High Power LED Series Chip Scale Package

LH171H

For Horticulture Lighting

Features & Benefits

- Chip scale package with compact design (1.7 x 1.7 mm)
- Maximum current up to 0.7A with low thermal resistance

Table of Contents

1.	Characteristics	 3
2.	Product Code Information	 6
3.	Typical Characteristics Graphs	 11
4.	Outline Drawing & Dimension	 13
5.	Reliability Test Items & Conditions	 14
6.	Soldering Conditions	 15
7.	Tape & Reel	 16
8.	Label Structure	 18
9.	Packing Structure	 19
0.	Precautions in Handling & Use	 21

1. Characteristics

a) Absolute Maximum Rating

ltem	Symbol	Rating	Unit	Condition
Ambient / Operating Temperature	Ta	-40 ~ + 100	°C	Note 1)
Storage Temperature	T_{stg}	-40 ~ +125	°C	-
LED Junction Temperature	Tj	135	°C	-
Forward Current	lF	700	mA	Note 1)
Peak Pulse Forward Current	l _{FP}	1000	mA	Duty 1/10 pulse width 10ms
Assembly Process Temperature	-	255 <20	°C s	-
ESD (HBM)	-	±2	kV	-

Note:

1) Refer to the derating curve, '3. Typical Characteristics Graph', for proper driving current that maintained below maximum junction temperature.

b) Electro-optical Characteristics

ltem	Unit	Nominal CCT	Conc	lition	Value
item	Offic	(K)	I _F (mA)	T _j (°C)	Тур.
			150	85	75
			350	25	175
Luminous Flux (Φ _ν)	lm	4000 (70 CRI)	350	85	160
			500	85	215
			700	85	277
			150	25	2.68
			350	25	2.96
Forward Voltage (V _F)	V		350	85	2.84
			500	85	2.94
			700	85	3.05
Thermal Resistance (junction to solder point)	K/W				2
Beam Angle	0				120

Note:

Samsung maintains measurement tolerance of: luminous flux = $\pm 7\%$, forward voltage = $\pm 0.1 \text{ V}$

c) Luminous Flux Characteristics ($T_s = 85$ °C)

	Sorting @ 350 mA (lm)			Calculated Mini	mum Flux²) (lm)	
Flux Rank	Flux Range ¹⁾	Sub Rank	@ 150 mA	@ 350 mA	@ 500 mA	@ 700 mA
E3	80 ~ 110	E1, F1, G1	37	80	108	139
F3	90 ~ 120	F1, G1, H1	42	90	121	156
G3	100 ~ 130	G1, H1, J1	47	100	135	173
НЗ	110 ~ 140	H1, J1, K1	51	110	148	191
J3	120 ~ 150	J1, K1, M1	56	120	161	208
<i>K</i> 3	130 ~ 160	K1, M1, N1	61	130	175	225
М3	140 ~ 170	M1, N1, P1	65	140	188	242
N3	150 ~ 180	N1, P1, Q1	70	150	202	260
Р3	160 ~ 190	P1, Q1, R1	75	160	215	277
Q3	170 ~ 200	Q1, R1, S1	79	170	229	294
R3	180 ~ 210	R1, S1, T1	84	180	242	312
\$3	190 ~ 220	S1, T1, U1	89	190	256	329
Т3	200 ~ 230	T1, U1, V1	93	200	269	346
U3	210 ~ 240	U1, V1, W1	98	210	282	364
V3	220 ~ 250	V1, W1, X1	103	220	296	381
W3	230 ~ 260	W1, X1, Y1	107	230	309	398
X3	240 ~ 270	X1, Y1, Z1	112	240	323	416
Y3	250 ~ 280	Y1, Z1, 11	117	250	336	433
Z3	260 ~ 290	Z1, 11, 21	121	260	350	450

Notes:

- 1) Samsung maintains measurement tolerance of: Iuminous flux = ± 7 %, CRI = ± 3
- 2) Calculated minimum flux values are for reference only

2. Product Code Information

1	<u>2</u>	<u>3</u>	4	5	<u>6</u>	7	<u>8</u>	9	<u>10</u>	<u>11</u>	<u>12</u>	13	14	15	16	17	18
S	С	Р	7	т	т	9	3	K	F	н	1	т	- 1	N	3	6	F

