water (metal head immersed to the liquid medium up to the sealing)	< 2%	No visible damage
Storage in water		Temperature of water: 80 °C t: 1000 h Applied voltage with drop resistor 3.9 kΩ: 5 V DC (metal head immersed to the liquid medium up to the sealing)	< 2%	No visible damage
Vibration resistance	IEC 60068-2-6	Frequency range: 10 to 1000 Hz Amplitude: 1.5 mm, 10 <i>g</i> Duration: 3 x 4 h	< 2%	No visible damage
Voltage proof test		2500 V AC 1 s		No flashover

Note

- Contact of NTC thermistors with any liquids and solvents shall be prevented. It must be ensured that no water enters the NTC thermistors (e.g. through plug terminals).
- Avoid dewing and condensation unless thermistor is specified for these conditions.

Tempera	ture measi	Iramant
I CHINCIA		arement

B57301K

Probe assemblies

K301-A003

R/T characteristics

$_{5/100} = 3988 \text{ K}$ $/R_{25}$ α $.3$ $.01$ $.17$ $.6$ $.65$ $.26$	2 25 9 30	0.0 5.0	$B_{25/100} = 3988$ R_T/R_{25} 1.249 1.0000	α (%/K) 4.5	T (°C)	$B_{25/100} = 3988$ R_T/R_{25} 0.07885	K α (%/K) 3.0
.3 7. .01 7. .17 6. .65 6.	4 20 2 25 9 30	0.0 5.0	1.249	4.5			<u> </u>
.01 7. .17 6. .65 6.	2 25 9 30	5.0	-	-		0.07885	3.0
.17 6. .65 6.	9 30		1.0000				,
.65 6.	-	0.0		4.4	100.0	0.068	2.9
	7 3		0.8057	4.3	105.0	0.05886	2.9
.26 6.	, 00	5.0	0.6531	4.1	110.0	0.05112	2.8
	4 40	0.0	0.5327	4.0	115.0	0.04454	2.7
.7 6.	2 45	5.0	0.4369	3.9	120.0	0.03893	2.6
.04 6.	.0 50	0.0	0.3603	3.8	125.0	0.03417	2.6
.707 5.	.8 55	5.0	0.2986	3.7	130.0	0.03009	2.5
.293 5.	.6 60	0.0	0.2488	3.6	135.0	0.02654	2.5
.533 5.	5 65	5.0	0.2083	3.5	140.0	0.02348	2.4
.232 5.	3 70	0.0	0.1752	3.4	145.0	0.02083	2.4
.265 5.	.1 75	5.0	0.1481	3.3	150.0	0.01853	2.3
.539 5.	.0 80	0.0	0.1258	3.2	155.0	0.01653	2.3
.99 4.	8 8	5.0	0.1072	3.2	_	_	_
.571 4.	.7 90	0.0	0.09177	3.1	_	_	_
	04 6. 707 5. 293 5. 533 5. 232 5. 265 5. 539 5.	04 6.0 50 707 5.8 53 293 5.6 60 533 5.5 60 232 5.3 70 265 5.1 73 539 5.0 80 99 4.8 83	04 6.0 50.0 707 5.8 55.0 293 5.6 60.0 533 5.5 65.0 232 5.3 70.0 265 5.1 75.0 539 5.0 80.0 99 4.8 85.0	04 6.0 50.0 0.3603 707 5.8 55.0 0.2986 293 5.6 60.0 0.2488 533 5.5 65.0 0.2083 232 5.3 70.0 0.1752 265 5.1 75.0 0.1481 539 5.0 80.0 0.1258 99 4.8 85.0 0.1072	04 6.0 50.0 0.3603 3.8 707 5.8 55.0 0.2986 3.7 293 5.6 60.0 0.2488 3.6 533 5.5 65.0 0.2083 3.5 232 5.3 70.0 0.1752 3.4 265 5.1 75.0 0.1481 3.3 539 5.0 80.0 0.1258 3.2 99 4.8 85.0 0.1072 3.2	04 6.0 50.0 0.3603 3.8 125.0 707 5.8 55.0 0.2986 3.7 130.0 293 5.6 60.0 0.2488 3.6 135.0 533 5.5 65.0 0.2083 3.5 140.0 232 5.3 70.0 0.1752 3.4 145.0 265 5.1 75.0 0.1481 3.3 150.0 539 5.0 80.0 0.1258 3.2 155.0 69 4.8 85.0 0.1072 3.2 -	04 6.0 50.0 0.3603 3.8 125.0 0.03417 707 5.8 55.0 0.2986 3.7 130.0 0.03009 293 5.6 60.0 0.2488 3.6 135.0 0.02654 533 5.5 65.0 0.2083 3.5 140.0 0.02348 232 5.3 70.0 0.1752 3.4 145.0 0.02083 265 5.1 75.0 0.1481 3.3 150.0 0.01853 539 5.0 80.0 0.1258 3.2 155.0 0.01653 99 4.8 85.0 0.1072 3.2 - -