Digit	PKG Information	Code				Spe	cificat	ion						
1 2 3	Samsung Chip Scale Package	SCP												
		7	CRI 70											
4	CRI	8	CRI 80											
		9	CRI 90											
		W	2700K											
		V	3000K											
		U	3500K											
5	CCT(K)	т	4000K											
		R	5000K											
		Q	5700K											
		Р	6500K											
6	Chip Shape	Т	Square type											
7 8 9	Product	93K	Chip version											
10 11 12	Product Purpose	EH1	FEC for Horticulture											
	'	W	2700K											
		V	3000K											
		U	3500K											
42	CCT (IV)	Т	4000K											
13	CCT (K)	R	5000K											
		Q	5700K											
		P	6500K											
14	MacAdam Step	U	MacAdam 3-Step											
		F 3	MacAdam 5-Step 90- 120	F1 90-	100									
		G 3		G1 100		F3								
		H 3		H1 110			G3							
		J 3		J1 120				НЗ						
		К 3	130~160	K1 130	~140				J 3		l			
		М 3	140~170	M1 140	~150					К3				
		N 3	150~180	N1 150	~160						М 3			
15 16	Luminous Flux	Р3	160~190	P1 160	~170							N 3		
		Q 3	170~200	Q1 170	~180								P 3	
														Q 3
			Digit 15: Min. spec											
			Digit 16: The number of				spec.							
			e.g.: K1 = 130~140 lm,	N3 = 1	30~160	1111								
17 18	Forward Voltage (Vf)	6 E	6A 2.7~2.9											
			AE 2.9~3.1											

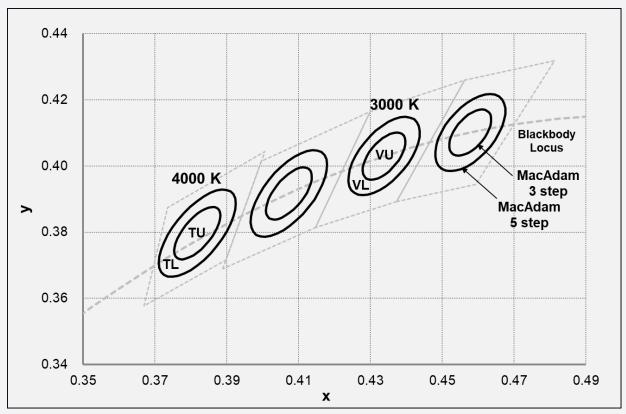
a) Luminous Flux Bins ($I_F = 350 \text{ mA}, T_s = 85 \, ^{\circ}\text{C}$)

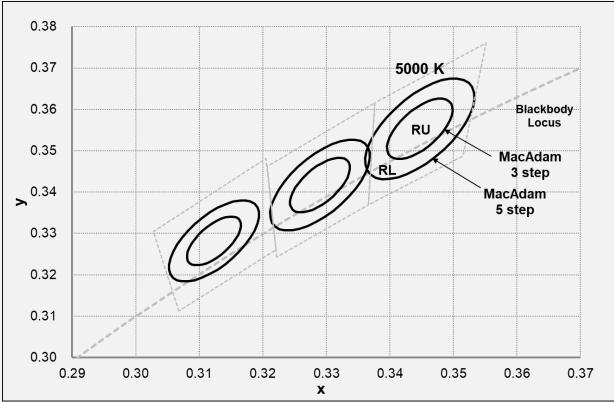
C	CRI/						Flux rank					
Nominal CCT (K)		E1	F1	G1	H1	J1	K1	M1	N1	P1	Q1	R1
	(min. flux)	80	90	100	110	120	130	140	150	160	170	180
	3000						SCP7VT93KEH1V◇K36E					
70	4000								SCP7T	T93KEH1T	∵∕N36E	
	5000								SCP7R	T93KEH1R	?⊘N36E	

Notes:

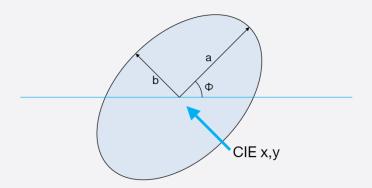
1) \diamondsuit : MacAdam step code, L(MacAdam 5-step) / U(MacAdam 3-step)

b) Color Bins ($I_F = 350$ mA, $T_s = 85$ °C)


Nominal CCT (K)	CRI (R _a)	Color Rank	Chromaticity Bins
3000, 4000, 5000	70	L (Full Bin for MacAdam 5-step) U (Full Bin for MacAdam 3-step)	☆L ☆U