B57301k

K301-A003

ı	Temperature measurement	E

Cautions and warnings

Probe assemblies

General

See "Important notes" on page 2.

Storage

- Store thermistors only in original packaging. Do not open the package prior to processing.
- Storage conditions in original packaging: storage temperature −25 °C ... +45 °C, relative humidity ≤75% annual mean, <95% maximum 30 days per annum, dew precipitation is inadmissible.</p>
- Do not store thermistors where they are exposed to heat or direct sunlight. Otherwise, the packing material may be deformed or components may stick together, causing problems during mounting.
- Avoid contamination of thermistor surface during storage, handling and processing.
- Avoid storage of thermistors in harmful environments like corrosive gases (SO_x, Cl etc).
- Use the components as soon as possible after opening the original packaging.
- Solder thermistors within the time specified after shipment from EPCOS.
 For leaded components this is 24 months, for SMD components with nickel barrier termination 12 months, for leadless components this is 12 months, for SMD components with AgPd termination 6 months.

Handling

- NTC thermistors must not be dropped. Chip-offs or any other damage must not be caused during handling of NTCs.
- Do not touch components with bare hands. Gloves are recommended.
- Avoid contamination of thermistor surface during handling.
- Washing processes may damage the product due to the possible static or cyclic mechanical loads (e.g. ultrasonic cleaning). They may cause cracks to develop on the product and its parts, which might lead to reduced reliability or lifetime.

Bending / twisting leads

A lead (wire) may be bent at a minimum distance of twice the wire's diameter plus 4 mm from the component head or housing. When bending ensure the wire is mechanically relieved at the component head or housing. The bending radius should be at least 0.75 mm.

Soldering

- Use resin-type flux or non-activated flux.
- Insufficient preheating may cause ceramic cracks.
- Rapid cooling by dipping in solvent is not recommended.
- Complete removal of flux is recommended.

B57301K

Temperature measurement

Probe assemblies K301-A003

Mounting

- Ensure that no thermo-mechanical stress occurs due to production processes (curing or overmolding processes) when thermistors are sealed, potted or overmolded or during their subsequent operation. The maximum temperature of the thermistor must not be exceeded. Ensure that the materials used (sealing/potting compound and plastic material) are chemically neutral.
- Electrodes/contacts must not be scratched or damaged before/during/after the mounting process.
- Contacts and housing used for assembly with the thermistor must be clean before mounting.
- Ensure that adjacent materials are designed for operation at temperatures comparable to the surface temperature of the thermistor. Be sure that surrounding parts and materials can withstand the temperature.
- Avoid contamination of the thermistor surface during processing.
- The connections of sensors (e.g. cable end, wire end, plug terminal) may only be exposed to an environment with normal atmospheric conditions.
- Tensile forces on cables or leads must be avoided during mounting and operation.
- Bending or twisting of cables or leads directly on the thermistor body is not permissible.
- Avoid using chemical substances as mounting aids. It must be ensured that no water or other liquids enter the NTC thermistors (e.g. through plug terminals). In particular, water based substances (e.g. soap suds) must not be used as mounting aids for sensors.
- The use of no-clean solder products is recommended. In any case mild, non-activated fluxes should be used. Flux residues after soldering should be minimized.

Operation

- Use thermistors only within the specified operating temperature range.
- Use thermistors only within the specified power range.
- Environmental conditions must not harm the thermistors. Only use the thermistors under normal atmospheric conditions or within the specified conditions.
- Contact of NTC thermistors with any liquids and solvents shall be prevented. It must be ensured that no water enters the NTC thermistors (e.g. through plug terminals). For measurement purposes (checking the specified resistance vs. temperature), the component must not be immersed in water but in suitable liquids (e.g. perfluoropolyethers such as Galden).
- Avoid dewing and condensation unless thermistor is specified for these conditions.
- Bending or twisting of cables and/or wires is not permissible during operation of the sensor in the application.
- Be sure to provide an appropriate fail-safe function to prevent secondary product damage caused by malfunction.