Notes:

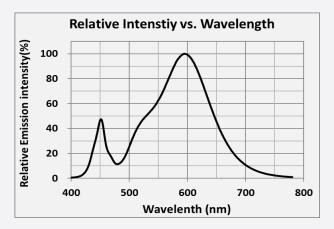
c) Voltage Bins ($I_F = 350 \text{ mA}$, $T_s = 85 \, ^{\circ}\text{C}$)


CRI (R _a)	Nominal CCT (K)	Product Code	Voltage Rank	Voltage Bin	Voltage Range (V)
			6E	6A	2.7 ~ 2.9
	OE		AE	2.9 ~ 3.1	

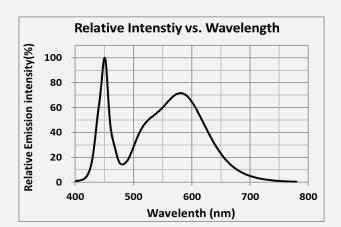
d) Chromaticity Region & Coordinates (I_F = 350 mA, T_s = 85 °C)

e) Chromaticity Region & Coordinates (IF = 350 mA, T_s = 85 °C)

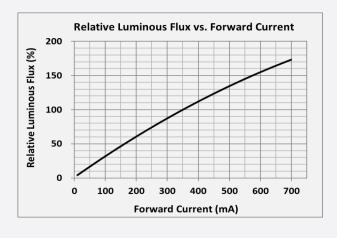
	ССТ	Cente	er point	Major-axis	Minor-axis	Rotation	
	(K)	CIE x	CIE y	a	b	Ф	
	3000	0.4338	0.4030	0.0083	0.0041	53.22	
3 step	4000	0.3818	0.3797	0.0094	0.0040	53.72	
	5000	0.3447	0.3553	0.0082	0.0035	59.62	
	3000	0.4338	0.4030	0.0138	0.0068	53.22	
5 step	4000	0.3818	0.3797	0.0157	0.0067	53.72	
	5000	0.3447	0.3553	0.0137	0.0058	59.62	

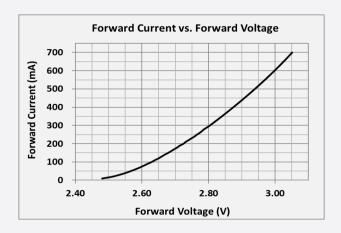

Note:

Samsung maintains measurement tolerance of: Cx, $Cy = \pm 0.005$

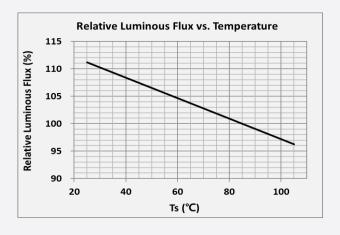

3. Typical Characteristics Graphs

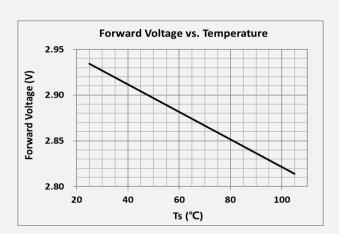
a) Spectrum Distribution ($I_F = 350 \text{ mA}, T_s = 85 \text{ }^{\circ}\text{C}$)

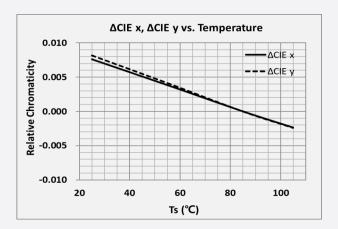

3000K/CRI70

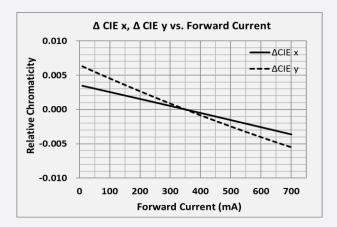


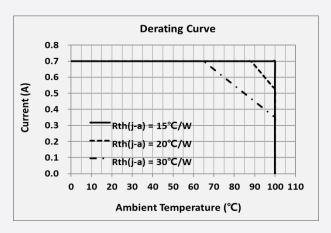
5000K/CRI70

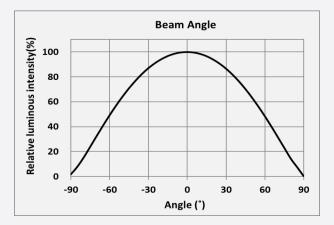


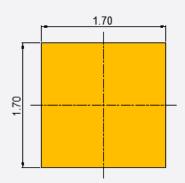

b) Forward Current Characteristics (T_s = 85 °C)



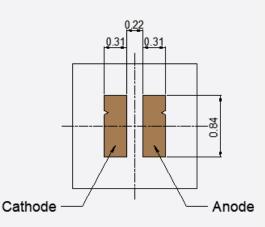

c) Temperature Characteristics (I_F = 350 mA)




d) Color Shift Characteristics (I_F = 350 mA, T_s = 85 °C)


e) Derating Curve and Beam Angle Characteristics ($I_F = 350 \text{ mA}, T_s = 25 \, ^{\circ}\text{C}$)

4. Outline Drawing & Dimension


<Top View>

<Side View>

<Bottom View>

Measurement unit: mm

Tolerance: ±0.13 mm

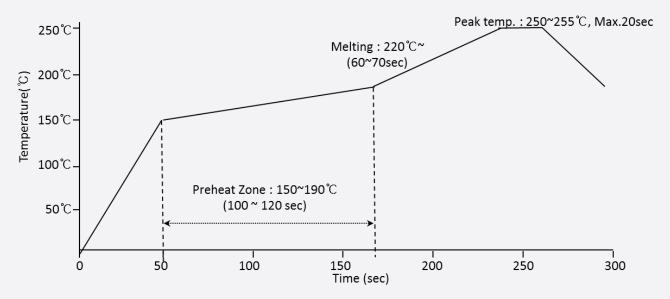
Precautions:

- 1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
- 2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED's characteristics should be carefully checked before and after such repair.
- 3) Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.

5. Reliability Test Items & Conditions

a) Test Items

Test Item	Test Condition	Test Hour / Cycle
Room Temperature Life Test	25 °C, Derated maximum current	1000 h
High Temperature Life Test	85 °C, Derating maximum current	1000 h
High Temperature Humidity Life Test	60 °C, 90% RH, Derating maximum current	1000 h
Low Temperature Life Test	-40 °C, Derating maximum current	1000 h
Temperature Humidity Cycle Test	-10 °C ↔25 °C /Dry, 25 °C ↔ 65 °C /95% R.H. Derating maximum current	10 cycles
Thermal Shock	-40 °C ↔ 125 °C, each 15 min Transfer time within 5 min	500 cycles
High Temperature Storage	120 °C	1000 h
Low Temperature Storage	-40 °C	1000 h
ESD (HBM)	R ₁ R ₂ R ₁ : 10 MΩ R ₂ : 1.5 kΩ	5 times
ESD (MM)	R ₁ : 10 MΩ R ₂ : 0 C: 200 pF V: ±0.2 kV	5 times
Vibration Test	20~2000~20 Hz, 200 m/s², sweep 4 min X, Y, Z 3 direction, each 1 cycle	4 cycles
Mechanical Shock Test	1500 g, 0.5 ms 3 shocks each X-Y-Z axis	5 cycles


b) Criteria for Judging the Damage

ltem	Symbol	Test Condition	Lin	nit
item	Зуппоп	$(T_s = 25 {}^{\circ}\text{C})$	Min.	Max.
Forward Voltage	VF	I _F = 350 mA	Init. Value * 0.9	Init. Value * 1.1
Luminous Flux	Ф	I _F = 350 mA	Init. Value * 0.7	Init. Value * 1.1

6. Soldering Conditions

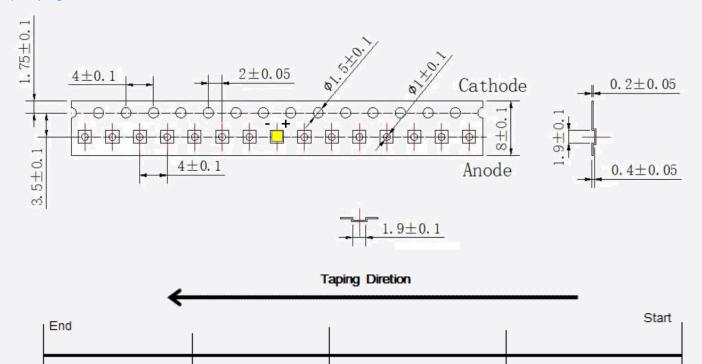
a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

No more than 5 seconds @ max. 300 $^{\circ}$ C, under soldering iron.