This listing does not claim to be complete, but merely reflects the experience of EPCOS AG.

Display of ordering codes for EPCOS products

The ordering code for one and the same EPCOS product can be represented differently in data

Prohe assemblies	K301-A003

Temperature measurement

sheets, data books, other publications, on the EPCOS website, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.epcos.com/orderingcodes

Temperature measurement	B57301K
Probe assemblies	K301-A003

Symbols and terms

Symbol	English	German
A AWG	Area American Wire Gauge	Fläche Amerikanische Norm für Drahtquerschnitte
B B _{25/100}	B value B value determined by resistance measurement at 25 °C and 100 °C	B-Wert B-Wert, ermittelt durch Widerstands- messungen bei 25 °C und 100 °C
C_{th}	Heat capacitance	Wärmekapazität
1	Current	Strom
$\begin{array}{l} N \\ P_{25} \\ P_{diss} \\ P_{el} \\ P_{max} \end{array}$	Number (integer) Maximum power at 25 °C Power dissipation Electrical power Maximum power within stated temperature range	Anzahl (ganzzahliger Wert) Maximale Leistung bei 25 °C Verlustleistung Elektrische Leistung Maximale Leistung im angegebenenTemperaturbereich
$\begin{array}{l} \Delta R_{\text{B}}/R_{\text{B}} \\ \\ R_{\text{ins}} \\ R_{\text{P}} \\ \\ R_{\text{R}} \\ \Delta R_{\text{p}}/R_{\text{R}} \\ \\ R_{\text{S}} \\ \\ R_{\text{T}} \end{array}$	Resistance tolerance caused by spread of B value Insulation resistance Parallel resistance Rated resistance Resistance tolerance Series resistance Resistance at temperature T (e.g. R ₂₅ = resistance at 25 °C)	Widerstandstoleranz, die durch die Streuung des B-Wertes verursacht wird Isolationswiderstand Parallelwiderstand Nennwiderstand Widerstandstoleranz Serienwiderstand Widerstand bei Temperatur T (z.B. R ₂₅ = Widerstand bei 25 °C)
$T \\ \Delta T \\ t \\ T_A \\ T_{max} \\ T_{min} \\ T_{op} \\ T_R \\ T_{surf}$	Temperature Temperature tolerance Time Ambient temperature Upper category temperature Lower category temperature Operating temperature Rated temperature Surface temperature	Temperatur Temperaturtoleranz Zeit Umgebungstemperatur Obere Grenztemperatur (Kategorietemperatur) Untere Grenztemperatur (Kategorietemperatur) Betriebstemperatur Nenntemperatur Oberflächentemperatur
$egin{array}{c} V \ V_{ins} \ V_{op} \ V_{test} \end{array}$	Voltage Insulation test voltage Operating voltage Test voltage	Spannung Isolationsprüfspannung Betriebsspannung Prüfspannung

Temperature measurement	B57301K
Probe assemblies	K301-A003

Symbol	English	German
α	Temperature coefficient	Temperaturkoeffizient
Δ	Tolerance, change	Toleranz, Änderung
δ_{th}	Dissipation factor	Wärmeleitwert
$\begin{matrix} \tau_c \\ \tau_a \end{matrix}$	Thermal cooling time constant Thermal time constant	Thermische Abkühlzeitkonstante Thermische Zeitkonstante

Abbreviations / Notes

Symbol	English	German
SMD	Surface-mounted devices	Oberflächenmontierbares Bauelement
*	To be replaced by a number in ordering codes, type designations etc.	Platzhalter für Zahl im Bestellnummern- code oder für die Typenbezeichnung.
+	To be replaced by a letter.	Platzhalter für einen Buchstaben.
	All dimensions are given in mm.	Alle Maße sind in mm angegeben.
	The commas used in numerical values denote decimal points.	Verwendete Kommas in Zahlenwerten bezeichnen Dezimalpunkte.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.
 - We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to our General Terms and Conditions of Supply.
- 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.

Important notes

8. The trade names EPCOS, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2018-10