7. Tape & Reel

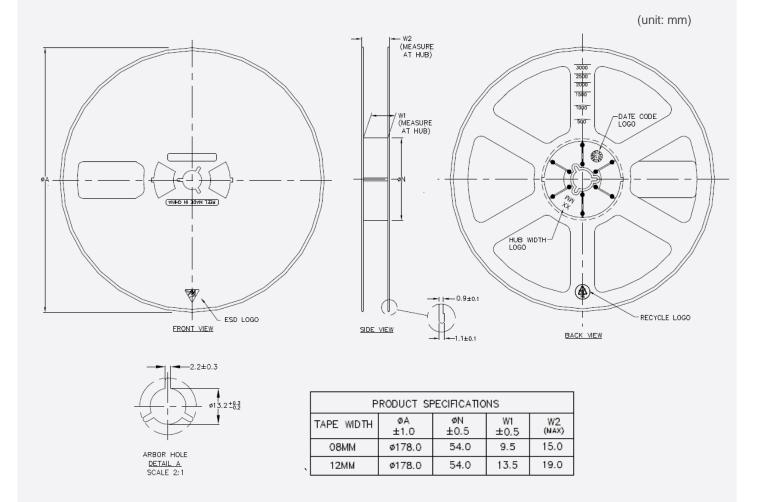

a) Taping Dimension

More than 40 mm

Unloaded tape

Mounted with

LED package


More than 100~200 mm

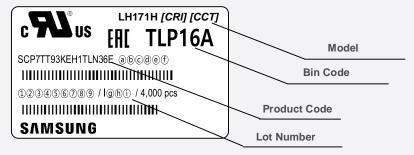
Unloaded tape

Leading part more than

200~400 mm

b) Reel Dimension

Notes:


1) Quantity: 4,000 Qty/reel

2) Cumulative tolerance: Cumulative tolerance / 10 pitches is ±0.2 mm

3) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag

8. Label Structure

a) Label Structure

Note: Denoted product code and bin code above is only an example

Bin Code:

(a) : Chromaticity bin (refer to page 9-10)

⊚ @ : Luminous Flux bin (refer to page 7)

b) Lot Number

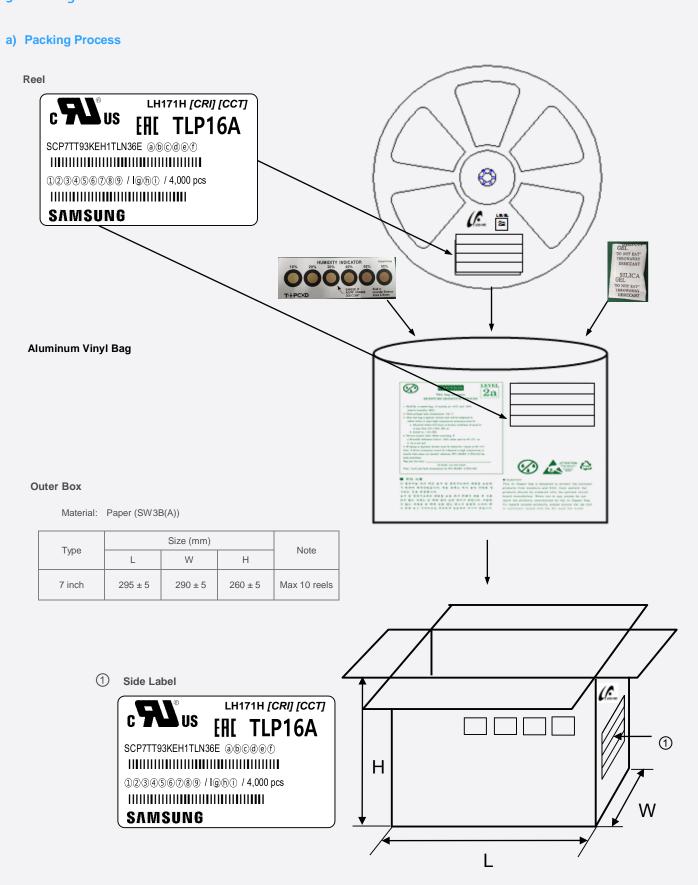
The lot number is composed of the following characters:

123456789 / Iabo / 4,000 pcs

①② : Production site (GB: Nanchang China)

③ : Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)

④ : Year (E: 2020, F: 2021, L:2022 ...)


⑤ : Month (1~9, A, B, C)

⑥ : Day (1~9, A, B~V)

(7) (8) 9 : Product serial number (001 ~ 999)

(9) (001 ~ 999) or (AAA ~ ZZZ)

9. Packing Structure

b) Aluminum Vinyl Packing Bag

CAUTION

This bag contains MOISTURE SENSITIVE DEVICES

- Shelf life in sealed bag: 12 months at <40 °C and <90% relative humidity (RH)
- 2. Peak package body temperature: 240 °C
- After this bag is opened, devices that will be subjected to reflow solder or other high temperature processes must be:
 - a. Mounted within 672 hours at factory conditions of equal to or less than 30℃ /60% RH, or
 - b. Stored at < 10% RH
- Devices require bake, before mounting, if:
 a.Humidity Indicator Card is > 65% when read at 23±5°C, or
 b. 2a is not met.
- 5. If baking is required, devices must be baked for 1 hours at 60±5°C Note: if device containers cannot be subjected to high temperature or shorter bake times are desired, reference IPC/JEDEC J-STD-033 for bake procedure.

Bag seal due date: _

(if blank, see code label)

Note: Level and body temperature by IPC/JEDEC J-STD-020

LH171H [CRI] [CCT]

FRI TLP16A

SCP7TT93KEH1TLN36E @bcdef

123456789 / IQhi / 4,000 pcs

SAMSUNG

🔳 주의 사항

이 알루미늄 지퍼 백은 습기 및 정전기로부터 제품을 보호하 기 위하여 제작되었습니다. 개봉 후에는 즉시 솔더 작업을 실 시하는 것을 권장합니다.

습기 및 정전기로부터 제품을 보호 하기 위해서 개봉 후 사용 하지 않는 자재는 본 팩에 넣어 보관 하시기 바랍니다. 사용하 지 않는 자재를 본 팩에 넣을 때는 반드시 동봉된 드라이 팩 과 함께 넣고 지퍼부분을 완전하게 밀봉하여 주시기 바랍니다.

■ Important

This Al Zipper bag is designed to protect the enclosed products from moisture and ESD. Once opened, the products should be soldered onto the printed circuit board immediately. When not in use, please do not leave the products unprotected by the Al Zipper Bag. To repack unused products., please ensure the zip-lock is completely sealed with the dry pack left inside.

c) Silica Gel & Humidity Indicator Card inside Aluminum Vinyl Bag

10. Precautions in Handling & Use

- 1) For over-current protection, users are recommended to apply resistors connected in series with the LEDs to mitigate sudden change of the forward current caused by shift of forward voltage.
- 2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When cleaning is required, IPA is recommended as the cleaning agent. Some solvent-based cleaning agent may damage the silicone resins used in the device.
- 3) When the device is in operation, the forward current should be carefully determined considering the maximum ambient temperature and corresponding junction temperature.
- 4) LEDs must be stored in a clean environment.
- 5) After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be:
 - a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than 30 °C / 60 % RH, or
 - b. Stored at <10 % RH
- 6) Repack unused devices with anti-moisture packing, fold to close any opening and then store in a dry place.
- 7) Devices require baking before mounting, if humidity card reading is >60 % at 23 ± 5 °C.
- 8) Devices must be baked for 1 hour at 60 ± 5 °C, if baking is required.
- 9) The LEDs are sensitive to the static electricity and surge current. It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leakage current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
- 10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead to a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires. In order to prevent these problems, we recommend users to know the physical properties of materials used in luminaires and they must be carefully selected.

Legal and additional information.

About Samsung Electronics Co., Ltd.

Samsung Electronics Co. Ltd inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and semiconductor and LED solutions. For the latest news, please visit the Samsung Newsroom at http://news.samsung.com.

Copyright © 2020 Samsung Electronics Co., Ltd. All rights reserved.

Samsung is a registered trademark of Samsung Electronics Co., Ltd.

Specifications and designs are subject to change without notice. Non-metric weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd. 1, Samsung-ro Giheung-gu Yongin-si, Gyeonggi-do, 17113 KOREA

www.samsungled.com

